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Abstract: 

 

Increasingly, Federal and local governments are recognizing renewable energy as 

a promising technology for combating climate change and implementing policies 

to encourage the adoption of renewables.  This study analyzes renewable portfolio 

standards (RPS), a common policy instrument that serves as a subsidy to “clean” 

renewable energy.  Results indicate that mandatory RPS goals result in a 51 MW 

expansion of solar capacity on average (25% of the average capacity for states in 

2014), but the adoption of wind technology appears to be driven by other factors.  

We also find heterogeneous effects of RPS by the extent to which states are 

endowed with wind and solar resources. Given these findings, it is important to 

assess the degree to which continued expansion of solar and wind generating 

capacity through RPS is desirable from an economic perspective.  Stochastic 

frontier models of utility-scale renewable generation allow us to extrapolate the net 

present value of new solar and wind projects for 39 US states (39 wind and 28 

solar).  Expansion of wind capacity is generally found to be economically viable in 

all states where wind farms are currently in operation, but with current electricity 

prices 57% of states with solar are projected to generate negative net present values 

for solar expansion.  Furthermore, if we allow electricity prices to include 

environmental damages the outlook for solar improves, but 29% of the solar states 

still generate losses under higher social cost of carbon pricing.  These findings 

reiterate the results of other authors suggesting that market-based environmental 

regulations are the first-best option for addressing climate change.      
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1. Introduction 

 

 In March 2015, President Obama signed executive order 13693 pledging to cut Federal 

greenhouse gas emissions (GHG) by 40% over the next 10 years.  A large portion of the emissions 

reduction plan includes adoption of renewable energy, and requires that 25% of total federal energy 

consumption comes from “clean energy” sources by the year 2025 (Exec. Order 13693 2015).  

Other federal regulations such as the US Clean Air Act provide indirect incentives for increased 

renewable adoption by increasing the relative costs of fossil-fueled electric generating units (CAA 

1970; CAAA 1990).  As executive order 13693 highlights, however, these environmental 

incentives for renewable adoption have generally been viewed as insufficient due to the lack of 

federal regulations covering GHG emissions.  The US Environmental Protection Agencies’ (EPA) 

proposed Clean Power Plan (CPP) is set to partially fill this void beginning in 2017 by requiring 

all US states to adopt either a rate (e.g. emission standard) or mass (e.g. cap-and-trade) based 

program to reduce carbon dioxide (CO2) emissions (U.S. Environmental Protection Agency 2015).  

After the 2016 US presidential election, the future of the CPP is uncertain with several media 

sources reporting that President Trump will end the CPP before it becomes operational (Harvey 

2016; Rivkin and Grossman 2016).   

Given the current uncertainty of the future of US GHG regulations, a prescient research 

agenda is to determine the likely effect of laws governing CO2 emissions on the economic viability 

of renewable electric generating technology.  This study attempts to address this gap in the 

literature by focusing specifically on state renewable portfolio standards (RPS). We do so by i) 

using state-level data to evaluate the impact of state RPS on solar and wind renewable adoption, 

ii) using generator-level data to estimate stochastic frontier models for solar and wind generation 
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and evaluate state-level economic viability of renewable technology with current electricity prices 

and higher prices reflecting the social cost of carbon, and iii) combining our state- and generator-

level analyses to examine the extent to which RPS policies encourage wind and solar adoption in 

states where such technologies are not economically viable.   

Most energy experts do not expect renewable generating technology adoption to decline or 

disappear absent federal GHG regulations due primarily to state and private incentives for 

renewables (Jaffe 2016; Jurich 2016).  State RPS are often viewed as one of the primary incentives 

for the expansion of renewable generating capacity (see, for example, Berry 2002; Knittel 2002; 

Wiser 2008; Fischer 2010; Heat 2012; Munoz, Sauma and Hobbs 2013; Tanaka and Chen 2013; 

Johnson 2014; Wiser, et al. 2016).  Currently 29 US states and the District of Columbia have 

adopted RPS, and over 50% of the renewable capacity expansion from 1998 to 2007 occurred in 

states with RPS policies (Wiser 2008; Wiser, et al. 2016).  Fischer (2010) provides a theoretical 

overview of the RPS policy instrument, and illustrates that RPS serve as a subsidy to renewable 

generation and a tax on non-renewables.  Specifically, RPS sets a target level for state renewable 

generation as a percentage of retail electricity sales.  Utility compliance with the RPS accruals is 

typically reconciled using renewable energy credits (RECs), which are a tradable market-based 

instrument and the primary means for electric utilities in RPS states to demonstrate RPS 

compliance (Berry 2002).  On average utility RPS compliance costs represent 1.2% of electricity 

rates, and range from -0.2% to 6.5% depending largely on the current renewable target levels 

established in the state.  In addition, most state RPS goals include safety checks on regulatory 

burden by capping compliance costs at 6% to 9% of electricity rates (Heeter, et al. 2014).   

Aside from encouraging potential environmental benefits associated with renewable 

adoption, RPS may also improve energy efficiency by encouraging distributed generation (e.g. 
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rooftop solar, and industrial applications) that is under-incentivized in regulated electricity markets 

without interconnection and net-metering standards (Brown, Scott and Elliott 2003; Heat 2012).  

Lee (2015) and Shipley, et al. (2008) note that distributed generation has the potential to save 6% 

to 8% of electricity transmission losses on average.  Despite these advantages, RPS should be 

viewed as a second best policy, as it generally fails to accurately account for benefit heterogeneity 

between renewable sources (Novan 2015).  

Our study focuses on utility-scale investments in solar arrays and wind generation.  By 

focusing on utility generation, we avoid analyzing the disincentives that exist in the absence of 

interconnection and net-metering for distributed generation.  Utility-scale renewable generation 

captures the majority of renewable electricity generation in the US, but it should be noted that by 

excluding distributed generation and generation from waste and biofuels, our estimates of the 

impact of state RPS represent a lower bound on the increases of renewable generation associated 

with RPS adoption.  The expansion of distributed solar generation, for example, is a particularly 

important emerging area of renewable adoption, and accounted for roughly 39.5% of all solar 

generation in 2015.1 

The research presented herein advances the literature in three ways. First, this work 

contributes to the literature analyzing the heterogeneous impacts of state-level RPS (Yin and 

Powers 2010; Shrimali and Kniefel 2011; Dong 2012; Munoz, Sauma and Hobbs 2013; Tanaka 

and Chen 2013). Second, it adds to the literature analyzing the efficiency of electricity generators. 

The majority of these analyses focus on fossil fuel generators (e.g. Hiebert 2002; Knittel 2002; See 

and Coelli 2012; Lin and Du 2013; Zhao and Ma 2013; Seifert, Cullmann and von Hirschhausen 

2016).  Ours is one of only a handful of studies to examine wind power (others include Iglesias, 

                                                           
1 US information on net generation from renewable sources is available from the US EIA: 

http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01_a (last accessed January 2017). 

http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01_a
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Castellanos and Seijas 2010; Barros and Antunes 2011) and is to our knowledge the first study to 

apply stochastic frontier analysis to solar arrays. Finally, our work bridges the gap between these 

two strands of literature to test for potential inefficiencies associated with the siting of RPS-

induced solar and wind generating units.  Specifically, several authors have noted that state RPS 

are not the first best policy for reducing GHG emissions (see, for example, Michaels 2007; 

Bushnell, Peterman and Wolfram 2008; Fischer and Newell 2008; Johnson 2014).  By combining 

our state- and generator-level data and methods, we are able to address some of these concerns by 

examining not just whether RPS has led to expanded solar and wind capacity in various states, but 

whether RPS leads to expanded capacity in states where such installations are unlikely to be 

economically viable. 

Our state-level analyses of renewables expansion yields several interesting findings.  On 

average a mandatory RPS goal results in an approximate 51 MW capacity expansion of utility-

scale solar arrays.  The solar capacity expansions are more likely to occur in states with above 

average solar resources and below average wind resources, which suggests that RPS are 

encouraging renewable adoption in geographically preferable locales.  This finding may be 

attributable to the aforementioned tradable RECS mechanism that often allows compliance with 

RPS using RECS purchased from neighboring RPS states that may be better suited for solar 

generation.  Although state RPS do encourage solar adoption, there is a 5 to 6 year lag between 

implementation of mandatory RPS goals and capacity expansion.  We attribute the lagged RPS 

effects to tightening RPS standards over time.  Finally, the effects of mandatory RPS goals on 

wind expansion are less certain.  An event study suggests that wind capacity expansion occurred 

well before RPS adoption. This is possibly due to differences in the maturation timing of wind and 

solar technologies, with the costs of wind power falling to competitive levels before most RPS 
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goals were initiated. Our finding that wind capacity expanded before RPS may help explain the 

unexpected negative impact of RPS on wind capacity estimated in Shrimali and Kniefel (2011) 

and the null effect estimated by Hitaj (2013).  This finding is consistent with the results presented 

in Lyon and Yin (2010) that suggests states with higher wind potential may be more likely to adopt 

an RPS, and suggests that simple cross-sectional analyses of RPS adoption like the ones presented 

in Wiser (2008) and Wiser, et al. (2016) may be over-attributing expansions in renewable capacity 

to adoption of state RPS.     

