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Abstract 

 

This study uses repeated cross-sections of individual level crash data to study the effectiveness of 

motorcycle helmet legislation.  Results suggest that motorcycle helmet laws reduce average 

individual fatality risks by 21.3%.  Overall, the analysis suggests that mandatory helmet laws are 

an effective means of reducing state motorcycle fatalities and result in average annual state 

benefits that range from $113 million to $168 million.  The effectiveness of helmet legislation 

can be attributed to the technological efficacy of helmets as well as enhancing behavior in the 

form of reduced risk taking among motorcyclists.  Specifically, motorcyclists who use helmets in 

order to comply with mandatory helmet laws are 4.2 percentage points less likely to receive a 

traffic citation for risky driving behavior (speeding, alcohol, etc.), travel at a 6 mph lower 

average speed, and have a 30 percentage point reduction in the probability of “severely” 

damaging their motorcycle in a crash. 
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1.  Introduction 

In 2010, motorcyclist fatalities accounted for 13.7% of all motor vehicle related fatalities 

in the U.S.; however, motorcycle registrations accounted for only 3.2% of the total vehicle 

registrations.  The fatality rate (fatalities per registered vehicle) of motorcyclists is roughly six 

times the fatality rate of passenger car motorists, and using this criteria, motorcycles are 

consistently ranked as the most dangerous motor vehicles operated on roadways.  As such, state 

legislatures have passed numerous legislative measures designed to improve motorcycle 

awareness, provide motorcycle training programs, and improve the safety of motorcyclists 

involved in crashes.  Laws requiring motorcyclists to use protective helmets are generally 

considered to be a viable policy tool available to state legislatures to improve motorcyclist 

safety.    

The history of state motorcycle helmet legislation in the U.S. has largely been influenced 

by federal regulation providing incentives for states to adopt mandatory helmet laws.  There was 

a steady increase in the number of state laws requiring universal motorcycle helmet use from 

1967 to 1975, and by the end of 1975 48 states implemented such laws.  During this period the 

U.S. Highway Safety Act of 1966 was in operation, and the act required states to adopt universal 

helmet laws in order to avoid penalties of up to 10% reductions in their federal highway 

construction funds (Sass and Zimmerman, 2000).  The helmet law incentives established in the 

1966 Highway Safety Act remained in place until Congress passed the Federal-Aid Highway Act 

in May of 1976.  The Federal-Aid Highway Act removed penalties for states without universal 

helmet laws provided the states maintained partial coverage levels that at minimum required 

helmet use for motorcyclists 18 years of age and younger (Ruschmann, 1977).  As a result of the 

sanction removals 28 states repealed their universal helmet laws between 1976 and 1981.  The 
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majority of states that repealed their universal coverage laws replaced the laws with age-specific 

helmet laws designed to meet the requirements of the Federal-Aid Highway Act. 

   Congress once again attempted to influence state adoption of universal motorcycle 

helmet laws in 1991 with the passage of the Intermodal Surface Transportation Efficiency Act 

(ISTEA).  ISTEA made provisions for states to receive federal grants upon passage of universal 

helmet laws and primary enforcement safety belt laws (Ulmer and Preusser, 2003).  Furthermore, 

states that failed to enact such laws by October, 1993 faced sanctions in the form of up to 3% 

reallocation of their 1995 Federal-aid highway funds (Sass and Zimmerman, 2000).  The 

proposed penalties were much less severe than those in the 1966 Highway Safety Act, and the 

penalties were not enforced because Congress repealed the reallocation provisions in 1995 with 

the passage of the National Highway System Designation Act (Ulmer and Preusser, 2003).  As a 

result of the lack of enforcement and relatively smaller penalties, California and Maryland were 

the only states that passed universal helmet laws between 1991 and 1995.     

Overall, universal helmet law adoption has remained fairly stable post 1981.  From 1981 

to 2012 eight states have repealed their universal helmet laws, and 6 states have enacted new 

universal helmet legislation.2  Currently 19 U.S. states and the District of Columbia have 

mandatory motorcycle helmet laws requiring universal helmet use for all motorcyclists.  Another 

28 states have partial coverage helmet laws with age restrictions that stipulate helmets must be 

worn by minors.  The remaining three states consisting of Iowa, Illinois, and New Hampshire 

have no helmet use requirements for motorcyclists.   

Studies analyzing the effectiveness of helmets in preventing motorcyclist fatalities can 

largely be classified in two separate groups:  

                                                           
2 Louisiana and Texas had multiple changes in their motorcycle helmet laws between 1981 and 2012.  Louisiana 

readopted a universal law in 1982, repealed that law in 1999, and reinstated universal coverage in 2004.  Texas 

reinstated universal coverage in 1989, and then repealed its universal helmet law in 1997.    
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1. Those analyzing the technological efficacy of motorcycle helmets (for a review, see 

Liu et al., 2008).  

2. Studies addressing the effectiveness of motorcycle helmet legislation (summary 

provided in Table 1). 

Estimates of technological efficacy employ individual level motorcycle crash data collected from 

police accident reports, and attempt to isolate the effects of helmet use on motorcyclists’ 

likelihood of death given they are involved in a motorcycle crash.  Peltzman (1975) suggests that 

automobile safety regulation may result in compensating behavior in the form of increased 

“driving intensity” and this behavior may offset some of the effectiveness of the safety 

regulation.3  According to Peltzman’s hypothesis, analysis of technological efficacy of 

motorcycle helmets is complicated by the fact that individuals’ driving intensity is correlated 

with their decision to wear protective helmets.  Stated alternatively, there is a simultaneity 

problem associated with the choice of helmet use and driving intensity as illustrated in the path 

analysis of Figure 1.   

Researchers interested in analyzing the technological effects illustrated by the direct path 

from helmet use to injury severity have generally followed two types of estimation strategies.  

The first strategy attempts to directly control for confounding variables (i.e. crash characteristics 

and driving intensity) in order to isolate the direct effects of helmet usage on injury severity (see, 

for example, Goldstein, 1986, Hundley et al., 2004, Keng, 2005, Rowland et al., 1996, Sauter et 

al., 2005).  This strategy is necessarily complicated by the fact that driving intensity is 

imperfectly measured (i.e., variables such as motorcyclist’s travel speed must be proxied by 

posted speed-limits).   

                                                           
3Noland (2013) extends the theory of offsetting behavior to a more general concept of mobility that encompasses 

risky behavior as well as changes in vehicle utilization.  In the analysis that follows the term driving intensity is used 

in the traditional sense posited by Peltzman to be synonymous with risk taking. 
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A more promising estimation strategy uses matched cohorts of drivers and passengers in 

which one of the matched individuals is helmeted and the other is not (see, for example, 

Anderson and Kraus, 1996, Dee, 2009, Evans and Frick, 1988, Norvell and Cummings, 2002). 

The matched pair cohort method necessarily controls for driving intensity by holding unobserved 

crash features constant for drivers and their matched passengers.  Unfortunately, these studies 

may suffer from issues of external validity, because crashes involving motorcycles carrying 

passengers are a very small percentage of overall crashes and the characteristics of those crashes 

may not be representative of the population at large (Dee, 2009).  In their meta-analysis, Liu, et 

al. (2008) estimate that studies of technological efficacy find helmets to be associated with an 

average 42% reduction in risk of death. 

A second group of studies analyzing motorcycle helmet safety use state-level data to 

estimate the impact of mandatory motorcycle helmet laws on aggregate motorcycle fatalities.  

These studies use a variety of estimation approaches, and their main findings are summarized in 

Table 1.  One key difference among the studies analyzing state motorcycle helmet law 

effectiveness is their choice of dependent variable.  Specifically, the studies of helmet law 

efficacy generally choose between the following three alternative dependent variables: non-

normalized fatality counts, fatalities per registered motorcycle, and fatalities per capita.  As 

illustrated in Table 1, studies using non-normalized fatality counts and fatalities per capita 

generally estimate helmet laws to be more effective in preventing motorcycle fatalities in 

comparison to studies where the dependent variable is fatalities per registered motorcycle.  On 

average across all the helmet law effectiveness studies reported in Table 1, motorcycle helmet 

laws are estimated to reduce motorcycle fatalities by 22.4%.   
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 The following analysis makes two key contributions to the literature on motorcycle 

helmet effectiveness.  First, the results show that individual crash data (data typically used in 

technological effectiveness studies) can be used to estimate the effects of motorcycle helmet 

legislation on individual’s probability of death.  From a policy standpoint this is a useful 

measurement, because it captures the overall effect (direct effect + induced driving intensity 

effect) of helmet use on motorcyclists’ probability of death for the individuals who are 

incentivized to wear a motorcycle helmet due to the passage of a mandatory helmet law.  The 

results indicate that the adoption of a universal motorcycle helmet law is associated with a 21.3% 

reduction in motorcyclists’ average probability of death given they are involved in a motorcycle 

crash.  This estimated reduction in average fatality risk is remarkably similar to the average 

22.4% estimated efficacy of helmet laws from the state-level studies reported in Table 1.   

