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Abstract

This note surveys some behavioral models of preference relations applicable for analysis of

decisions in the face of catastrophic risk. Catastrophic risk is characterized, and the implications

of various representations explored in simple, illustrative examples. An argument is presented

for the more general applicability of “variational preferences” for the analysis of behavior and

decision making in the face of catastrophic risk.

1 Introduction

Catastrophic events, such as major hurricanes and earthquakes, tornados, floods and wild fires,

have, over the past decade, become that focus of a growing body of economic literature.1 These

high (negative) impact, (very) low probability, events (“tail events,” in Nordhaus, 2012) appear to

be imposing growing costs on society, raising policy issues that call for economic analysis. Such

analysis must rest on an understanding of the human behavioral response to such events and the

decisions taken prior to, and in anticipation of, their possible occurrence, in order to avert them

and/or mitigate their impact. The need for such analysis is given some urgency by the perception

that global climate change has rendered such events increasingly likely and volatile, and thus they

have the potential to impose unprecedented and unpredictable damage when they occur. Indeed,

at the global level, climate change itself may evolve into a massive catastrophe, threatening the

ability of the earth to support modern civilization and standards of living, or even life itself.2

1.1 The Problem

The economic analysis of such potential catastrophes faces several analytic challenges. Most fun-

damental is the true uncertainty surrounding both the likelihood, the potential magnitudes, and

the timing of these rare events. While there is limited frequency data for some such events (e.g.

100-year floods, EF-5 tornadoes, Cat-5 Hurricanes), consequences of individual occurrences are of-

ten unprecedented (Hurricanes Katrina, Sandy), and others without precedent in recorded history

(catastrophic asteroid hit, catastrophic climate change). Thus the distribution, the likelihood, of

such events is truly unknown, and their occurrence may be arbitrarily far in the future, or ‘the day

∗Department of Economics, East Carolina University
†Department of Economics, East Carolina University
1This work is both reflected in, and stimulated by the 30 October 2006 Stern review on the economics of climate

change. See references and discussion in, for example, Nordhaus (2007) and Weitzman (2007, 2009a). Also see

Parson’s (2007) review of Posner’s influential book.
2Other massive catastrophes have also begun to receive some attention, e.g. the impact of a sufficiently large

asteroid, capable of eliminating much, or most, life on earth. See Chichilnisky, Eisenberger (2010).
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after tomorrow’. This fundamental uncertainty compounds the better understood risks associated

with any of the potential scenarios that might unfold in the face of these events, including scenarios

in their absence.

As such events may only ‘occur’ well into the future, economic analysis should consider the

interaction between uncertainty and the temporal dimension. Uncertainties regarding capabilities,

technologies and resources, constraints and preferences increase as the horizon lengthens. And the

kinds of decisions to be made, the available choices, will change over time, both exogenously and

driven by the anticipation of the catastrophic events of interest.

Finally, behind any economic analysis must stand a model of human behavior, a model of the ob-

jectives, preferences, and beliefs of those making decisions either in anticipation or under the impact

of the catastrophic event, or that might influence its likelihood and/or impact. In most analysis this

involves using an “expected utility” representation of suitably monotonic (non-satiated) preferences

based on a clear understanding/knowledge of both the outcomes and consequences of decisions and

their probabilities/likelihoods. This models decision making in the face of well understood risks.

While assuming such knowledge is a reasonable approximation in much policy analysis, it is ques-

tionable for extremely rare, unprecedented, and/or distant future events, particularly those of a

catastrophic nature. Further, the standard model uses exponential discounting of (expected) future

returns in evaluating the consequences of decisions, which effectively eliminates consideration of

any events/consequences sufficiently far removed in time.3

The problem of modeling decisions, and their driving preferences, in the face of catastrophic

risks, integrates all the other, logically separate, challenges. For any model of decision making

must incorporate not only tastes and preferences with regard to outcomes, their uncertainties, and

their timing, but also knowledge about constraints, possible actions, and consequences, and beliefs

about the relevant likelihoods of both major and minor events and changes in the constraints,

technologies, threats and opportunities that may be faced. Here we explore only a part of that

challenge, considering some analytic models of preference representation that we believe could be

useful in analyzing human behavioral response to catastrophic events. We focus only on atemporal

decision models, where ‘values’ are appropriately discounted, and the central question is: How do

agents deal with fundamental, poorly defined uncertainties/risks?

1.2 Some Modeling Issues

There are a number of issues that should be kept in mind when developing an adequate model of

decision making in the face of catastrophic risk. We highlight these issues not because we will or

can deal with them adequately in this paper, but because they are important to interpreting our

analysis, and will have to be dealt with in developing a fully adequate model of decisions in the

face of such risks.

First, we consider ‘catastrophic’ risk to be more than the low-probability likelihood of extremely

high losses. To be truly ‘catastrophic’ the extremely high losses/damage must be wide spread, im-

pacting large numbers, and potentially causing a fundamental change in the socioeconomic system,

in the ‘way the world works’. In such a (rare) situation, not only agent expectations, but funda-

mental understandings about technologies, constraints, and how actions map into consequences, as

well as the preferences of the agent, are apt to be different from the ‘normal world’. And how all

these will change is highly uncertain, indeed largely unknown and not considered, as agents make

decisions ex ante with only the vaguest understanding of the circumstances with which they must

deal in that rare/ unprecedented event. Thus catastrophic risk relates to a situation of fundamental

3for example, a 3% discount reduces $1 million to $493.10 in a quarter century. A 1% discount requires 757 years

to achieve the same degree of devaluation, while a 5% discount requires only 14.85 years.
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uncertainty, where the likelihood of outcomes and consequences is truly unknown, and the decision

makers’ beliefs and ‘tastes’ for this fundamental uncertainty become critical components of any

decision model.