 Given the fact that mandatory RPS goals do appear to encourage expansions in solar 

capacity, we next turn our attention to estimating stochastic electricity generating frontiers for solar 

and wind in order to shed light on the important siting and technology factors for renewable 

generation.  Results from the stochastic frontier analyses yield several important findings.  

Focusing on our preferred estimates that assume an exponential distribution for the unobserved 

inefficiency component, the results suggest that solar tracking systems (movable panels) result in 

a roughly 12.5% increase in the technical efficiency of an array.  We do not have estimates of the 

difference in operating and maintenance costs between fixed tilt and tracking systems, but as those 

estimates become available (currently only 30% of utility scale arrays have adopted tracking 

systems) engineers can directly compare the percentage cost difference to our estimated technical 

efficiency difference to evaluate the economic viability of tracking systems.  Panel and turbine 

degradation rates for solar and wind generation are estimated to be approximately 2.2% and 0.8% 

of annual generating capabilities, respectively.  These results are surprising for two reasons: 

1. Degradation rates for wind were expected to be higher due to additional moving 

components, and the lower degradation rates for wind turbines may be due to better 

maintenance of wind generators. 
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2. The annual degradation rates for solar arrays are more than twice the recent estimates 

provided by Jordan and Kurtz (2013), and the results suggest that field tests of actual 

degradation rates on operational arrays as suggested in Quintana, et al. (2002) and provided 

herein are of vital importance for estimating the economic potential of solar. 

The parameter estimates from the stochastic frontier models are then used to predict state-by- 

state electricity generation from a newly constructed typically sized solar array and wind farm.  

Specifically, the predicted electricity generation estimates are adjusted annually over the 25-year 

expected equipment life by state electricity prices, inflation rates, interest rates on municipal 

bonds, and equipment degradation rates in order to calculate the present value of the discounted 

stream of electricity sales and evaluate the state-specific economic viability of renewables.  

Expansions in wind capacity are found to be economically efficient in all 39 states in our dataset 

that have currently adopted some utility-scale wind projects.  The case for solar, however, is mixed, 

and the results indicate that roughly 57% of the states that have currently installed some solar 

capacity have a negative present value of net benefits for solar using current (inflation adjusted) 

electricity prices.  If we allow for increased electricity prices reflecting environmental regulations 

that price CO2 emissions at the social cost of carbon, then the case for solar improves and only 

29% of the current solar installation states are estimated to yield negative net benefits for solar.   

 The remainder of the paper is organized as follows.  Section 2 provides an overview of the 

state and generator-level data used in the analysis. Empirical results are presented in section 3, and 

section 4 offers a concluding discussion.          

2. Data 

 Data on renewable electricity generation comes from two primary data sources, both of 

which are from the U.S. Energy Information Administration (EIA).  Annual net electricity 
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generation in Megawatt hours (MWh) is collected on EIA form 923, and in 2013 the EIA began 

collecting data on solar and wind generator characteristics on EIA form 860.2  Importantly, the 

EIA datasets contain a unique longitudinal plant id that allows us to match the generator 

characteristics from EIA-860 to electricity production data from EIA-923.  

 The key generator characteristic data collected on form 923 includes generator MW 

capacity, installation month and year, solar tracking technology, wind turbine height, and wind-

quality class of the generator.  The generator installation date is first used to construct a balanced 

panel of state-level observations covering all 50 states plus Washington, DC during the 31-year 

time period 1984-2014 in order to investigate the impact of state RPS on the capacity of utilities’ 

wind and solar installations.  The year 1984 was selected for the beginning date of our state-level 

panel because this date corresponds to the first utility solar installation in the U.S.  The state 

renewable capacity panel is then supplemented with electricity price data from the EIA’s State 

Energy Data System (SEDS) in order to control for the confounding effects of these state 

characteristics on renewable capacity. In order to examine whether the effect of an RPS on energy 

capacity varies by the suitability of the energy source, we also collect solar insolation and wind 

potential data from the National Renewable Energy Laboratory (NREL) and the US Department 

of Energy’s WINDExchange website, respectively. Solar insolation, which is measured in 

KWh/m2/day, and wind potential, which is measured in km2 with a gross capacity factor (GCF) of 

at least 35%, are both normalized to have mean zero and standard deviation 1 for our analysis.  

                                                           
2 EIA 860 data is available online at the following: https://www.eia.gov/electricity/data/eia860/ (last accessed 

November 2016).  Survey 923 data on net generation is available at https://www.eia.gov/electricity/data/eia923/ (last 

accessed November 2016).   

https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia923/
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Finally, data on state RPS is collected from the North Carolina Clean Energy Technology Center’s 

Database of State Incentives for Renewables & Efficiency (DSIRE).3     

 Panel A of Table 1 provides summary statistics for the state-level data on renewable 

capacity.  Overall, the full sample contains 1,581 state-year observations, and 200 (13%) of those 

observations are for states with mandatory renewable portfolio goals.  The remaining 1,381 (87%) 

annual state observations are those for which there is no mandatory RPS.  Although not reported 

in Table 1, slightly over half (28) of the states in our dataset have a mandatory RPS goal at some 

point during the 1984 to 2014 sample, thereby providing a reasonable number of control and 

treatment states observed before and after RPS adoption in order to identify the effect of RPS using 

a fixed-effects estimation strategy.   The reason that we only observe 200 observations of the states 

with RPS enforced is due to the fact that mandatory RPS goals were only established during the 

latter part of the sample from 2002 to 2013.   

Focusing on columns 2 and 3 from Table 1 Panel A reveals that states with Mandatory RPS 

have a significantly larger amount of solar and wind electricity generating capacity in comparison 

to states with no RPS.  Interestingly, however, RPS states have a similar average solar insolation 

(p value = 0.636) and a lower average wind potential ( p value = 0.042) in comparison to non-RPS 

states.  Finally, it is worth noting that states with mandatory RPS face average electricity prices of 

roughly $116/MWh.  These electricity prices are roughly double the average prices faced by non-

RPS states (p value < 0.005), and may also contribute to the adoption of renewable technology.  

Overall, the findings in Table 1 suggest that mandatory RPS may encourage states to expand 

                                                           
3 SEDS data is available online at the following: http://www.eia.gov/state/seds/, and the DSIRE database is available 

for download at http://www.dsireusa.org/.  The NREL dataset on solar insolation is available at 

http://www.nrel.gov/gis/data_solar.html and the WINDExchange dataset on wind potential is available at 

http://apps2.eere.energy.gov/wind/windexchange/windmaps/resource_potential.asp. All four datasets were last 

accessed November 2016.  

http://www.eia.gov/state/seds/
http://www.dsireusa.org/
http://www.nrel.gov/gis/data_solar.html
http://apps2.eere.energy.gov/wind/windexchange/windmaps/resource_potential.asp
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renewable generating capacity, and section 3 presents empirical analyses that control for the 

confounding effects of electricity prices in order to formally test this hypothesis.   

Once we establish the impact of mandatory state RPS goals on the expansion of renewable 

capacity, our second contribution is to use individual-level solar array and wind farm generation 

data to estimate production frontiers for each of the aforementioned renewable types.  Summary 

statistics for our generator-level analyses are presented in Panels B and C of Table 1 for solar and 

wind, respectively.  The data contain observations for the years 2013 and 2014, as these are the 

only years for which it is possible to obtain both solar/wind generator characteristics from EIA 

form 860 and net generation from EIA form 923.   

Data on the operating date of each generator is also a key component of the production 

frontier analysis because it allows us to calculate the age of each solar and wind installation.  The 

constructed age variable reported in Table 1 is measured in months of generator operation, and its 

inclusion in the frontier analyses allows us to measure average monthly degradation rates of solar 

and wind generation.  The average age of solar arrays in our dataset is slightly over three years 

and, as column 2 and 3 report, the age of solar arrays installed under mandatory RPS (31 months) 

is significantly less (p value < 0.005) than those not installed under RPS (70 months).  This last 

feature of the data may simply be an artifact of variable construction, because states did not begin 

implementing RPS until the 2000s.  Specifically, there are 20 states in our dataset with mandatory 

RPS goals as of 2014 and only 8 states with operable solar arrays and no mandatory RPS in 2014.  

In addition, roughly 36 of the 138 available observations of arrays installed under a no RPS regime 

were installed in future RPS states prior to their adoption of mandatory goals.   