Second, the study builds upon the emerging literature using control functions in nonlinear 

models by employing novel control function and bivariate methods to correct for non-random 

selection of helmet use when examining the impact of helmets on fatality risks (see Blundell and 

Powell, 2004, Louviere et al., 2005, Petrin and Train, 2010, Villas-Boas and Winer, 1999, 

Wooldridge, 2014 for a review of control function methods).       

 The remainder of the analysis proceeds as follows.  Section 2 presents an overview of the 

National Automotive Sampling System individual-level crash data used in the analysis.  The 

empirical methodology and estimation results are given in section 3, and section 4 concludes the 

paper. 
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2. Data 

 The individual level data set used for estimating the effects of motorcycle helmet use on 

potential health outcomes for motorcyclists involved in crashes comes from the National 

Automotive Sampling System (NASS) General Estimates System (GES) for the years 2002-2008 

(see, for example, Shelton, 1991, and US DOT, 2008 for details of the NASS GES data sampling 

design).  The sampling structure for the GES data consists of a multistage procedure that first 

segments the entire United States into 1,195 primary sampling units (PSU).  Sampled PSUs are 

chosen with different probabilities based on the number of fatal and injury crashes in each PSU.  

Within each PSU, police jurisdictions (PJ) are sampled using probability sampling based on the 

number of police accident reported (PAR) crashes within each PJ.  PJs with a larger number of 

PAR crashes have a higher probability of being sampled.  In the final sampling step, PARs are 

stratified into six different clusters based on injury outcome characteristics of the crash.  Some of 

the clusters contain only a portion of the possible crash outcomes.  Furthermore, the most serious 

outcome crashes are sampled at a higher frequency than their occurrence in the population.  The 

sampling procedures are tantamount to choice-based sampling in discrete choice analysis.  It is 

therefore important to control for sample design, because failure to do so will lead to biased 

coefficient estimates when the sample is clustered on the outcome variables of interest and 

sample selection frequency is not equivalent to population frequencies (Manski and Lerman, 

1977).   

Details of the variables used from the individual level NASS GES data set are 

summarized in Table 2.  The key outcome of interest is injury severity as measured by three 

possible discrete crash outcomes: no injury, injury, and fatality.  A binary indicator variable for 

state helmet legislation is used as an instrument for helmet use, and roughly 45% of the 
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individual crash observations occur in states with universal helmet laws.  These sampling 

percentages reflect the fact that approximately 41% of all U.S. states have universal motorcycle 

helmet legislation in place over time period from 2002 to 2008.  Several individual factors that 

may affect injury severity are included as control variables in the analysis: sex of individual, age 

of individual, a binary indicator of whether the individual is a driver or passenger, and a binary 

indicator of individual helmet use.  Importantly, over 90% of the individual observations are 

motorcycle drivers.  This feature of the data highlights the considerable loss of information in a 

matched pair cohort study that uses less than 20% of the available observations.   

Several variables measuring crash characteristics are also included in the analysis 

because they may affect the crash outcome.  These variables include an indicator variable for 

whether the motorcycle caught on fire, indicator variables that control for collision with a 

moving vehicle, collision with animals, pedestrians, or bicyclists, and collision with a fixed 

object such as a tree or boulder.  Finally, the crash characteristics also control for manner of 

collision measured by head on collisions, rear end collisions, angle collisions (a vehicle turning 

into another vehicle), and side swipe collisions.   

A multinomial probit model is used to evaluate the effects of these characteristics on 

crash outcomes as measured by individual’s injury severity.  Multinomial probit was chosen as 

the preferred specification because likelihood ratio tests of an ordered outcome specification 

strongly reject the proportional odds assumption.  Furthermore, Brant tests reveal that 12 out of 

the 21 individual explanatory variables violate the proportional odds assumption of ordered 

probit and ordered logit.  Details of the empirical specification are given in the following section.   
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3.  Empirical Model and Results 

 For individuals involved in a motorcycle crash their health status given crash 

involvement falls into one of three mutually exclusive and exhaustive categories: no injury (NI), 

injury (I), or fatality (F).  Police accident reports are coded on the KABCO system based on the 

following distinctions: K is a fatal injury, A is an incapacitating injury, B is a non-incapacitating 

injury, C is a possible injury, and O means no injury.  Farmer (2003) notes that police accident 

reports tend to do a good job of classifying fatal and non-injury crashes, but incapacitating injury 

crashes are misclassified approximately 49% of the time.  Because injury severity is often 

misclassified, the incapacitating, non-incapacitating, and possible injury categories are grouped 

together into one injury category for the main analysis.   

 There is a continuous unobservable latent measure of injury outcome severity of a crash, 

On,j,t , that can be written as a function of the observable and unobservable individual and crash 

characteristics in the following manner: 

],,[,,,,,,,,,,,, FINIjThcxaVO tjnttnjjtnjtnjtjntjntjn   ,      (1) 

where  Vn,j,t denotes the representative outcome as a function of an outcome specific constant, aj, 

that captures the average effect of crash classification.  Equation (1) includes year fixed effects, 

Tt, a vector of individual characteristics, xn,t, that include the following variables: Sex, Age, Age 

Squared, and Driver.4  Equation (1) also includes a vector of crash characteristics, cn,t, that 

includes: Fire, Major Moving Collision, Minor Moving Collision, Collision With Fixed Object, 

Rear End, Head On, Angle, Sideswipe Same Direction, Side Swipe Opposite Direction, and 

Speed Limit.  A dummy variable for helmet use, hn,t, is included that is equal to 1 if the 

motorcyclist is wearing a helmet when they crash, and equal to zero otherwise. Finally, εn,j,t is a 

                                                           
4 Table 2 provides definitions for all the variables used in the analysis of individual crashes from PARs. 
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random error term with a density given by f(εn,j,t).  The probability that individual n involved in a 

crash receives injury severity outcome j is given by: 

.)Pr( ,,,,,,,,,, jkVVP tkntjntjntkntjn          (2) 

Equation (2) is estimated using multinomial probit under the assumption that the error terms, εn, 

are normally distributed.  Letting En,j,t denote the set of all possible error terms, εn, that satisfy the 

inequality ,,,,,,,,, jkVV tkntjntjntkn   the probability of outcome j can be stated 

alternatively as the following: 

 


tjnEn
nntjn dP

,,
,, )(


 ,      (3) 

where )( is the probability density function for the normal distribution. The multinomial probit 

model is estimated using maximum likelihood by finding the values of aj, βj, γj, and δj that 

maximize the simulated log-likelihood function given by the following: 

 
n j

tjnPtjndjwjjjjaLL ),,
ˆln(,,),,,(  ,     (4) 

where dn,j is a dummy variable that is equal to 1 if individual n is observed in injury severity state 

j, and is equal to zero otherwise, and wj is a weight for crashes of type j that is equal to the 

population shares of crashes of type j divided by the sample shares of crashes of the same type.  

The weighted exogenous sampling maximum likelihood estimator (WESMLE) developed by 

Manski and Lerman (1977) is employed in equation (4) to correct the aforementioned 

oversampling of severe crashes by the NASS GES survey.  The predicted outcome probabilities, 

tjnP ,,
ˆ , are simulated using the Geweke Hajivassiliou Keane (GHK) simulator (see Hajivassiliou 

et al., 1996, for an overview of the performance of the GHK simulator) to evaluate the integral 

specified in equation (3). 
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 The results from the estimation of equation (1) are presented in columns 1 and 2 of Table 

3 for injury and fatality outcomes, respectively.  No injury is the omitted base category, so the 

estimates can be interpreted as measuring the impact of a variable on the likelihood of being 

observed in a fatal or injury outcome relative to the no injury outcome.  In the multinomial probit 

specification, helmet use is associated with a negative impact on the probability of a fatal 

outcome and a positive impact on the probability of an injury outcome in comparison to the 

omitted no injury group.  These estimated impacts of helmet use are, however, statistically 

insignificant at the 10% level.   

One cause for concern with the multinomial estimates given in equation (1) is that 

motorcyclists are choosing whether or not to wear helmets and helmet use is likely correlated 

with the motorcyclists’ unobserved driving intensity.  The bias from such selection could be 

positive in the event of adverse selection in which individuals taking greater risks choose to wear 

helmets in order to reduce their potential losses.  Alternatively, in the presence of advantageous 

selection individuals who are more risk averse are more likely to use helmets, and the 

multinomial probit estimates of changes in injury severity probability given in the last row of 

columns 1 and 2 of Table 3 are biased downward.    

   In order to correct for selection bias, state motorcycle helmet legislation is used as an 

instrument for individual helmet use by employing a control function (CF) multinomial probit 

estimator and an alternative bivariate (BV) multinomial probit estimator (see, for example, Petrin 

and Train (2010) for a general overview of the CF method in multinomial nonlinear models, and 

Roodman (2011) for a general overview of the techniques used for estimating limited 

information maximum likelihood models with joint normally distributed mixed processes).  

These models allow one to identify the overall effect of motorcycle helmets when states adopt 
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universal helmet requirements.  The overall effect of interest is illustrated by the path analysis 

from mandatory helmet laws to injury severity depicted in Figure 2, and it encompasses the 

technological efficacy of motorcycle helmets along with any behavioral adaptations induced by 

the mandatory helmet requirements.  As such it should be directly comparable to the state-level 

estimates of helmet law efficacy summarized in Table I, and should also provide evidence on the 

direction of any behavioral adaptations when compared to studies of technological efficacy. 

 The basic premise of the CF and BV estimators is the same.  There is a latent unobserved 

continuous probability of helmet use, 
*

,tnh , that can be written as a function of all of the 

exogeneous instruments, zn,t, that includes individual, xn,t, and crash, cn,t, characteristics along 

with other exogeneous predictors of helmet usage that are not directly correlated with injury 

outcome severity and driving intensity.  Formally, the helmet use equation is specified as 

follows:   

tntnztnh ,',
*
,   ,               (5) 

where μn,t is an unobserved error term that is presumed to be uncorrelated with zn,t , but directly 

correlated with helmet use and therefore correlated with εn,j,t.  Equation (5) can be estimated 

directly by OLS, or can be estimated in a latent variable framework using probit and logit.  Using 

the error components from equation (5), crash outcome severity can now be specified as follows: 

],,[,ˆ)( ,,,,,,,,,,,, FINIjCFThcxaVO tjntnttnjjtnjtnjtjntjntjn   ,      (6) 

where CF(μn,t) is a control function designed to purge the estimated coefficient on helmet use, δj , 

of any selection bias arising from the simultaneous determination of helmet use and unobserved 

driving intensity.  Following the notation of equations (1) and (6), the error term from the 

outcome equation can be decomposed as follows: 
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tjntntjn CF ,,,,,
ˆ)(   ,     (7) 

where the error component tjn ,,̂ is normally distributed mean zero and uncorrelated with the 

explanatory variables in the outcome equation.  The choice of functional form for the control 

function can be linear (i.e. 𝐶𝐹(𝜇𝑛) = 𝜌𝜇𝑛) or can be made more flexible with n-degree 

polynomial terms (Petrin and Train, 2010).    

 The endogeneity problem arising from unobserved driving intensity can be represented 

more explicitly by taking the expectation of crash outcomes from equation (1) with respect to 

helmet use: 

],1|[)1|[ ,,,,,,,,  tntjntjjtnjtnjtntjn hETcxahOE     (8) 

],0|[)0|[ ,,,,,,,,  tntjntjtnjtnjtntjn hETcxahOE             (9) 

The problem with estimation of equation (1) is that the last terms in equations (8) and (9) 

are not equal to zero due to unobserved driving intensity.  In order to employ the control function 

approach to estimate unbiased coefficients for helmet use, it is necessary that the probability 

distributions, D, are such that D(εn,j,t|hn,t)=D(μn,t).  In the case of using a linear probability or 

logit model for first-stage estimation of helmet use, D(μn,t) is non-normal, and therefore requires 

some unusual assumptions about the joint distribution for μn,t and tjn ,,̂ . However, if equation (5) 

is estimated using probit, μn,t  is assumed to be normally distributed.  Assuming a normal 

distribution for tjn ,,̂  as well allows the following reformulation of the conditional expectation of 

the error terms in equations (8) and (9), respectively: 

)*|[]1|[ ,,,,,, tntntjnnttjn zEhE   ,     (10) 

)*|[]0|[ ,,,,,, tntntjnnttjn zEhE   .    (11) 

In the simplest case εn,j,t is a linear function of the form: 
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tjntntjn ,,,,,
ˆˆ   ,      (12) 

where tn,̂  is simply the predicted error term from equation (5) calculated as the inverse mills 

ratio that expresses E(μn,t|μn,t ≥-φ*zn,t) for helmeted riders and E(μn,t|μn,t ≤-φ*zn,t) for non-

helmeted riders.  Given that μn,t follows a normal distribution, the inverse mills ratio is expressed  

as follows:      
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 In equation (12), ρ is the estimated covariance between the error terms μn,t and εj,n,t, and in 

equation (13) )*( ,tnz  and )*( ,tnz  are the pdf and cdf for the normal distribution evaluated 

at the linear predictions of helmet use from equation (5), respectively.  The inverse mills ratio 

given in equation (13) falls in the class of generalized residuals for nonlinear models developed 

in Gourieroux et al. (1987).   

 As such, the only differences between the CF and BV multinomial probit estimators are 

the methods employed to estimate the unknown parameter ρ in equation (12).  In the CF 

approach, the generalized residuals estimated in equation (13) are included as an additional 

regressor in the second stage outcome equation as follows: 

],,[,ˆˆ* ,,,,,,,,,,,, FINIjThcxaVO tjntnjttnjjtnjtnjtjntjntjn   .    (14) 

where all the variables are defined as in equations (1) and (13), and the values of aj, βj, γj, δj, and 

ρj are estimated to maximize the multinomial probit log-likelihood function.  The BV 

multinomial probit estimator chooses the values of aj, βj, γj, δj, ρj, and φ to simultaneously solve 

equations (1) and (5) by maximizing the joint log-likelihood function given by the following:

  
     




n j
jjjjjaLL

tnznttknVtjnVtjntkntnhtjnd

tnznttknVtjnVtjntkntnhtjnd

jw ,),,,,,(
,*,,,,,,,,,Prln),1(,,
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.  As such, the covariance between the error terms, ρj, are free 

parameters in the BV approach, and their estimation does not require assumptions regarding the 

functional form for the correlation of error components.  

 Appendix Table A1 gives the results for the CF first stage estimation of individual helmet 

use using a linear probability model and probit model as specified in equation (5).  The results 

are very similar in terms of predicted sign and strength of the regressors.  Motorcycle drivers are 

more likely to wear helmets than passengers, and riders who have been drinking are less likely to 

wear helmets than sober motorcyclists.  In both models, universal helmet laws are positively 

correlated with the probability of helmet use.  The last row in Table A1 provides estimates of the 

average posterior probabilities of helmet use between states with universal helmet laws and 

states without such laws.  Average probability of helmet use is between 87.6% and 88.0% for 

motorcyclists riding in states with universal helmet laws, and the average posterior probabilities 

are roughly 41 percentage points lower in states without universal helmet laws. 

 The t-statistics on the estimated coefficients for the universal helmet law variable in the 

first-stage models presented in Table A1 are extremely high suggesting that universal helmet 

laws meet the necessary requirements for a strong instrument.  Table A1 also reports F-statistics 

and χ2-statistics that are calculated by comparing the unrestricted models reported in Table A1 

with restricted versions that omit the universal helmet law indicator.  Staiger and Stock (1997) 

and Bound et al. (1995) suggest a rule of thumb F-statistic threshold of ten or more for 

determining a strong instrument in OLS models.  The F-statistic reported with the linear 

probability model of helmet use is 1,027.45, which provides further evidence that motorcycle 

helmet legislation is a strong instrument for helmet use.  
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 The results from the second stage CF and BV multinomial probit models developed 

above are presented in columns 3 through 6 of Table 3.  Overall the estimation results using the 

CF and BV approach to correct for selection bias are quite similar in terms of sign, significance, 

and magnitude.  Focusing on the results from the preferred single-step Bivariate Multinomial 

Probit model in the last two columns of Table 3, the average partial effects suggest helmet use is 

associated with a 5.8 percentage point reduction in risk of injury and 2.4 percentage point 

reduction in fatality risk, and the results are significant at the 5% level and 1% level, 

respectively.  The average partial effects are calculated as the difference in predicted posterior 

probabilities when everyone in the sample is treated as if they were wearing a motorcycle helmet 

versus their predicted posterior probability without a protective helmet.   

Table 4 presents estimates of the conditional effects of helmet use on motorcyclists’ crash 

outcomes in percentage change terms based on the same BV multinomial probit specification.  