Roughly 30% of the solar arrays in our dataset have solar tracking systems that adjust the 

tilt of solar panels throughout the day to track the sun as it moves across the horizon.  The 
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remaining majority of solar arrays (70%) are fixed-tilt systems in which solar panels are stationary.  

The average generating capacity of solar arrays in our dataset is 6.6 MW, and the resulting annual 

net generation of electricity is roughly 12,644 MWhs.  The implied average generation per capacity 

for the sample is 1,916 MWh/MW, and this number is comparable to the average productivity 

across RPS and non-RPS arrays equal to 1,966 MWh/MW and 1,680 MWh/MW, respectively (p 

value =0.145).  The solar arrays installed under non-RPS regimes are slightly less productive, but 

this may simply be due to the fact that they are roughly twice as old as the RPS arrays.   

Finally, it is worth noting that the average insolation values as measured at the county level 

for each solar array in Panel B are higher than the state average insolation values from the state-

level data in Panel A even among the states with mandatory RPS goals.  This suggests that 

individual solar arrays are more heavily sited in areas with greater potential for solar production.  

Similarly, from columns 2 and 3 of Panel B, arrays installed under non-RPS regimes have better 

insolation on average in comparison to RPS arrays (4.9 vs. 4.7, p value < 0.005), which may 

explain utilities incentives to install a solar array when there is no mandatory RPS requirement.  

Of the 1,025 utility solar array observations in our dataset, 887 (87%) were installed under RPS 

regulatory regimes.  This finding is also consistent with the state-level data from panel A 

suggesting that mandatory RPS are encouraging solar adoption.   

Panel C of Table 1 presents an overview of the generator-level data on wind farms available 

to estimate production frontiers for wind.  There are a total of 1,430 utility wind farms available 

for analysis from 2013 to 2014.  Interestingly, 861 (60%) of these observations are of wind farms 

that were installed without any RPS goals legislated.  This feature of the data suggests that 

mandatory RPS may be a less important factor for wind installation in comparison to solar 

installation, but it is also worth pointing out that the average generation capacity of wind farms 
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installed in RPS states is nearly twice as large as those installed in non-RPS states at 91 MW versus 

58 MW, respectively (p value < 0.005).   

Comparing Panel C data on wind farms to Panel B data on solar arrays reveals that the 

average wind farm is more than 10 times as large as the average solar farm in terms of generating 

capacity.  Specifically, the average wind farm in our data is roughly 71 MW, and the average solar 

farm is only 7 MW.  In addition, wind farms appear to be more efficient on average in comparison 

to solar arrays, generating 2,884 MWh per MW capacity.  Finally, wind farms are older on average 

in comparison to solar arrays.  As mentioned above, the average solar array is roughly 3 years old, 

and the average wind farm array in Panel C is nearly 7 years old.  This finding suggests that wind 

power became a mature and viable source of electricity generation earlier than solar and is also 

consistent with the aforementioned fact that the majority of windfarms in our dataset were installed 

without any RPS requirements.   

The average hub height of wind turbines in our dataset is 247 feet, and this measure is 

slightly greater in RPS turbines (262 feet compared with 238 feet for non-RPS, p value < 0.005).  

The EIA 860 generator data also includes four wind quality class designations of wind farms 

defined as follows: high wind quality are those with an average annual wind speed of 10 m/s, 

medium wind quality indicates turbines with an average annual wind speed of 8.5 m/s, and low 

and very low wind quality are turbines with average annual wind speeds of 7.5 m/s and 6 m/s, 

respectively.  The majority (62%) of windfarms in our dataset are medium wind quality class 

farms.  Similar to the data on solar insolation from Panel B, windfarms installed under non-RPS 

regimes tend to have a higher wind quality class, which may help explain the installation of 

windfarms in non-RPS states.  Specifically, roughly 83% of the windfarms in non-RPS states are 
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designated medium to high wind quality, and only 66% of the windfarms in RPS states have 

medium to high wind quality designations.   

The results section that follows presents formal tests for the impact of mandatory RPS goals 

on renewable adoption, and estimates production frontiers for wind and solar.  This frontier 

analysis is then used to calculate the state-level economic viability of an average wind and solar 

installation with current electricity prices and projected electricity prices with environmental 

regulations that price CO2 emissions at the social cost of carbon.    

3. Empirical Results 

 We conduct three primary analyses to investigate the impact of mandatory state RPS goals 

on the adoption of renewable energy.  First, section 3.A. uses state-level panel data to evaluate the 

impact of RPS on solar and wind generating capacity.  Once the effects of RPS goals are 

established, section 3.B. uses generator-level windfarm and solar array data to estimate electricity 

generation production frontiers for solar and wind.  Finally, section 3.C. uses the production 

frontier estimates to forecast state-by-state net electricity generation for an average solar array and 

windfarm in order to calculate the discounted present value of an average renewable generator 

over a 25 year lifespan.4  These present value calculations are then compared to construction costs 

to evaluate the state-by-state economic viability of renewables with and without adjustments to 

electricity prices reflecting the social cost of carbon. 

3.A. State-level Analysis of Renewable Capacity 

 Before conducting the primary fixed-effects analysis of the impact of RPS on state 

renewable generation capacity, a graphical depiction of the treatment effect associated with 

                                                           
4The average manufacturing warranty period for a solar panel is 25 years, and wind turbines are estimated to have a 

lifespan of 20 to 25 years.  These estimates are based on NREL expert estimates and are available online at the 

following: http://www.nrel.gov/analysis/tech_footprint.html (last accessed November, 2016) (see also, Kellogg, et 

al. 1998; Ailleret 2004; Yang, Lu and Zhou 2007).  

http://www.nrel.gov/analysis/tech_footprint.html
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mandatory RPS goals is first provided in Figures 1 through 3.  The point estimates and confidence 

intervals plotted in Figures 1 through 3 are estimated using the following event study: 

 


7

7 ,,ts,,, ][Price*
n tssttsntse STnRPSYIyElectricitaCapacity  ,    (1) 

where the installed generator capacity of energy source  SolarWinde ,  in state s and year t is a 

function of average state electricity prices for all consumer types, ts,PriceyElectricit , and year and 

state fixed effects Tt and Ss, respectively.  In estimating equation (1) the sample is limited to non-

RPS states and RPS states within +/- 7 years of implementing the initial mandatory RPS goal.   As 

such, RPSYs,t is equal to the number of years pre or post implementation of the mandatory RPS 

goal, and ][ , nRPSYI ts   is an indicator function equal to one for observations that are n years 

away from the RPS implementation date.  The omitted RSPYs,t indicator variable is one year prior 

to the initial mandatory RPS goal, and the estimated coefficients plotted in Figures 1-3 can all be 

interpreted as the relative effects of RPS to the omitted category one year prior to treatment.  

Finally, ts ,  is a random error component clustered at the state level to allow for within-state 

intertemporal correlation. 

 Figure 1, which presents the event study results for solar capacity, indicates there is no 

statistically significant difference in installed state solar capacity prior to the implementation of 

mandatory RPS goals.  Interestingly, the results in Figure 1 also indicate that it takes roughly five 

years following the initial RPS implementation for mandatory RPS goals to have any statistically 

significant effect on solar capacity.5  Beginning in year 5 of post RPS implementation, solar 

capacity increases roughly 19 MW in comparison to the one year pre-treatment category.  This 

                                                           
5The RSPYs,t indicatory variable for five years post treatment is only statistically significant at the 10% level, but the 

controls for six and seven years post treatment are both significant at the 5% level as indicated in Figure 1.   
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steady increase continues in years 6 and 7 where we see a 38 MW and 67 MW increase in capacity, 

respectively.   

In order to investigate a possible explanation for the lag between RPS implementation and 

increased solar capacity, Figure 2 presents similar event study results using the same specification 

presented in equation (1), except the size of the mandatory RPS goal is the dependent variable of 

interest.  As Figure 2 illustrates there is a steady increase in RPS stringency over time.  On average 

during the first year of RPS implementation roughly 3.6 percent of state electricity generation is 

required to be from renewable sources.  By years five, six, and seven the required renewable 

percentages increase to 6.3%, 7.3%, and 7.9%, respectively.  These RPS goals can be compared 

to the actual state renewable mix collected by the US Environmental Protection Agency (EPA) as 

part of their Emissions & Generation Resource Integrated Database (eGRID).6  For the most recent 

round of eGRID data collected in 2012, the median percentage of renewable generation for states 

with mandatory RPS goals is 7.4%.  As a result, the 5-year lag between RPS implementation and 

impact on solar capacity can largely be attributed to the fact that RPS goals are likely to be non-

binding for utilities in the majority of states until approximately six to seven years post adoption.         