The first set of results presented in panel A of Table 4 provide a measure of the technological 

efficacy of motorcycle helmets in reducing fatality risks.  The 5.8 percentage point reduction in 

risk of injury is associated with a 6.9% reduction in the average probability of injury, and the 2.4 

percentage point reduction in fatality risk is associated with a 53.9% reduction in the average 

probability of death conditional on being involved in a motorcycle crash.  In the absence of 

regulatory induced changes in driving intensity following passage of universal helmet laws, the 

aforementioned estimates provide an unbiased measure of the technological efficacy of 

motorcycle helmet use for those riders who are incentivized to wear helmets in order to comply 

with mandatory helmet laws.  It is worth noting that the estimated 53.9% reduction in fatal 

outcome probability is within the range of technological efficacy estimates in the literature and 
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slightly larger than the 42% average fatality risk reductions calculated in the technological 

efficacy meta-analysis by Liu, et al. (2008).   

 Panel B of Table 4 compares the mean of the posterior probabilities of outcomes in states 

with helmet laws and states without helmet laws in order to estimate the average effectiveness of 

mandatory helmet laws in reducing fatalities and injuries of motorcyclists involved in crashes.  

Effectiveness of helmet laws is measured as the percentage change in average posterior means 

between universal helmet law states and states without universal helmet laws using the following 

formula: 
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where the percentage change in average probability of outcome j following the adoption of a 

universal helmet law, jP% , is calculated as the percentage difference in average posterior 

probabilities between helmet law states and states without helmet laws.  As such, NHL is the total 

number of sampled individuals involved in motorcycle crashes in helmet law states, and NNL is 

the total number of sampled individuals involved in motorcycle crashes in states without helmet 

laws.  Estimates of equation (16) reveal that states adopting universal motorcycle helmet laws 

have a 21.3% lower average probability of death, and a 4.1% lower average probability of injury 

for motorcyclist involved in crashes in comparison to states without universal helmet 

requirements.  Lee (2015) provides the only state-level estimates of helmet law efficacy for 

which these results are directly comparable.  When measuring risk exposure in terms of the 

number of motorcycle crashes, Lee (2015) estimates that universal helmet laws are associated 
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with a 16% to 26% reduction in motorcycle fatalities, and the estimate of 21.3% provided herein 

falls within this range. 

 It is worth noting that in the presence of local average treatment effects (LATEs) the 

estimated treatment effect of helmet law adoption using the approach outlined above is only 

applicable to those individuals that choose to wear helmets in order to comply with mandatory 

state helmet laws.  From a policy standpoint, however, the LATE for complying individuals is 

precisely the parameter of interest, because it allows policy makers to estimate the expected 

reduction in fatal motorcycle crashes associated with universal helmet law adoption.   

Finally, panel C in Table 4, calculates the average of the individual posterior means for 

motorcyclists in states without universal helmet laws under two scenarios.  In the first scenario, 

non-helmeted motorcyclists are given helmets in order to calculate the average of their 

counterfactual conditional probabilities, and helmeted riders remain unchanged.  In the second 

scenario, helmeted motorcyclists remain helmeted and non-helmeted motorcyclists remain 

without helmets in order to calculate the average of their indicative conditional probabilities.  

The results are intended to mimic universal helmet law adoption assuming 100% compliance 

with the law.  As expected, the third set of results in Table 4 lie between the first and second set 

of results from Panels A and B that measured technological effectiveness and universal helmet 

law effectiveness, respectively.  The estimates with 100% compliance are closest in magnitude to 

the universal helmet law results from Panel B, which is not surprising given the fact that the first 

stage estimates from Table A1 in the appendix suggest that universal helmet laws result in 

roughly 88.0% compliance rates with helmet mandates.  The subsection that follows tests for the 

presence of any regulatory induced driving behavior changes among motorcyclists in order to 
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gauge how such changes bias the technological efficacy estimates presented in Panel A of Table 

4. 

 

 3A.  Estimating the Direction of Induced Changes in Motorcycle Driving Intensity 

In order to more directly test for the presence of regulatory induced changes in driving 

behavior associated with motorcycle helmet laws this sub-section analyzes whether helmeted 

motorcyclists are more/less likely to receive citations for the following risky driving behaviors: 

alcohol or drugs, speeding, reckless driving, failure to yield a right of way, and running a traffic 

signal or stop sign.  Specifically, the following equation is estimated using OLS: 

tntTtnhtnctnxatnCitation ,,**,*,,   ,      (17) 

where all variables are defined as in equation (1), and Citationn,t is an indicator variable equal to 

one if the individual received a ticket for risky driving behavior and equal to zero otherwise.  As 

such, the estimated coefficient on helmet use, ϴ, is the key coefficient of interest, because it 

provides an estimate of the degree to which the probability of receiving a ticket citation is 

reduced due to enhancing behavior, or increased in the presence of offsetting behavior. 

 The first column in Table 5 presents the OLS estimates of equation (17).  Helmeted 

motorcyclists have a 2.5 percentage point lower probability of receiving a risky driving citation 

in comparison to motorcyclists that choose not to wear helmets, and the difference is significant 

at the 1% level.  Probit estimates accounting for the latent nature of citation probability yield 

similar estimates to OLS.  Column 2 of Table 5 presents the results of the probit analogue to 

equation (17) where helmet use is estimated to reduce the probability of ticket citation by 2.6 

percentage points.  The OLS and Probit estimates in columns 1 and 2 of Table 5 are subject to 
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the same selection bias as the multinomial probit esitmates of injury severity given in equation 

(1). 

 In order to correct for potential selection bias an instrumental variable estimator (IV) is 

used to estimate the following system of equations: 

tntTtnhltnctnxtnh ,,*,,,   ,    (18) 

tntTtnhtnctnxatnCitation ,,
ˆ**,*,,   ,   (19)    

where mandatory motorcycle helmet laws, hln,t, serve as an instrument for helmet use in equation 

(18), and the predicted helmet use from equation (18) is used as an explanatory variable, tnh ,
ˆ , in 

equation (19).     

Estimates of the IV structural equation (19) are given in column 3 of Table 5.  The 

estimated coefficient on helmet use, ϴ, now measures the change in citation probability for 

individuals in mandatory helmet law states divided by the change in probability of helmet use for 

individuals in mandatory helmet law states.  As such, ϴ, measures the local average treatment 

effect of helmet use on risk of traffic citations for individuals who are incentivized to wear 

helmets in order to comply with mandatory helmet laws.  This is precisely the coefficient of 

interest when attempting to test for behavioral adaptations to mandatory helmet laws because it is 

void of any advantageous or adverse selection effects.  The IV results from column 3 of Table 5 

suggest helmet use is associated with a 4.8 percentage point reduction in probability of traffic 

citation, and the results are significant at the 5% level.  The F-statistic testing the significance of 

the first stage coefficient on helmet laws is equal to 1,029.97 suggesting once again that helmet 

laws are a strong instrument for helmet use.    

The last two columns of Table 5 present the two alternative CF and BV probit estimators 

for citation probability that are analgous to the CF and BV multinomial probit estimators for 



21 

injury severity presented in equations (5) – (15).  These estimators are capable of correcting for 

selection bias similar to the IV estimator given in equations (18) and (19), and account for the 

discrete nature of the citation indicator variable.     

In general, the CF Probit and BV Probit estimates are similar to the results from the IV 

model.  Helmet use is associated with a 4.2 to 4.3 percentage point reduction in the posterior 

predicted probability of receiving a traffic citation using the BV Probit and CF Probit estimators, 

respectively.  Stated alternatively, individuals who are incentivized to wear motorcycle helmets 

in order to comply with state helmet laws have a 4.2 to 4.3 percentage point lower risk of 

receiving a traffic citation for risky driving behavior.   

Appendix Tables A2 and A3 present similar analyses of the impact of helmet laws on 

alternative measures of motorcyclists’ driving intensity, and the results are all consistent with the 

theory of enhancing behavior.  In Table A2, helmeted motorcyclists’ estimated traveling speed is 

roughly 6 mph lower on average in comparison to their non-helmeted counterparts, and the effect 

is statistically significant at the 1% level.  Similarly in Table A3 individuals wearing helmets in 

order to comply with universal helmet laws have a reduced probability of being involved in a 

moderate or severe vehicle damage crash relative to the minor damage reference category.  On 

average, motorcyclists wearing helmets are estimated to have a 30 to 35 percentage point 

(statistically significant at the 1% level) reduced posterior probability of “severely” damaging 

their motorcycle in a crash.   

Overall, the findings from the IV, CF, and BV estimators are consistent with the presence 

of enhancing behavior resulting from motorcycle helmet laws as opposed to offsetting behavior.  

Lee (2015) also finds evidence of enhancing behavior following helmet law adoption using state-

level motorcycle crash data.  Given that the results herein suggest the presence of enhancing 
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behavior with regards to motorcycle helmet laws, the efficacy estimates presented in Panel A of 

Table 4 are likely to be an upper bound in absolute terms for technological effectiveness of 

motorcycle helmets.  The results from Panel B of Table 4, however, remain an unbiased estimate 

of the overall effect of helmet laws on motorcycle fatalities and injuries holding the number of 

state motorcycle crashes constant.   

 

3.B. Robustness Checks 

The empirical results for the CF multinomial probit model presented above rely on probit 

models in the first and second stages when estimating the effectiveness of universal helmet laws 

for reducing motorcycle crash victim’s risk of injury and death.  A probit model was chosen in 

both stages in order to avoid unrealistic assumptions on the distribution of the error terms 𝜀𝑛,𝑗 in 

equation (1).  Table A4 in the appendix reports results from several specifications that relax the 

first stage probit model choice when estimating the outcome equation specified in equation (14).  

For sake of clarity, the first model presented in Table A4 repeats the probit-probit results from 

the CF model from Table 3.  The second model presents the results from a logit-probit 

specification where the first stage estimates of helmet use are estimated using logit.  The 

generalized residuals from the first stage logit model are calculated as follows:  
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Finally, the third model in Table A4 presents the results from a linear probability-probit model 

where the generalized residuals in the second stage probit estimation are simply the residuals 

from the first stage OLS estimates of equation (5).   
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 Overall the results from all CF models using probit in the second stage are very similar 

suggesting that the distributional assumptions of the error terms, 𝜀𝑛,𝑗, are of little consequence to 

the second stage estimates of the effects of helmet use on risk of injury and death when using the 

CF multinomial probit estimator in this application.  The last three rows of Table A4 present the 

conditional effects of helmet use that can be compared to the results presented in Table 3.  The 

estimated average risk reductions are all within 1.4 percentage points of the probit-probit model, 

and therefore provide further evidence that the distributional assumptions of the error term do not 

have a strong influence on the predicted safety effectiveness of motorcycle helmets.     

 Table A5 in the appendix completely relaxes the probit model choice and replicates the 

results from the CF estimator using a multinomial logit estimation strategy.  The CF multinomial 

logit results are not directly comparable to the CF multinomial probit estimates presented in 

Table 3 in terms of magnitude, but the sign and significance of the estimated coefficients are 

similar across both models.   The last row of Table A5 also presents the conditional effects of 

helmet use using a logit first and second stage specification, and these effects are directly 

comparable to the CF multinomial probit estimates presented in Table 3.  The conditional effects 

results from Table A5 are all within 0.08 percentage points of the results from the CF 

multinomial probit models from columns 3 and 4 of Table 3.  Overall, the results appear robust 

to choice of first and second stage estimation strategy.     

4. Conclusion 

Using individual level crash data, this study finds evidence that motorcycle helmets are 

technologically effective in preventing motorcyclist fatalities and injuries.  Once the selection 

bias of helmet use is controlled for, results indicate that motorcycle helmets reduce the average 

probability of death and injury for crash victims by 53.9% and 6.9%, respectively.  These 
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findings are much higher than those reported by previous authors such as Goldstein (1986) who 

do not control for selection effects and as a result find no statistically significant impact of 

helmet usage on the probability of death.  The estimates are likely an upper bound in absolute 

terms of the true technological efficacy of motorcycle helmets because analysis of traffic 

citations, motorcycle damage, and police estimated travel speed are all consistent with 

motorcyclists reducing their risky driving behavior when forced to wear helmets in order to 

comply with mandatory helmet laws. 

In terms of universal helmet law efficacy, the results suggest that mandatory helmet laws 

reduce motorcyclists’ fatality risks by 21.3%.  The economic benefits of lives saved from 

mandatory helmet laws is calculated as the value of a statistical life (VSL) multiplied by the 

average number of state motorcycle fatalities and the 21.3% estimated fatality reduction 

associated with helmet laws.  Using the U.S. Department of Transportation’s current $9.0 million 

estimate of the VSL, and the average state-level 87.6 annual motorcycle fatalities over the 2002 

to 2008 time period results in estimated economic benefits of motorcyclists lives saved of $167.9 

million following adoption of a universal helmet law.  Dickert-Conlin et al. (2011) estimate that 

each motorcycle fatality saves the life of up to 0.33 organ transplant recipients.  In order to 

account for fewer organ donations following universal helmet law adoption the estimated 

economic benefits are multiplied by 0.67, and the estimated donor-adjusted benefits are $112.5 

million.    

The results presented herein suggest that universal helmet laws are an effective means for 

reducing state motorcycle fatalities.  In addition to fatalities, motorcycle helmet laws are 

estimated to reduce motorcyclists’ risk of injury by 4.3%.  Helmet law effectiveness is due to a 

combination of the technological effectiveness of motorcycle helmets and regulatory induced 
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enhancing behavior in the form of less risk taking among motorcyclists who are forced to wear 

helmets in order to comply with mandatory helmet laws.  Unfortunately the estimation strategy 

presented herein cannot disentangle the behavioral and technological effects of helmet laws.  

Matched pair cohort studies are likely a better means of isolating the technological efficacy, but 

the approach highlighted herein is more useful for policy analysis where both technological and 

behavioral effects are of interest.   

Finally, it is worth noting that the results do not provide estimates of the economic costs 

of helmet laws measuring the explicit costs of helmets as well as the implicit costs associated 

with motorcyclists’ disutility of helmet use.  If motorcyclists are making well informed decisions 

regarding the risks associated with not using helmets, then the economic costs of helmet laws are 

likely to outweigh benefits.  Teresi (1999), however, notes that motorcycle rights groups often 

claim that helmets are ineffective in preventing fatalities and increase the risk of serious neck 

injury.  In the presence of such misinformation regarding helmet efficacy, helmet laws may 

actually generate positive net economic benefits by encouraging helmet use among riders who 

would choose to wear helmets of their own volition if they were well informed regarding fatality 

and injury risks. 
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Table 1. Research Examining State Motorcycle Helmet Law Effectiveness. 

 

Study 

 

Estimation Method 

 

Years Studied 

Fatality 

Reduction 

Panel A: Dependent Variable is ln(Fatalities), Exposure variable is ln(Registered Motorcycles) 

Watson et al. (1980) Poisson with square root link 1975-1978 38.7% 

    

Hartunian et al. (1983) Poisson with log link 1976-1980 24.2% 

    

Houston (2007)a Negative Binomial Fixed Effects 1975-2004 31.4% 

    

Dee (2009) Two-way fixed effects 1988-2005 25.8%-32.5% 

    

Graham and Lee 

(1986) 

Two-way fixed effects 1975-1984 19.7% 

    

Lee (2015) Two-way fixed effects 1975-2007 24.8%-33.9% 

Panel B: Dependent Variable is ln(Fatalities/Registered Motorcycles) 

Branas and Knudson 

(2001) 

Random effects 1994-1996 3.6%b 

    

Morris (2006) Poisson with log link 1993-2002 12.1% 

    

Houston and 

Richardson Jr (2007)c 

Two-way fixed effects 1975-2004 11.1%-22.3% 

    

Houston and 

Richardson (2008) 

Two-way fixed effects 1975-2004 14.6% – 21.7% 

    

Graham and Lee 

(1986) 

Two-way fixed effects 1975-1984 11.3% – 13.1% 

Panel C: Dependent Variable is ln(Fatalities/Capita) 

Sass and Leigh (1991) Selection Model 1976-1980 0.4% - 14.3% 

    

Sass and Zimmerman 

(2000) 

Two-way fixed effects 1976-1997 28.9%-33.3% 

    

Houston and 

Richardson (2008) 

Two-way fixed effects 1975-2004 28.9%-33.1% 

    

Dickert-Conlin, et al. 

(2011)c 

Two-way fixed effects 1994-2007 38.8% 

Panel D: Dependent Variable is ln(Fatalities), Exposure variable is ln(Crashes) 

Lee (2015) Two-way fixed effects 1975-2007 16.0% - 26.0% 
aEstimated fatality differential is for young motorcyclists age 15-20 yrs. 
bEstimated fatality differential is statistically insignificant. 

cDependent variable is in levels rather than logs  
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Table 2. Data Appendix – Individual Motorcycle Crash Dataa 

 

Variable Name 

Sample Mean 

(Std. Dev.) 

 

Variable Definition 

Injury Severity 1.984 

(0.277) 

Discrete variable characterizing crash outcome.  