 Finally, Figure 3 presents the event study for wind capacity, and with the exception of the 

first two years of RPS implementation, the results do not generally find any statistically significant 

increase in wind capacity post RPS adoption.  Even more concerning in Figure 3 is the presence 

of a statistically significant and increasing pre-treatment trend in wind capacity.    This feature of 

the event study for wind generation is consistent with the generator-level summary statistics on 

windfarms and solar arrays from Table 1.  Recall from Table 1 that the average age of utility-level 

solar arrays in the US as of 2014 is three years, but average windfarms are nearly eight years old.  

                                                           
6eGRID data is available online at the following: https://www.epa.gov/energy/egrid (last accessed November, 2016).  

https://www.epa.gov/energy/egrid
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Taken together the results in Figure 3 and average age of respective renewable generators suggests 

that factors other than mandatory state RPS regulations are driving the increased state wind 

generation capacity over the 1984 to 2014 time period.   

 In order to further investigate the impact of state RPS regulations on the expansion of 

renewable generation capacity, the following fixed effects estimator is utilized: 

 tssttstse STGoalRPSMandatoryElectricyaCapacity ,,ts,,, *Price*   ,    (2) 

where all variables are defined as in equation (1) and an indicator variable is included that is equal 

to one for all state-year observations with mandatory RPS goals enforced, Mandatory RPS Goals,t.  

As such, the key coefficient of interest is  measuring the impact of RPS goals on state renewable 

capacity, or the average treatment effect on the treated.  Equation (2) is estimated using the full 31 

year panel of state renewable capacity from 1984 to 2014.   

Results from equation (2) are presented in Column 1 of Table 2.  From Panel A of Table 

2, state RPS goals are estimated to increase solar capacity by roughly 50.8 MW (95% confidence 

interval of 2.7 MW to 98.9 MW).  To put this number in context, the average installed solar 

capacity among the 50 US states and DC in 2014 is 204 MW, suggesting that RPS-induced 

increases to solar capacity are non-trivial. This finding is on par with the event study analysis of 

solar capacity presented in Figure 1 where there was a delayed uptick in solar capacity beginning 

five years post RPS enactment that culminated in a 67 MW increase in capacity in year 7.   

Column 1 of Table 2 Panel B presents fixed effects estimates of the impact of mandatory 

RPS goals on state wind capacity.  RPS goals are estimated to increase wind capacity by roughly 

639 MW on average, but the effect is statistically indistinguishable from zero at any conventional 

significance level.  This finding is not surprising given the fact that the event study in Figure 3 

suggests that the major increases in wind capacity in RPS states occurs prior to RPS enactment.   
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While an average effect is informative, this estimate is likely to mask significant between-

state heterogeneity. Specifically, one could conjecture that RPS would increase capacity of a 

specific renewable energy source in states where the resource is abundant (high-insolation states 

for solar and high-wind potential states for wind) while having little or no effect in states with low 

solar/wind resources. Column 2 of Table 2 tests for heterogeneous treatment effects of RPS goals 

dependent on state-level insolation levels and wind potential. As the insolation and wind potential 

variables are normalized to have zero mean and standard deviation of 1, we now interpret the 

coefficient for Mandatory RPS Goals,t as the effect of RPS on capacity for a state with average 

levels of the resource (e.g., Tennessee and Oregon for solar; Illinois and Arkansas for wind).  

As Column 2 of Panel A indicates, RPS goals increase solar capacity by roughly 47 MW 

for the average-insolation states, though this effect is only marginally significant (p value = 0.056). 

The interaction of RPS and insolation variables is positive and highly significant, indicating that 

RPS drives capacity increases for high-insolation states more than their low-insolation 

counterparts. Indeed, using Wald tests we find that states approximately one standard deviation 

below mean insolation (e.g., Wisconsin and North Dakota) have no statistically significant effect 

from RPS while states one standard deviation above mean insolation levels (e.g., Colorado and 

Oklahoma) have a positive and highly significant effect from RPS.7 Lastly, the interaction of RPS 

and wind potential has a negative and significant impact on installed solar capacity.  This provides 

evidence of substitution effects between renewable resources in the face of RPS, and suggests that 

a one standard deviation reduction in wind potential results in 54 MW (44%) increase in installed 

solar capacity in states with mandatory RPS goals. 

                                                           
7 For states one standard deviation below average insolation, the point estimate is -74.233 (p value = 0.140). For 

states one standard deviation above average insolation, the point estimate is 168.585 (p value = 0.013). 
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Column 2 of Panel B shows a positive and significant effect of RPS on wind capacity for 

the average-wind potential state. Additionally, the interaction of RPS and wind potential shows 

that the effect of RPS is likely heterogeneous. While these results are as one might anticipate, we 

are somewhat skeptical and hesitant to draw strong conclusions for the effects of RPS on wind 

capacity. In the case of wind, it is perhaps more likely that these results indicate more correlation 

than direct cause, as our event study suggests an increasing pretreatment trend in capacity.   

Finally, Column 3 of Table 2 tests for heterogeneous treatment effects five or more years 

post mandatory goal adoption. This decision is based on the observation that RPS standards 

become more stringent over time as illustrated in the goal event study of Figure 2.  For solar, the 

results suggest that mandatory RPS goals do not have a statistically significant effect on capacity 

during the first four years of solar adoption.  However, for states that have had mandatory RPS 

goals in place for five or more years, solar capacity is estimated to increase by 260.9 MW and the 

effect is statistically significant at the 10% level.  Alternatively, for wind capacity there is no 

statistically significant evidence of increased wind adoption due to tightening RPS standards.  

Specifically, the results from Column 3 of Panel B Table 2 do not find any statistically significant 

impact of mandatory RPS goals during the first four years of the program or thereafter.  Thus, the 

evidence for RPS impacts are stronger for solar than for wind capacity.  

The following subsection turns from statewide capacity data to generator-level wind and 

solar data. We estimate production frontiers in order to shed light on the technologies affecting 

wind and solar efficiency, and also estimate the key parameters (net generation and technology 

degradation) necessary for evaluating the economic viability of the alternative renewable 

technology.   

3.B. Generator-level Production Frontier Estimates for Wind and Solar       
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 Following the generalized models of Aigner, Lovell and Schmidt (1977) and Meeusen and 

Van den Broeck (1977) we estimate a Cobb-Douglas production frontier for renewable energy net 

electricity generation of the following form:  

ggssgsg vuSXaMWh  ,,ln .     (3) 

In equation (3) the natural log of megawatt hours of net electricity generation from generator g in 

state s is a function of a vector of observable explanatory variables, Xg,s, state fixed effects, Ss, 

productive inefficiency of the generator, ug,s, and a random error component, vg,s, that is clustered 

at the generator level.  When estimating the production frontiers for solar generation, generator 

characteristics include controls for solar tracking technology, county-level insolation, age (in 

months) of the solar array, and the natural log of the solar array’s nameplate generating capacity.  

For wind generation, generator characteristics include average turbine height of the wind farm, 

wind quality classification of the wind farm, age of the wind farm, and the natural log of nameplate 

capacity.   

 Panel A of Table 3 presents the production frontier estimates for solar arrays using three 

alternative distributional assumptions for the stochastic inefficiency term, ug,s.  Column 1 presents 

results for a baseline OLS specification that does not impose any distributional assumptions on 

inefficiency. The results indicate that solar tracking systems increase net generation by 

approximately 12.5% and this effect is statistically significant at the 1% level.8  Solar insolation 

has a positive effect on net generation as expected, but the estimated effect is statistically 

indistinguishable from zero.   

                                                           
8 Following Halvorsen and Palmquist (1980), the percentage change in net generation for dummy variables is 

calculated as the exponent of the coefficient point estimate for the dummy variable minus one.   
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Each additional month of solar operation is estimated to reduce net generation by 

approximately 0.2%, which we attribute to degradation of the solar panels over time.  The implied 

annual degradation rates are presented in the last row of panel A, and these annual rates suggest 

that solar arrays lose approximately 2.7% of their generating capabilities annually.  One concern 

with interpreting the coefficient on solar array age as an estimate of panel degradation is that older 

solar technology may simply be less efficient that more modern panels.  In order to investigate this 

possibility, the sample was further limited to solar arrays constructed post-2000, and although not 

presented in Table 3, the estimated effect of solar age was robust the exclusion of pre-2000 solar 

generators.  Specifically, in the post-2000 dataset annual degradation rates were actually estimated 

to be 4.0% (95% confidence interval of 1.8% to 6.2%), and the 95% confidence intervals overlap 

those presented in the full sample from Table 3.    Finally, generating capacity is estimated to result 

in roughly constant returns to scale, because a 1% increase in nameplate capacity results in a 

roughly 1.03% (95% confidence interval of 1.00 to 1.05) increase in net solar generation. 