1=No Injury, 2=Injury, 3=Fatality  

Universal Helmet Lawb 0.448 

(0.497) 

Dummy Variable =1 if state has a Universal 

Helmet Law.  Equal to 0 otherwise. 

Helmet 0.649 

(0.477) 

Dummy variable=1 if motorcyclist is wearing a 

helmet, and equal to zero otherwise. 

Sex 0.862 

(0.345) 

Dummy Variable=1 if person is male, and 

equal to 0 otherwise. 

Age 36.81 

(13.89) 

Age of person. 

Driver 0.908 

(0.289) 

Dummy Variable=1 if person is driver of 

motorcycle, and equal to 0 otherwise. 

Fire 0.003 

(0.054) 

Dummy Variable=1 if vehicle caught on fire, 

and equal to 0 otherwise. 

Alcohol Involved 0.078 

(0.269) 

Dummy Variable =1 if driver was drinking, and 

equal to 0 otherwise. 

Major Moving Collision 0.394 

(0.489) 

Dummy Variable=1 if motorcyclist collided 

with a moving train or car, and equal to zero 

otherwise. 

Minor Moving Collision 0.024 

(0.153) 

Dummy Variable=1 if motorcyclist collided 

with a dog, person or cyclist, and equal to zero 

otherwise. 

Collision With Fixed Object 0.098 

(0.297) 

Dummy Variable=1 if motorcyclist collided 

with a fixed object, and equal to zero otherwise. 

Rear End 0.119 

(0.324) 

Dummy Variable=1 if collision was rear end 

collision, and equal to zero otherwise. 

Head On 0.025 

(0.157) 

Dummy Variable=1 if collision was a head on 

collision, and equal to zero otherwise. 

Angle 0.226 

(0.418) 

Dummy variable=1 if collision was an angle 

collision, and equal to zero otherwise. 

Side Swipe Same Direction 0.055 

(0.227) 

Dummy variable=1 if collision was a sideswipe 

involving two vehicles traveling in the same 

direction, and equal to zero otherwise. 

Side Swipe Opposite Direction 0.008 

(0.092) 

Dummy variable=1 if collision was a sideswipe 

involving two vehicles traveling in opposite 

directions, and equal to zero otherwise. 

Speed Limit 41.73 

(12.19) 

Posted speed limit at accident location. 

aData available from the National Automotive Sampling System General Estimates System 

(NASS GES) unless otherwise noted.  The datasets are available as downloadable files from: 

ftp://ftp.nhtsa.dot.gov/NASS/ (last accessed February, 2013) 
bData available from the National Highway Traffic Safety Administration.  Available online:   

http://www-fars.nhtsa.dot.gov/States/StatesLaws.aspx (last accessed February, 2013) 
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Table 3. Multinomial Probit Models Using the No Injury Group as the Comparison Group.a 
 Multinomial Probit CFb  BV 

 

Variable Name 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Group: Injury Fatality Injury Fatality Injury Fatality 

Helmet 0.003 -0.181 -0.487** -0.923*** -0.496** -0.879*** 

 (0.090) (0.112) (0.218) (0.261) (0.201) (0.229) 

Sex -0.332* -0.262 -0.346* -0.283 -0.337* -0.268 

 (0.200) (0.223) (0.202) (0.230) (0.198) (0.219) 

Age -0.010 -0.015 -0.012 -0.017 -0.012 -0.017 

 (0.016) (0.019) (0.016) (0.020) (0.015) (0.019) 

Age Squared 0.00004 0.0002 0.00006 0.0002 0.00006 0.0002 

 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

Driver -0.058 0.001 0.026 0.128 0.031 0.124 

 (0.229) (0.261) (0.236) (0.272) (0.226) (0.257) 

Fire -0.137 0.796 -0.179 0.760 -0.187 0.747 

 (0.866) (0.867) (1.127) (1.568) (0.817) (0.817) 

Alcohol Involved 0.197 0.649*** 0.070 0.452* 0.060 0.446** 

 (0.187) (0.214) (0.198) (0.232) (0.193) (0.219) 

Major Moving  -0.652*** -0.306 -0.652*** -0.301 -0.640*** -0.285 

Collision (0.181) (0.233) (0.185) (0.241) (0.178) (0.229) 

Minor Moving  -0.817*** -1.517*** -0.788*** -1.478** -0.768*** -1.446*** 

Collision (0.236) (0.395) (0.251) (0.648) (0.232) (0.390) 

Collision With  -0.033 0.646*** -0.021 0.660*** -0.021 0.651*** 

Fixed Object (0.181) (0.199) (0.184) (0.203) (0.178) (0.195) 

Rear End -0.464** -0.669*** -0.468** -0.681*** -0.457** -0.663*** 

 (0.198) (0.254) (0.201) (0.253) (0.194) (0.249) 

Head On 0.430 1.067*** 0.402 1.012*** 0.389 0.989*** 

 (0.338) (0.364) (0.350) (0.382) (0.336) (0.361) 

Angle 0.234 0.435* 0.218 0.396 0.212 0.385 

 (0.198) (0.251) (0.200) (0.255) (0.196) (0.247) 

Side Swipe Same  -0.535** -1.504*** -0.532** -1.502*** -0.519** -1.471*** 

Direction (0.222) (0.365) (0.223) (0.416) (0.218) (0.356) 

Side Swipe Opp.  -0.773** 0.168 -0.773** 0.163 -0.762** 0.173 

Direction (0.321) (0.438) (0.341) (1.095) (0.322) (0.420) 

Speed limit 0.003 0.0406*** 0.005 0.043*** 0.005 0.042*** 

 (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) 

Err. Correlation ---- ---- 0.360*** 0.542*** 0.270*** 0.381*** 

Coeff. ---- ---- (0.136) (0.171) (0.099) (0.120) 

Constant  2.478*** -2.019*** 2.704*** -1.690*** 2.660*** -1.715*** 

 (0.381) (0.452) (0.390) (0.469) (0.374) (0.460) 

Number of obs. 13,610 13,610 13,610 13,610 13,610 13,610 

ΔPredicted Risk Prob. 

for Helmeted 

Motorcyclists: 

 

0.007 

 

-0.008 

 

-0.053** 

 

-0.026*** 

 

-0.058** 

 

-0.024*** 

bStandard errors for the two-step control function estimator were calculated using bootstrapping with 2,000 reps.
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Table 4. Motorcycle Helmet Effectiveness Using Bivariate Multinomial Probit Specification. 

  

Number of obs. 

Predicted Mean 

Probability of Injury 

Predicted Mean 

Probability of Death 
Panel A: Technological Effectiveness: 

    
Universal Helmet Use 13,610 0.788 0.020 
No Helmet Use 13,610 0.846 0.044 
Percentage change in 

mean predicted 

probabilities with helmet 

use 

  

 

-6.88% 

 

 

-53.91% 

    
Panel B: Helmet Law Effectiveness: 

    
States with a Universal 

Helmet Law 
6,099 0.790 0.024 

States without Universal 

Helmet Laws 
7,511 0.824 0.031 

Percentage Change in 

Mean probabilities from 

Adopting a Universal 

Helmet Law 

  

 

-4.12% 

 

 

-21.30% 

    
Panel C: 100% Compliance Helmet Law Effectiveness: 

    
Universal Helmet Use in 

Non-helmet Law States 
7,511 0.793 0.019 

States without Universal 

Helmet Laws 
7,511 0.824 0.031 

Percentage Change in 

Mean Probabilities from 

Adopting a Universal 

Helmet Law with 100% 

compliance 

  

 

-3.84% 

 

 

-38.34% 
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Table 5. Estimates Predicting Individual Motorcyclists’ Ticket Citations.a 

 Model Choice:  

 OLS Probit IV CF Probitb  Bivariate Probit 

 

Variable Name 
Estimated 

Coefficient 

(Std. Error) 

Estimated 

Coefficient 

(Std. Error) 

Estimated 

Coefficient 

(Std. Error) 

Estimated 

Coefficient 

(Std. Error) 

Estimated 

Coefficient 

(Std. Error) 

Helmet -0.025*** -0.140*** -0.048** -0.225* -0.220* 

 (0.010) (0.051) (0.022) (0.128) (0.122) 

Sex 0.050*** 0.312*** 0.049*** 0.308*** 0.308*** 

 (0.013) (0.091) (0.013) (0.091) (0.090) 

Age 0.0002 0.002 0.0001 0.001 0.001 

 (0.002) (0.010) (0.002) (0.010) (0.010) 

Age Squared     -0.00001 -0.00008 -0.00001 -0.00007 -0.00007 

 (0.00002) (0.0001) (0.00002) (0.0001) (0.0001) 

Driver -0.019 -0.130 -0.015 -0.116 -0.117 

 (0.017) (0.105) (0.017) (0.108) (0.106) 

Fire 0.016 0.080 0.015 0.076 0.076 

 (0.083) (0.372) (0.083) (0.435) (0.373) 

Major Moving Collision 0.014 0.092 0.014 0.095 0.094 

 (0.015) (0.096) (0.014) (0.097) (0.095) 

Minor Moving Collision -0.093*** -0.690*** -0.091*** -0.681*** -0.681*** 

 (0.015) (0.176) (0.015) (0.190) (0.176) 

Collision With Fixed Object 0.029* 0.121* 0.030* 0.123* 0.123* 

 (0.017) (0.073) (0.017) (0.072) (0.073) 

Rear End -0.046** -0.264** -0.046*** -0.265** -0.265** 

 (0.018) (0.109) (0.018) (0.112) (0.108) 

Head On -0.096*** -0.605*** -0.098*** -0.611*** -0.610*** 

 (0.027) (0.218) (0.027) (0.224) (0.220) 

Angle -0.071*** -0.415*** -0.072*** -0.418*** -0.417*** 

 (0.016) (0.106) (0.016) (0.109) (0.106) 

Side Swipe Same Direction  -0.091*** -0.582*** -0.090*** -0.582*** -0.582*** 

 (0.019) (0.156) (0.020) (0.156) (0.156) 

Side Swipe Opposite Direction -0.064* -0.377 -0.063* -0.376 -0.376 

 (0.034) (0.236) (0.034) (0.254) (0.236) 

Speed limit -0.0003 -0.002 -0.0002 -0.001 -0.001 

 (0.0003) (0.002) (0.0004) (0.002) (0.002) 

Generalized Residual ----  ---- 0.061  

    (0.089)  

Constant 0.152*** -1.028*** 0.162*** -0.993*** -0.994*** 

 (0.039) (0.226) (0.041) (0.238) (0.237) 

      

R-squared 0.020 ---- 0.019 ---- ---- 

Number of obs. 13,610 13,610 13,610 13,610 13,610 

F-Statistic (p-value) ---- ---- 1,029.97 

(0.000) 

---- ---- 

χ2-Statistic (p-value) ---- ---- ---- 724.18 

(0.000) 

724.59  

(0.000) 

ΔPredicted Citation Probability 

for Helmeted Motorcyclists: 

-.025*** -.026*** -0.048** -0.043* -0.042* 

a Statistical Significance at the 1 percent, 5 percent, and 10 percent level are represented by ***,**,and *.  Although 

not reported each model also includes a full set of year fixed effects as specified in equation (13). 
bStandard errors for the two-step control function estimator were calculated using bootstrapping with 2,000 reps. 
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Figure 1. Path Analysis Diagram for Helmet Use and Injury Severity. 
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Figure 2. Path Analysis Diagram for Universal Helmet Laws and Injury Severity. 
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Appendix 
 

Table A1. First Stage Estimates of Motorcycle Helmet Use.a 

 First Stage Model Choice: 

 Linear Probability Probit 

 

Variable Name 
Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Universal Helmet Law 0.403*** 1.275*** 

 (0.013) (0.047) 

Sex -0.038 -0.103 

 (0.027) (0.087) 

Age -0.005** -0.014* 

 (0.002) (0.008) 

Age Squared     0.00007** 0.0002** 

 (0.00003) (0.0001) 

Driver 0.146*** 0.427*** 

 (0.032) (0.098) 

Fire 0.034 0.099 

 (0.108) (0.315) 

Alcohol Involved -0.256*** -0.796*** 

 (0.021) (0.068) 

Major Moving Collision -0.017 -0.071 

 (0.023) (0.075) 

Minor Moving Collision 0.002 -0.0008 

 (0.045) (0.165) 

Collision With Fixed Object -0.007 -0.023 

 (0.021) (0.068) 

Rear End -0.046* -0.123 

 (0.027) (0.088) 

Head On -0.100** -0.308** 

 (0.046) (0.141) 

Angle -0.045* -0.128 

 (0.026) (0.082) 

Side Swipe Same Direction  -0.043 -0.101 

 (0.033) (0.114) 

Side Swipe Opposite Direction 0.048 0.174 

 (0.063) (0.202) 

Speed limit 0.004*** 0.013*** 

 (0.001) (0.002) 

Constant 0.368*** -0.468*** 

 (0.055) (0.175) 

   
R-squared 0.208 ---- 

Pseudo R-squared ---- 0.176 

Number of obs. 13,610 13,610 

F-Statistic (p-value) 1,027.45 (0.000) ---- 

χ2-Statistic (p-value) ---- 720.33 (0.000) 

Predicted Helmet Use:   

Helmet Law States 88.0% 87.6% 

States w/o Helmet Law 47.1% 47.1% 
a Statistical Significance at the 1 percent, 5 percent, and 10 percent level are represented by ***,**,and *, respectively.  
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Table A2: Impact of Helmet Use on Motorcyclists’ Estimated Travel Speed.a 

 First Stage Model Choice: 

 OLS IV 

 

Variable Name 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Helmet 0.260 -6.133*** 

 (0.697) (1.955) 

Sex 3.942*** 3.891*** 

 (1.173) (1.253) 

Age -0.231* -0.287** 

 (0.131) (0.134) 

Age Squared     0.0002 0.0007 

 (0.002) (0.002) 

Driver -2.462* -1.301 

 (1.417) (1.532) 

Fire 16.026*** 15.177*** 

 (4.793) (5.696) 

Alcohol Involved 4.025*** 2.220 

 (1.262) (1.374) 

Major Moving Collision -3.284** -3.285*** 

 (1.282) (1.260) 

Minor Moving Collision 2.334** 2.331** 

 (0.968) (1.036) 

Collision With Fixed Object 3.510*** 3.412*** 

 (1.039) (1.044) 

Rear End -14.607*** -14.944*** 

 (1.606) (1.570) 

Head On -1.189 -1.285 

 (2.154) (2.234) 

Angle -2.619** -3.332** 

 (1.316) (1.334) 

Side Swipe Same Direction  -8.796*** -8.855*** 

 (1.726) (1.787) 

Side Swipe Opposite Direction -1.409 -1.713 

 (2.540) (2.424) 

Speed limit 0.691*** 0.727*** 

 (0.030) (0.033) 

Constant 14.689*** 17.752*** 

 (2.791) (2.920) 

   

R-squared 0.343 0.319 

Number of obs. 6,924 6,924 
a Statistical Significance at the 1 percent, 5 percent, and 10 percent level are represented by ***,**,and *, 

respectively.   
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Table A3: Multinomial Probit Models Using Minor Vehicle Damage as the Comparison Group.a 
 Multinomial Probit CF Multinomial Probitb Bivariate Multinomial 

Probit 

 

Variable Name 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Group: Moderate 

Damage 

Severe 

Damage 

Moderate 

Damage 

Severe 

Damage 

Moderate 

Damage 

Severe 

Damage 

Helmet -0.071 -0.044 -1.381*** -2.179*** -1.003*** -1.499*** 

 (0.077) (0.072) (0.187) (0.177) (0.133) (0.090) 

Sex -0.023 0.175 -0.036 0.167 -0.046 0.142 

 (0.140) (0.131) (0.144) (0.131) (0.138) (0.131) 

Age -0.032** -0.041*** -0.041*** -0.054*** -0.034*** -0.044*** 

 (0.013) (0.012) (0.013) (0.012) (0.013) (0.012) 

Age Squared 0.0003* 0.0004*** 0.0004** 0.0005*** 0.0003** 0.0004*** 

 (0.0002) (0.0001) (0.000) (0.000) (0.0002) (0.0001) 

Driver 0.151 0.032 0.388** 0.407** 0.328** 0.300** 

 (0.165) (0.154) (0.169) (0.163) (0.162) (0.149) 

Fire -1.473* 1.049 -1.646 0.835 -1.737*** 0.706 

 (0.807) (0.790) (4.713) (5.051) (0.630) (0.514) 

Alcohol Involved -0.0008 0.205 -0.326** -0.332** -0.255** -0.196* 

 (0.132) (0.126) (0.138) (0.132) (0.126) (0.116) 

Major Moving Collision 0.024 -0.193 0.040 -0.161 0.051 -0.140 

 (0.151) (0.133) (0.152) (0.138) (0.136) (0.122) 

Minor Moving Collision 0.104 -0.579*** 0.185 -0.461** 0.215 -0.409** 

 (0.211) (0.195) (0.199) (0.188) (0.205) (0.173) 

Collision With Fixed Object 0.107 0.235** 0.127 0.267** 0.101 0.222** 

 (0.123) (0.113) (0.129) (0.115) (0.120) (0.106) 