The stochastic frontier model presented in equation (3) suggests that in the presence of 

generator inefficiency, the OLS residuals will be leftward skewed.  Column 1 of Table 3 also 

presents the skewness of the predicted OLS residuals, and the residuals are indeed statistically 

significantly skewed left.9  In order to more thoroughly account for the presence of generator 

inefficiency, columns 2 and 3 of Table 3 present results for stochastic frontier estimates of equation 

(3) where the inefficiency term is assumed to follow a half-normal and exponential distribution, 

respectively (see Aigner, Lovell and Schmidt 1977; Meeusen and Van den Broeck 1977; 

Kumbhakar, Wang and Horncastle 2015 for a thorough review of the alternative distributions).  

Overall, results from the half-normal and exponential solar frontier models are similar to the 

                                                           
9 Tests for significance of skewness and kurtosis were conducted using the method proposed by D'agostino, 

Belanger and D'Agostino Jr (1990). 
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baseline OLS results presented in Column 1.  One noticeable difference, however, is that a one 

unit increase in county solar insolation is estimated to increase net generation by 10.3% and 9.6% 

in the half normal and exponential models, respectively, and the effects are statistically significant 

at the 1% level.  Both alternative stochastic frontier models find similar effects of solar tracking 

systems (11.9% to 12.5% increase in net generation), and both models exhibit constant returns to 

scale in terms of nameplate capacity.   

Interestingly, the average annual solar panel deterioration rates are roughly 0.5 percentage 

points lower in the half-normal and exponential models in comparison to the OLS results.  This 

finding suggests that the array age may be correlated with idiosyncratic generator inefficiency, but 

we caution this interpretation by noting that the 95% confidence intervals on the age parameter 

overlap across all specifications presented in Panel A of Table 3.  Finally, Table 3 presents 

estimates of the average technical efficiency of solar arrays calculated over the data sample for the 

half-normal and exponential models.10  The half-normal results suggest that on average solar arrays 

are 75% efficient while efficiency estimates for the exponential model are slightly higher, 

suggesting that average solar arrays are roughly 85% efficient.   

It should be noted that among the two alternative stochastic frontier models, the 

exponential model parameter estimates more closely resembles OLS results that do not impose 

distributional assumptions on the inefficiency term.  This finding is driven by the lower (in absolute 

terms) inefficiency estimates in the exponential model where generators are estimated to be closer 

to the production frontier (100% efficient) on average.  Figure 4 presents this artifact more clearly 

by plotting the kernel density estimates of the distribution of estimated individual solar generator 

                                                           
10 Individual generator inefficiency estimates, ug,s, are calculated using the method of Jondrow, et al. (1982), and 

technical efficiency calculated as 
gsu

e ,
is estimated following the method of Battese and Coelli (1988).   
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technical efficiency.  The exponential distribution estimates of technical efficiency are more 

heavily skewed toward the frontier, and are also more peaked indicating a larger portion of solar 

generators closely clustered near the frontier.      

Panel B of Table 3 presents the generation frontier estimates for windfarms, and the results 

share some similarities to the solar frontier estimates from Panel A.  As with the solar data, OLS 

generates residuals that are skewed leftward, indicating that a stochastic frontier model is 

appropriate. Windfarms also exhibit roughly constant returns to scale in generator capacity, and 

the average technical efficiency estimates follow a similar pattern with average windfarms 

operating at roughly 75% efficient in the half-normal model, and 82% efficient in the exponential 

model.  Figure 5 plots the kernel density estimates for the wind technical efficiency distribution, 

and the results are also similar to the density estimates for solar technical efficiency, except the 

wind distributions do exhibit slightly fatter tails towards less efficiency in comparison to solar.  

The remaining coefficients are of the expected sign and significance for wind.  Specifically a 1 

foot increase in turbine height increases net generation by 0.1% to 0.2% and the effect is 

statistically significant at the 1% level.  Lower wind quality classified turbines are generally less 

efficient than the omitted high wind quality class, and for each additional month of operation wind 

turbines lose approximately 0.07% to 0.08% of generating ability.   

Interestingly, across all models the average annual deterioration rates for wind farms are 

0.8% to 1.0%.  These deterioration rates are more than 50% lower than the estimated deterioration 

rates reported for solar arrays in Panel A of Table 3.  This result is particularly surprising given 

the additional moving parts of wind turbines in comparison to fixed-tilt solar arrays, but it may 

simply reflect better maintenance of windfarms in comparison to solar.  Indeed according to the 
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EIA (2016), the average annual operating and maintenance costs for wind are more than double 

the operating and maintenance costs for solar at $45.98/kW and $21.33/kW, respectively.   

It should also be noted that the stochastic frontier models can accommodate different levels 

of output efficiency depending on whether the wind farms and arrays were installed under RPS 

regimes.  One concern is that RPS goals may lower the technical efficiency of wind and solar 

installations. Although not reported in Table 3, we test this hypothesis thoroughly by estimating 

specifications that included controls for RPS directly in the frontier as well as allowing RPS to be 

a determinant of the standard deviation of our generator-level technical efficiency variable, ug,s. 

The hypothesis that RPS decreases the efficiency of an array would be supported by a negative 

coefficient for RPS regarding net generation and a positive coefficient for RPS in the standard 

deviation of ug,s.
11 Overall, we find no evidence that mandatory RPS goals have any statistically 

significant effect of generator efficiency in any of the half-normal and exponential specifications. 

This finding holds when considering both the effect on mean net generation and the effect on the 

standard deviation of technical efficiency, and formal statistical tests of this finding are presented 

in the last rows of Table 3.  

3.C. Present Value of Average Renewable Generation Installations by State 

While our lack of evidence supporting the hypothesis that RPS reduces the technical 

efficiency of installed solar and wind power is perhaps heartening to proponents of RPS policies, 

technical efficiency is not sufficient to ensure economic efficiency. RPS policies that lead to the 

establishment of technically efficient but unprofitable installations are potentially problematic. 

                                                           
11 This effect suggests that arrays built under mandatory RPS goals would have greater variance, meaning more 

arrays would be further from the production frontier and thus less efficient, compared with the control of no 

mandatory RPS goal. 
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With this in mind, we turn to our third research question: Do RPS encourage unprofitable (i.e., 

negative net present value (NPV)) solar and wind installations?  

To answer this question we use the stochastic frontier model from section 3.B to estimate 

the expected present value of net benefits from a 3 MW solar array and a 30 MW wind farm for 

each state in our generator-level dataset. These estimates account for state-level variation in 

renewable resource potential and electricity price.12 Combining this estimate with our average 

annual deterioration estimates and using a net discount rate of 2.3%, we estimate a state-specific 

present value of discounted electricity revenue (net annual maintenance costs) generated by the 

installation over the 25 year warrantied lifespan of an array.13  

Panel A of Tables 4 and 5 describe our findings for solar. We generate four different 

estimates based on assumptions regarding construction costs and electricity prices. Specifically, 

for cost estimates we use either the EIA’s estimates of current construction costs (Column (1) in 

each table) or the NEMS forecasted future construction and maintenance costs (Column (2) in each 

table). For electricity prices, we use either current electricity prices (Table 4) or projected 

electricity prices that include a $41.90 per ton social cost of carbon (SCC, presented in Table 5).14 

The projected SCC electricity prices vary by state and are calculated using the current 2014 

electricity prices reported in SEDS adjusted by the state-specific CO2 emissions factors for 

electricity generation available in the most current 2012 EPA Emissions and Generation Resource 

                                                           
12 State electricity prices are available for download from the EIA’s State Energy Data System: 

http://www.eia.gov/state/seds/ (last accessed, Jan. 2017). 
13 The 2.3% net discount rate is based on the lagged five year averages of bond yields for 20 year municipal bonds 

(4.1%) and the CPI inflation rate for electricity (1.7%), available online at the following: 

https://fred.stlouisfed.org/series/WSLB20 (last accessed, Jan. 2017), https://www.bls.gov/cpi (last accessed, Jan. 

2017).    
14 The $41.90 estimate of the SCC is based on the current median Interagency Working Group on the Social Cost of 

Carbon estimates and the calculations used in the EPA’s Clean Power Plan adjusted for inflation using the CPI to 

2014$ (United States Government Interagency Working Group on Social Cost of Carbon 2013; U.S. Environmental 

Protection Agency 2015).   

https://www.bls.gov/cpi
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Database estimates [SCC Price = Elec. Price ($/MWh) + CO2 Emissions Rate 

(Tons/MWh)*SCC($/Ton)].15 The values presented in Panel A of each table, in millions of 2016 

dollars, represent the present value of revenue net annual maintenance costs (but not accounting 

for construction costs) from a 3 MW solar array. We compare these numbers to the average 

construction costs as estimated by EIA and NEMS. Shaded values indicate states whose present 

value of revenues net maintenance costs exceed construction costs (and thus have a positive NPV) 

for the given construction cost-electricity price combination. 

Several trends are worth noting. First, as one would expect, current construction cost 

estimates are higher than NEMS forecasted future construction costs for solar. As a result, more 

states have positive NPV for the array in question when using the NEMS data. Second, including 

the SCC increases electricity prices, so the average array has a positive NPV for more states when 

including the SCC than when using current electricity prices. Third, the relative ranking of states 

changes between Tables 4 and 5. This is because the impact of including the SCC on average 

electricity prices varies by state based on the current fuel mix of each state. Thus, states with a 

high-carbon fuel mix see a higher increase in electricity price with SCC pricing included.  

There is clear evidence that both state electricity prices and solar insolation impact the 

economic viability of solar. This is illustrated in Panel B of Tables 4 and 5, which shows a scatter 

plot of states in our dataset plotted by electricity price and insolation level. States are shaded to 

indicate the degree of economic viability, with dark shading indicating states that have positive 

NPV at current and forecasted future construction costs, medium shading indicating states that 

                                                           
15 The EPA Emissions and Generation Resource Database (eGRID) is available online at the following: 

https://www.epa.gov/energy/egrid (last accessed Jan. 2017).  These estimates are admittedly coarse and implicitly 

assume the marginal fuel source for each state has the same emissions rate as the average source. Other work has 

shown that emission rates for the marginal fuel source can vary by time of day as well as the variability of the 

renewable source being installed (Cullen 2013; Kaffine, McBee and Lieskovsky 2013; Novan 2015). As a result, 

while our measure results in a constant SCC value having heterogeneous impacts on state electricity prices, it is 

possible a more nuanced calculation would achieve even greater heterogeneity. 

https://www.epa.gov/energy/egrid
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have positive NPV only using forecasted future construction costs, and light shading indicating 

states that have negative NPV under both cost assumptions. The scatter plots illustrate how states 

in the third and fourth quartiles for electricity price and insolation tend to be economically viable, 

while states with cheap electricity and low insolation are not economically viable destinations for 

solar. The scatters plot also indicate which states currently have RPS in place. While many RPS 

states (Hawai’i, California, and Connecticut for example) have positive NPV for solar, other RPS 

states (Oregon, Illinois, and Delaware for example) have clear negative NPV for solar.  

We examine the extent to which RPS encourages economically inefficient solar production 

by identifying whether the policy increases capacity in states with negative NPV for our 

representative array. If we use the naïve assumption that mandatory RPS goals have a 

homogeneous impact on installed solar capacity (as indicated in the model from Column (1) of 

Table 2) and conclude that RPS increases solar capacity in all states, there is strong support that 

RPS encourage the building of inefficient arrays. Of the 21 states in our generator-level dataset 

with RPS goals in place, at least 7 and as many as 17 are negative NPV states.  However, our 

model that allows for heterogeneous effects of RPS by resource abundance suggests that RPS 

impacts on installed capacity are far from uniform. States with high levels of solar potential install 

more solar, while states with high levels of wind potential install less solar. We next account for 

this heterogeneity by estimating the net impact of RPS on each state.16 The results, shown in Table 

6, are instructive. We find that RPS increases solar capacity in only 11 of 28 states, specifically 

states with high levels of solar insolation and/or low wind potential. States with low solar 

                                                           
16 This is achieved using Wald tests. Specifically, for a state with normalized insolation value X and normalized 

wind potential Y, We use the model from Table 2, Panel A, Column 2 and test the following hypothesis  

H0: βMandatoryRPSGoal + X*βMandatory*Insolation + Y*βMandatory*Wind = 0. 
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insolation and/or high wind potential do not experience a statistically significant increase in 

capacity.  

When using current electricity prices, illustrated in Panel A of Table 6, we find that RPS 

is a mixed bag in terms of economic efficiency. Six of the eleven states that we would expect to 

see17 an RPS-induced boost in solar are negative NPV states. This is troubling, as it suggests RPS 

may lead to inefficient allocation of resources, especially if it is expanded to sunny and cheap-

energy states in the Southeastern US. Conversely, Panel B of Table 6 provides the same analysis 

but includes the SCC in electricity prices. While including SCC pricing still results in 8 of 28 states 

having negative NPV, we now find that seven of these states receive no increase in solar capacity 

from RPS. Of the eleven states that increase solar capacity as a result of RPS goals, only Oregon 

is a negative NPV solar state. 

 

 

4. Discussion and Conclusion 

 Our analyses reveal several relevant findings, some expected but others less so. First, we 

find that mandatory RPS goals, on average, increase installed solar capacity. This was expected, 

though because RPS legislation allows for a variety of renewable sources (wind, hydro, biofuels, 

etc.) when meeting RPS goals, the result was not a foregone conclusion. We also find that 

examining the average effect of RPS masks significant heterogeneity among states. Specifically, 

RPS goals have a greater positive impact on solar capacity in states endowed with larger solar 

resources and scanter wind resources. While we find some positive impacts of RPS on wind 

                                                           
17 We say “expect to see” because not all states in Table 6 have RPS. For FL, GA, SC and NM we are projecting that 

they would see an increase in solar capacity if they implemented RPS, based on their available solar and wind 

resource. 
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capacity, this evidence is less robust. As with solar, RPS goals have a heterogeneous effect on 

installed wind capacity, with states endowed with greater wind resources experiencing larger 

increases as a result of RPS goals. We also find that the effect of RPS goals on solar capacity is 

typically delayed; initial goals of 2-5% often do not spur greater solar capacity, as many states 

already have renewable sources as a small percentage of their electricity generation. Indeed, our 

analysis suggests that RPS goals tend to increase solar capacity once the goals become binding, 

meaning they mandate renewable mixes above what is currently being produced in the state. 

 Our dual findings, that the evidence of RPS increasing capacity is stronger for solar than 

for wind and that the effect of RPS on solar capacity is delayed, can be at least partially explained 

by differences in the maturity of these technologies during the study period. From 2005-2015, a 

time period where the majority of state RPS goals began taking effect, the annual capital costs 

associated with wind power were relatively constant while annual capital costs for utility-scale 

solar decreased in excess of 20% (EIA 2016, Figures A-4 and A-12). Similar decreases in the cost 

of wind turbines occurred earlier, before most RPS goals came into effect. 

 Turning to our generator-level analysis, we find no impact of RPS goals on the technical 

efficiency of solar or wind installations. Using a stochastic frontier model, we find no difference 

in efficiency measures between installations built in state-years with RPS goals and installations 

built in state-years without goals.  

We next estimated the economic efficiency of wind and solar. Using state-level insolation 

and electricity prices, along with construction and maintenance costs, we calculated the NPV of 

benefits for a 3 MW solar installation and a 30 MW wind installation with the goal of examining 

whether RPS leads to an inefficient allocation of resources via increasing renewable capacity in 

states with negative NPV. We focus primarily on solar, as we find wind to be cost competitive in 
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all 39 states with installed wind capacity in our dataset. Using current electricity prices, we find 

negative NPV for 57% of the states (16 of 28) in our dataset. This number drops to 29% (8 of 28) 

if we use electricity prices that include the social cost of carbon. Crucially, RPS goals do not 

increase solar capacity in all states. Indeed, states with greater solar resources are both more likely 

to have positive NPV and more likely to respond to RPS goals with greater solar capacity. When 

using prices that include the social cost of carbon, we find that an RPS goal increases capacity in 

11 of the 28 states in our sample. Of these 11 states, only Oregon has negative NPV for solar. 

Among states that don’t see an increase in solar in response to RPS goals, a much larger percentage 

of states (7 of 17) have negative NPV. 

Our findings support economists’ traditional view of legislative mandates like RPS: that 

they tend to be inefficient but this inefficiency is mitigated as the regulation becomes broader and 

more flexible. RPS policies, while diverse, tend to possess two important similarities that make 

them flexible. First, they allow a variety of renewable sources to meet the goal.18 Second, they 

allow for the purchase and sale of renewable energy credits (RECs) between states. Thus, states 

with a comparative advantage in renewable energy can specialize and sell any excess RECs to 

states with poor renewable resource endowments. While these characteristics are not universal (for 

example, New York’s RPS does not allow for interstate REC trading), they are common to the 

vast majority of state policies and likely reduce inefficient misallocation of resources. 