Rear End -0.006 0.065 -0.024 0.026 -0.018 0.027 

 (0.180) (0.152) (0.178) (0.153) (0.161) (0.137) 

Head On -0.094 0.823*** -0.183 0.670** -0.236 0.589** 

 (0.263) (0.260) (0.284) (0.280) (0.249) (0.252) 

Angle 0.102 0.610*** 0.042 0.494*** -0.008 0.425*** 

 (0.160) (0.147) (0.161) (0.152) (0.147) (0.136) 

Side Swipe Same Direction  0.077 -0.497*** 0.101 -0.469*** 0.146 -0.400** 

 (0.194) (0.171) (0.198) (0.172) (0.186) (0.160) 

Side Swipe Opp. Direction -0.869*** -0.219 -0.893*** -0.237 -0.842*** -0.180 

 (0.334) (0.315) (0.345) (0.322) (0.309) (0.280) 

Speed limit 0.007** 0.015*** 0.013*** 0.026*** 0.010*** 0.020*** 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Generalized Probit Residual ---- ---- 0.963*** 1.554*** ---- ---- 

 ---- ---- (0.118) (0.112) ---- ---- 

Constant 0.316 0.387 0.921*** 1.313*** 0.571* 0.912*** 

 (0.307) (0.296) (0.316) (0.309) (0.295) (0.286) 

       

Number of obs. 11,159 

 

11,159 

 

11,159 

 

χ2-Statistic  

(p-value) 

---- 

---- 

572.98 

(0.000) 

597.62 

(0.000) 

ΔPredicted Damage 

Probability for Helmeted 

Motorcyclists: 

-0.011 -0.003 -0.002*** -0.345*** -0.024*** -0.296*** 

a Statistical Significance at the 1 percent, 5 percent, and 10 percent level are represented by ***,**,and *, 

respectively.   
bStandard errors for the two-step control function estimator were calculated using bootstrapping with 2,000 reps. 
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Table A4. Multinomial Probit Models Using the No Injury Group as the Comparison Group.a 
 Model 1 (Probit/Probit) Model 2 (Probit/Logit) Model 3 (Probit/LPM) 

 

Variable Name 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Group: Injury Fatality Injury Fatality Injury Fatality 

Helmet -0.487** -0.923*** -0.566*** -0.982*** -0.592*** -1.043*** 

 (0.214) (0.253) (0.218) (0.259) (0.221) (0.260) 

Sex -0.346* -0.283 -0.347* -0.283 -0.347* -0.283 

 (0.199) (0.221) (0.199) (0.222) (0.200) (0.222) 

Age -0.012 -0.017 -0.012 -0.0176 -0.0123 -0.018 

 (0.015) (0.019) (0.015) (0.019) (0.015) (0.019) 

Age Squared 0.00006 0.0002 0.00007 0.0002 0.00007 0.0002 

 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

Driver 0.026 0.128 0.040 0.139 0.047 0.148 

 (0.229) (0.264) (0.230) (0.265) (0.231) (0.265) 

Fire -0.179 0.760 -0.189 0.753 -0.192 0.757 

 (0.874) (0.881) (0.876) (0.883) (0.880) (0.890) 

Alcohol Involved 0.070 0.452** 0.0492 0.436** 0.039 0.419* 

 (0.194) (0.221) (0.194) (0.221) (0.195) (0.223) 

Major Moving 

Collision -0.652*** -0.301 -0.652*** -0.302 -0.652*** -0.301 

 (0.180) (0.233) (0.180) (0.233) (0.180) (0.233) 

Minor Moving 

Collision -0.788*** -1.478*** -0.783*** -1.471*** -0.781*** -1.462*** 

 (0.235) (0.396) (0.235) (0.395) (0.235) (0.395) 

Collision With Fixed 

Object -0.021 0.660*** -0.019 0.661*** -0.017 0.664*** 

 (0.181) (0.200) (0.181) (0.200) (0.181) (0.200) 

Rear End -0.468** -0.681*** -0.467** -0.681*** -0.469** -0.682*** 

 (0.197) (0.254) (0.197) (0.254) (0.197) (0.254) 

Head On 0.402 1.012*** 0.400 1.011*** 0.397 1.005*** 

 (0.338) (0.364) (0.338) (0.364) (0.338) (0.364) 

Angle 0.218 0.396 0.216 0.395 0.214 0.392 

 (0.198) (0.252) (0.197) (0.252) (0.198) (0.252) 

Side Swipe Same 

Direction  -0.532** -1.502*** -0.532** -1.501*** -0.533** -1.496*** 

 (0.222) (0.362) (0.222) (0.362) (0.222) (0.362) 

Side Swipe Opp. 

Direction -0.773** 0.163 -0.772** 0.164 -0.775** 0.155 

 (0.324) (0.443) (0.324) (0.444) (0.326) (0.445) 

Speed limit 0.005 0.043*** 0.006 0.044*** 0.006 0.044*** 

 (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) 

Gen. Probit Residual 0.360*** 0.542*** ---- ---- ---- ---- 

 (0.136) (0.167)     

Gen. Logit Residual ---- ---- 0.704*** 0.982*** ---- ---- 

   (0.237) (0.292)   

Gen. LPM Residual ---- ---- ---- ---- 0.731*** 1.051*** 

     (0.241) (0.292) 

Constant 2.704*** -1.690*** 2.742*** -1.659*** 2.752*** -1.634*** 

 (0.381) (0.459) (0.380) (0.460) (0.380) (0.459) 

Number of obs. 13,610 13,610 13,610 13,610 13,610 13,610 

ΔPredicted Risk Prob. 

for Helmeted 

Motorcyclists: -0.053** -0.026*** -0.065*** -0.026*** -0.067*** -0.028*** 
aStatistical Significance at the 1 percent, 5 percent, and 10 percent level are represented by ***,**,and *, 

respectively. 



42 

Table A5. Multinomial Logit Models Using the No Injury Group as the Comparison Group.a 
 Multinomial Logit CF Multinomial Logitb  

 

Variable Name 

Estimated Coefficient 

(Std. Error) 

Estimated Coefficient 

(Std. Error) 

Group: Injury Fatality Injury Fatality 

Helmet -0.008 -0.318* -0.740*** -1.619*** 

 (0.117) (0.187) (0.285) (0.444) 

Sex -0.463* -0.519 -0.470* -0.536 

 (0.278) (0.375) (0.284) (0.388) 

Age -0.015 -0.032 -0.017 -0.036 

 (0.020) (0.032) (0.021) (0.034) 

Age Squared 0.00008 0.0004 0.0001 0.0004 

 (0.0002) (0.0004) (0.0002) (0.0004) 

Driver -0.063 0.149 0.056 0.365 

 (0.321) (0.444) (0.330) (0.460) 

Fire -0.103 1.274 -0.154 1.212 

 (1.203) (1.344) (9.086) (9.300) 

Alcohol Involved 0.338 1.112*** 0.150 0.764** 

 (0.263) (0.344) (0.279) (0.375) 

Major Moving -0.841*** -0.444 -0.833*** -0.430 

Collision (0.237) (0.395) (0.240) (0.410) 

Minor Moving  -1.070*** -2.763*** -1.030*** -2.707 

Collision (0.287) (0.828) (0.304) (5.536) 

Collision With Fixed  -0.002 1.098*** 0.027 1.136*** 

Object (0.259) (0.327) (0.264) (0.333) 

Rear End -0.572** -0.966** -0.585** -0.990** 

 (0.256) (0.438) (0.257) (0.441) 

Head On 0.652 1.921*** 0.607 1.826*** 

 (0.467) (0.597) (0.502) (0.647) 

Angle 0.302 0.779* 0.282 0.723* 

 (0.262) (0.424) (0.266) (0.431) 

Side Swipe Same  -0.668** -2.681*** -0.666** -2.654** 

Direction (0.281) (0.782) (0.284) (1.147) 

Side Swipe Opp.  -0.935** 0.561 -0.932** 0.564 

Direction (0.392) (0.697) (0.419) (2.810) 

Speed limit 0.006 0.072*** 0.009* 0.077*** 

 (0.005) (0.008) (0.005) (0.008) 

Err. Correlation  ---- ---- 0.903*** 1.586*** 

Coeff.   (0.302) (0.489) 

Constant 3.073*** -3.684*** 3.392*** -3.124*** 

 (0.502) (0.758) (0.515) (0.796) 

Number of obs. 13,610 13,610 13,610 13,610 

ΔPredicted Risk Prob. for 

Helmeted Motorcyclists: 0.006 -0.008* -.061*** -.029*** 
bStandard errors for the two-step control function estimator were calculated using bootstrapping with 2,000 rep 