While our findings are instructive, several limitations exist in our data. Our installation-

level data (and the state-level panel which was built from it) consist of utility-owned wind and 

solar installations. This data could be expanded to other utility-owned renewable resource 

installations (biofuel, for instance), as well as renewable installations that are not utility-owned, 

                                                           
18 While many RPS laws include solar carve-outs (portions of the goal that must be met with electricity generated 

from solar), these carve-outs tend to be small relative to the total goal. 
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for a more comprehensive picture of the impact of RPS. When constructing NPV, while we have 

state-level electricity prices, our estimates of construction and maintenance costs are at the national 

level. It may be the case that these costs do not vary much by state or region, but more finely 

segmented cost data would shed further light on state-level heterogeneity in NPV from solar. While 

our findings shed light on the heterogeneous impacts of RPS, there are more questions worth 

asking regarding these increasingly popular state programs. Further research examining the impact 

of RPS on both capacity and efficiency is warranted. 
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Table 1. Average State and Generator-level Characteristics 

Variable Name 

(Measurement unit) 

Full Sample 

(Std. Dev.) 

Mandatory RPS 

(Std. Dev.) 

No RPS 

(Std. Dev.) 

Panel A: State-level Panel Data 
Solar Capacity 20.487 123.380 5.585 

(MW) (188.490) (507.711) (41.829) 

Wind Capacity 258.803 1,212.131 120.740 

(MW) (966.688) (2,305.033) (391.091) 

Insolation  0 0.036 -0.005 

 (1) (1.187) (0.970) 

Wind Potential  0 -0.127 0.018 

 (1) (0.932) (1.009) 

Electricity Price 77.746 115.864 72.226 

($/MWh) (30.135) (41.848) (23.369) 

Number of Obs.a 1,581 200 1,381 

Panel B: Generator-level Solar Arrays 
MWh 12,643.642 11,762.064 18,310.017 

 (27,541.648) (27,272.171) (28,674.592) 

Solar Tracking 0.302 0.292 0.370 

 (0.460) (0.455) (0.484) 

Capacity 6.645 5.983 10.900 

(MW) (14.092) (13.369) (17.535) 

Age 36.667 31.407 70.478 

(Months) (42.029) (17.616) (99.325) 

Insolation 4.712 4.683 4.896 

(KWh/m2/day) (0.730) (0.723) (0.754) 

Number of Obs. 1,025 887 138 

Panel C: Generator-level Wind Farms 
MWh 205,300.501 260,219.826 169,006.545 

 (225,197.599) (242,647.704) (205,101.399) 

Height 247.283 261.784 237.701 

(Feet) (45.688) (32.635) (50.338) 

Capacity 71.175 90.659 58.299 

(MW) (73.615) (82.811) (63.705) 

Age 82.455 46.425 106.266 

(Months) (72.393) (25.673) (82.742) 

Very Low Wind 0.070 0.081 0.063 

 (0.255) (0.273) (0.243) 

Low Wind 0.165 0.255 0.106 

 (0.371) (0.436) (0.308) 

Medium Wind 0.617 0.548 0.662 

 (0.486) (0.498) (0.473) 

High Wind 0.148 0.116 0.170 

 (0.355) (0.320) (0.375) 

Number of Obs. 1,430 569 861 
a This describes the number of observations for all variables except Insolation, for which data 

from Alaska is not available.  
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Table 2. State-level Estimates of the Impact of Mandatory RPS Goals on Renewable 

Capacitya 

Variable Name Estimated Coefficients (Std. Errors) 

 (1) (2) (3) 

Panel A: Installed Solar Capacity (MW) 

Mandatory RPS Goal 50.787** 47.176* 3.485 

 (24.550) (24.101) (12.582) 

Mandatory*Insolation --- 121.409** --- 

 --- (52.800) --- 

Mandatory*Wind  --- -53.729** --- 

Potential --- (22.559) --- 

Mandatory*6-years  --- --- 260.944* 

post --- --- (144.164) 

Observations 1,581 1,550 1,581 

R-squared 0.069 0.134 0.121 

Number of States 51 50 51 

Panel B: Installed Wind Capacity (MW) 

Mandatory RPS Goal 638.984 761.971*** 595.397 

 (406.331) (204.788) (368.173) 

Mandatory*Insolation --- 204.181  

 --- (184.291)  

Mandatory*Wind  --- 1,808.937***  

Potential --- (268.247)  

Mandatory*6-years  --- --- 240.457 

post --- --- (447.781) 

Observations 1,581 1,550 1,581 

R-squared 0.267 0.676 0.269 

Number of States 51 50 51 
aStatistical significance at the 10%, 5%, and 1% level are represented by *, **, and ***, 

respectively.  Although not reported, each model presented also includes a full set of state and 

year fixed effects and controls for state electricity prices as indicated in equation (2). 
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Table 3. Stochastic Frontier Estimates for Renewable Energy Efficiencya 

Variable Name Estimated Coefficients (Std. Errors) 

 (1) 

OLS 

(2) 

Half Normal 

(3) 

Exponential 

Panel A: Solar Frontier Results 

Solar Tracking 0.118*** 0.112*** 0.118*** 

 (0.031) (0.019) (0.015) 

Insolation 0.071 0.103*** 0.096*** 

 (0.057) (0.030) (0.028) 

Age -0.002*** -0.002*** -0.002*** 

 (0.0003) (0.0002) (0.0001) 

Ln(Capacity) 1.026*** 1.007*** 1.024*** 

 (0.012) (0.011) (0.007) 

σu --- 0.532 0.207 

σv --- 0.138 0.126 

Skewness -8.3*** --- --- 

Observations 1,025 1,025 1,025 

R-squared 0.879 --- --- 

Average Technical Efficiency --- 75.0% 84.6% 

Average Annual Deterioration -2.7% -2.1% -2.2% 

RPS Goal Effects Generation --- No (p = 0.984) No (p = 0.716) 

RPS Goal Effects σu? --- No (p = 0.348) No (p = 0.768) 

Panel B: Wind Frontier Results 

Height 0.002*** 0.001*** 0.001*** 

 (0.0004) (0.0002) (0.0002) 

Medium Wind -0.073 -0.046* -0.040** 

 (0.048) (0.024) (0.019) 

Low Wind -0.027 -0.013 0.004 

 (0.049) (0.026) (0.021) 

Very Low Wind -0.171*** -0.104*** -0.074*** 

 (0.049) (0.032) (0.028) 

Age -0.001*** -0.001*** -0.001*** 

 (0.0002) (0.0001) (0.0001) 

Ln(Capacity) 1.051*** 1.013*** 0.996*** 

 (0.016) (0.006) (0.004) 

σu --- 0.478 0.231 

σv --- 0.086 0.100 

Skewness -7.7*** --- --- 

Observations 1,430 1,430 1,430 

R-squared 0.960 --- --- 

Average Technical Efficiency --- 75.2% 82.3% 

Average Annual Deterioration -0.8% -1.0% -0.8% 

RPS Goal Effects Generation --- No (p = 0.414) No (p = 0.564 ) 

RPS Goal Effects σu? --- No (p = 0.615) No (p = 0.922) 
aStatistical significance at the 10%, 5%, and 1% level are represented by *, **, and ***, respectively.  Although 

not reported, each model presented also includes a full set of state fixed effects as indicated in equation (3). 
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Table 4. Economic Viability of a 3 MW Solar Array with Current Electricity Prices 

Panel A: Present Value 

Calculations under Current and 

NEMS Forecasted Construction 

Costsa 

Panel B: Scatter Diagram of Economic Viability by State 

Price and Insolation Quartilesb 

 

State 

(Capacity 

Share) 

(1) 

PV 

Curr.  

($Mill.) 

(2) 

PV 

NEMS  

($Mill) 

                                                  Insolation 

  Current 

Electricity 

   Price      Quartile1    Quartile2      Quartile3     Quartile4 

WA  (0.2%) 5.42 4.40 Quartile1        WA†     

WI    (0.2%) 5.63 4.61            OR†   

TN   (0.3%) 5.75 4.73     TX† 

OH   (1.5%) 5.84 4.82           IN   

IN     (1.8%) 6.44 5.43          NC†  

IL     (0.3%) 6.52 5.50        TN  

PA    (3.0%) 6.62 5.60            IL†    

OR   (1.0%) 6.64 5.62 Quartile2    MN†   

MN  (0.2%) 6.76 5.74              SC  

TX   (1.2%) 7.13 6.11             NM 

SC    (0.2%) 7.33 6.31              NV† 

GA   (1.3%) 7.36 6.34          OH†    

NC (12.8%) 7.36 6.35            GA  

CO   (2.5%) 7.84 6.82             CO†      

FL    (1.3%) 7.85 6.83 Quartile3              AZ† 

DE   (0.8%) 8.40 7.38       PA†   

MD  (2.5%) 8.93 7.91    WI†    

NJ  (15.6%) 9.31 8.29                 FL 

NM  (4.3%) 9.61 8.59      DE†  

RI     (0.5%) 9.73 8.71                MD†  

NY   (1.2%) 10.11 9.09             NJ†   

NV   (1.5%) 10.33 9.31 Quartile4 VT    

AZ   (6.4%) 10.54 9.53           CA† 

MA  (9.7%) 11.03 10.01      MA†    

VT   (0.7%) 12.12 11.10           RI†    

CT    (0.2%) 12.68 11.67           NY†   

CA (28.1%) 14.29 13.27        CT†    

HI     (1.0%) 26.53 25.51         HI† 
aShaded cells indicate states with 

positive NPV.  Average current 

costs for a 3 MW solar array are 

$10.75 million, and NEMS 

forecasted construction costs are 

$7.50 million.  

b Darker shading indicates increased NPV.  Specifically, 

black shading indicates positive NPV of solar installations 

under current construction costs, dark grey indicates positive 

NPV of solar using NEMS forecasted construction costs, and 

light grey states are those where solar has negative NPV.  

States with mandatory RPS goals are indicated using †. 
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Table 5. Economic Viability of a 3 MW Solar Array with Social Cost of Carbon Electricity 

Prices 

Panel A: Present Value 

Calculations under Current and 

NEMS Forecasted Construction 

Costsa 

Panel B: Scatter Diagram of Economic Viability by State 

Price and Insolation Quartilesb 

 

State 

(Capacity 

Share) 

(1) 

PV 

Curr.  

($Mill.) 

(2) 

PV 

NEMS  

($Mill) 

 Insolation 

  

Quartile2 Quartile3 Quartile4 

SCC  

Electricity 

Price Quartile1 

WA  (0.2%) 5.62 4.60 Quartile1        WA†     

OR   (1.0%) 7.05 6.04            OR†   

WI    (0.2%) 7.15 6.13              SC  

TN   (0.3%) 7.16 6.14            IL†        

OH   (1.5%) 7.86 6.84          NC†  

IL     (0.3%) 7.96 6.94          TX† 

PA    (3.0%) 8.05 7.03              NV† 

MN  (0.2%) 8.48 7.46 Quartile2       TN  

SC    (0.2%) 8.55 7.54     MN†   

GA   (1.3%) 9.03 8.01            GA  

NC (12.8%) 9.11 8.09               AZ† 

TX   (1.2%) 9.12 8.10       PA†   

IN     (1.8%) 9.28 8.26           IN   

FL    (1.3%) 9.58 8.57                 FL 

NJ  (15.6%) 10.03 9.01 Quartile3         OH†        

DE   (0.8%) 10.35 9.33              NM         

CO   (2.5%) 10.56 9.54    WI†    

MD  (2.5%) 10.75 9.73             CO†  

NY   (1.2%) 10.84 9.83            DE†  

RI     (0.5%) 10.93 9.91                MD†  

VT   (0.7%) 12.13 11.11  VT    

NV   (1.5%) 12.38 11.36 Quartile4            NJ†   

MA  (9.7%) 12.39 11.37           CA† 

AZ   (6.4%) 12.84 11.83      MA†    

NM  (4.3%) 13.27 12.25           RI†    

CT    (0.2%) 13.50 12.49              NY†             

CA (28.1%) 15.42 14.40        CT†    

HI     (1.0%) 28.97 27.95                     HI† 
aShaded cells indicate states with 

positive NPV.  Average current 

costs for a 3 MW solar array are 

$10.75 million, and NEMS 

forecasted construction costs are 

$7.50 million.  

b Darker shading indicates increased NPV.  Specifically, 

black shading indicates positive NPV of solar installations 

under current construction costs, dark grey indicates positive 

NPV of solar using NEMS forecasted construction costs, and 

light grey states are those where solar has negative NPV.  

States with mandatory RPS goals are indicated using †. 
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Table 6: Comparison of Economic Viability and RPS Effect by State  

Panel A: Using Current Electricity Prices 

 Positive NPV Negative NPV 

RPS Increases Capacity HI†; CA†; AZ†;  

NV†; NM 

CO†; NC†; OR†;  

FL; GA; SC; 

   

RPS Does Not Increase 

Capacity 

MD†; NJ†; NY†; RI†;  

CT†; MA†; VT 

TX†; DE†; WA†; PA†; MN†;  

IL†; IN; OH†; WI†; WA† 

   

Panel B: Using Social Cost of Carbon Electricity Prices 

 Positive NPV Negative NPV 

RPS Increases Capacity HI†; CA†; AZ†; SC; NV†; 

NM; CO†; NC†; FL; GA; 

OR†;  

 

   

RPS Does Not Increase 

Capacity 

MD†; NJ†; NY†; RI†; TX†; 

DE†; CT†; MA†; VT; IN 

WA†; PA†; MN†;  

IL†; OH†; WI†; WA† 

† indicates states with mandatory RPS goal in place. Bolded states have positive net benefits 

using both NEMS future construction costs and EIA current construction costs. Unbolded states 

have positive net benefits using NEMS future construction costs but not using EIA current 

construction costs. 
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Figure 1. Solar Capacity Event Study 
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Figure 2. Mandatory Renewable Goals Event Study 
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Figure 3. Wind Capacity Event Study 
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Figure 4. Solar Technical Efficiency Distributions 
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Figure 5.  Wind Technical Efficiency Distributions 
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Appendix 

Table A1. Economic Viability of a 30 MW Wind Farm with Current Electricity Prices 

Panel A: Present Value 

Calculations under Current and 

NEMS Forecasted Construction 

Costsa 

Panel B: Scatter Diagram of Economic Viability by State 

Price Quartiles and Wind Quality Classb 

 

State 

(Capacity 

Share) 

(1) 

PV 

Curr.  

($Mill) 

(2) 

PV 

NEMS  

($Mill) 

 Wind Quality Class 

Price Very Low Low Medium High 

NV   (0.1%) 83.30 58.94 Quartile1  WA†   

TN   (0.1%) 85.56 61.21    WV  

WA  (2.3%) 86.57 62.21    WY  

UT   (0.4%) 87.24 62.88    ID  

AZ   (0.5%) 87.65 63.29    IA†  

IN     (1.2%) 91.95 67.59    OK  

WV  (0.5%) 106.33 81.97    UT  

OR   (4.2%) 107.16 82.80    ND  

MO  (0.8%) 110.17 85.81    OR†  

ID     (4.4%) 111.20 86.84    MT†  

OH   (0.8%) 112.87 88.51 Quartile2   NE  

IL     (3.5%) 118.47 94.12    TX†  

PA    (3.4%) 122.69 98.33   SD   

RI     (0.3%) 122.83 98.47    IN  

WI    (0.4%) 130.76 106.40    MO†  

WY  (2.3%) 131.79 107.43    TN  

DE   (0.1%) 133.54 109.18    IL†  

NM  (1.2%) 135.79 111.43    MN†  

ND   (2.7%) 136.25 111.89    NM  

MT   (1.4%) 139.56 115.20   NV†   

IA     (8.2%) 141.22 116.86 Quartile3  OH†   

OK   (3.0%) 142.02 117.66    CO†  

TX (12.8%) 145.21 120.85  AZ†    

CO   (1.8%) 149.24 124.88    KS  

MI    (2.3%) 151.88 127.52    PA†  

MD  (0.4%) 155.03 130.68    WI†  

MN(15.4%) 166.30 141.94   MI†   

SD    (0.8%) 166.74 142.38    DE†  

ME   (1.2%) 167.76 143.40    MD†  

NJ    (0.3%) 168.02 143.66    ME†  

NE   (1.2%) 170.68 146.33 Quartile4   NJ†  

KS    (2.5%) 172.72 148.36    VT  

NY   (2.5%) 181.16 156.81     CA† 

Continued on next page 
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Table A1. Contd. 

Panel A: Present Value 

Calculations under Current and 

NEMS Forecasted Construction 

Costsa 

Panel B: Scatter Diagram of Economic Viability by State 

Price Quartiles and Wind Quality Classb 

 

State 

(Capacity 

Share) 

(1) 

PV 

Curr.  

($Mill) 

(2) 

PV 

NEMS  

($Mill) 

 Wind Quality Class 

Price Very Low Low Medium High 

VT  (0.5%) 183.55 159.19 Quartile 4 NH†    

NH  (0.4%) 188.13 163.77   MA†   

MA (1.5%) 198.89 174.54     RI† 

AK  (0.3%) 209.56 185.21    NY†  

CA(12.3%) 214.20 189.84  AK    

HI   (1.0%) 670.60 646.24     HI† 
aShaded cells indicate states 

with positive NPV.  Average 

current costs for a 30 MW wind 

farm are $56.17 million, and 

NEMS forecasted construction 

costs are $48.73 million.  

b Darker shading indicates increased NPV.  Specifically, black 

shading indicates positive NPV of wind installations under 

current construction costs, dark grey indicates positive NPV of 

wind using NEMS forecasted construction costs, and light 

grey states are those where wind has negative NPV.  States 

with mandatory RPS goals are indicated using †. 
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