Another issue that must be faced is the purpose of the modeling exercise, the objective of

the analysis. A model of decisions in the face of catastrophic risk might be either ‘descriptive’

or ‘prescriptive’, i.e. either capture actual human decisions and behavior, including behavioral

deviations from ‘economic rationality’, or provide a rational framework for making ‘best’ decisions

or policies (social rationality). This is closely related to the ‘subject’ of the analysis: Who’s

preferences are being modeled? If we are studying merely extreme risks, with some observed, if

low, frequency (measurable probability) of occurrences, then expected utility with appropriate risk

and ambiguity preferences, and appropriate discounting, provides a useful decision tool; it reflects a

‘social rationality’, even if it does not capture the behavior of (some/many) individuals. For public

policy analysis and decisions, we require intertemporally consistent, equitable, and probabilistically

sophisticated, expectationally ‘objective’ benefit-cost analysis. Such analysis should incorporate

fundamental uncertainty about what is know and what will be known about the ‘risk’ and its

consequences, as well as the fundamental uncertainty about future ‘technology’ and consequent

‘rates of return’, even if the appropriate pure discount rate is zero. We believe this is too much to

assume for the analysis of individual behavior. Indeed, even for analysis of individual behavior in the

face of moderate probability (‘frequent’ events), the model must consider individual time preference

and ‘behavioral’ regularities, often violating standard axioms, such as: ignoring, or significantly

overestimating (‘fear factor’), very ‘small’ probabilities; underestimating, or accepting as ‘certain’,

probabilities near one; hyperbolic or other non-exponential (time inconsistent) discounting; etc.

If a catastrophic event is of extremely small probability (rare event), the properties of the lower

tail of distribution become significant for evaluation of ‘measurable’ events, as do (possibly non-

measurable) ‘tail events’ for non-integral evaluation functionals. The standard analysis alluded

to above is adequate for thin-tailed distributions (those dominated by Gaussian) over measur-

able events. However, uncertainty/ambiguity about even thin-tailed distributions can render the

decision-relevant distribution ‘heavy-tailed’ (Weitzman, 2009a,b). Such distributions (power law;

stable with   2; regular variation at −∞) lack finite moments of order above the first, and some-
times even the first moment, requiring direct evaluation of loss risk in tail, related to tail index of

regular variation. And Chichilnisky (2000) has introduced catastrophes as ‘non-measurable’ events,

requiring a non-integral evaluation functional, e.g. purely finitely additive functional, of ‘events’.

Finally, any adequate model needs to be able to capture various agent (decision maker) re-

sponses to ‘catastrophic risks’. This can range from ignoring to seriously exaggerating the dan-

gers they pose, particularly when of very low, or unknown, (subjective) probability. ‘Rational’

behavior involves making choices (‘acts’) maximizing some value (minimizing some loss), given

knowledge/beliefs/‘fears’ about likely consequences of those choices, including ‘doing nothing’ or

‘waiting’. The valuations driving ‘optimizing’ choices are typically modeled in “preference repre-

sentations” (utility functions) on a space of ‘payoff relevant’ outcomes, with ‘beliefs’ modeled by

bounded, real-valued set functions (probabilities, capacities) on a space of payoff relevant ‘events’.

In this exercise, we believe that systematic deviations from modelled ‘rational behavior’ are best

understood as a problem with the model – improper modelling of ‘preferences’ or ‘beliefs’ – re-

quiring further development or new axiomatizations. If marginal utility is unbounded below ( ↓),
the basic expected utility model suffers “tyranny of catastrophic risks” – outcomes with ‘vanish-

ingly small’ probability, but an arbitrarily ‘bad’ result, dominate choice. The ‘certainty equivalent’

becomes the arbitrarily bad outcome implying an unbounded ‘willingness to pay to avoid’ (Buch-

holz, Schymura, 2010). On the other hand, if marginal utility is bounded below, the basic expected

utility model eventually ignores risks, however catastrophic, of arbitrarily small probability (“ black
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swans”). This renders expected (subjective) utility analysis somewhat impotent in the face of truly

catastrophic risks of the sort described above.

1.3 What We Do

This note is a first step toward our exploration of these issues. Here we focus on the impact of

perceptions of likelihood and the decision maker’s ‘taste for uncertainty’. We present an extremely

simple (2 or 3-outcome) example of a world with catastrophic risk, incorporating only the minimal

elements required for such an example, and develop the implications of six different models of pref-

erences in the face of such risk. This model world allows us to explore some of the consequences of

the axioms differentiating the various decision models, as well as exploring those models’ implica-

tions for the behavior of agents when facing ‘catastrophic’ risks. We believe that this model world

may provide basis for future ‘experimental’ work.

To capture agents’ beliefs and ‘taste’ for fundamental uncertainty, we will use models with

‘ambiguity’, models initially developed to resolve the behavioral “paradoxes” of the (subjective)

expected utility model, including the Ellsberg and Allais/Dreze paradoxes, and the kind of be-

havioral anomalies addressed in prospect theory. These anomalies and paradoxes cast doubt on

agents’ use of mathematically consistent subjective probabilities in making decisions, particularly

when those probabilities are objectively unknown and/or near zero or one. We expect catastrophic

risks to be particularly affected by these behavioral distortions, given their extreme rarity and fre-

quently unprecedented nature when they do occur. Thus models in which the decision maker finds

the likelihood/probabilities of events ‘ambiguous’ would seem particularly appropriate.

Below we present 6 such models, indicating their particular assumptions (axioms), and illustra-

tion their implications in our simple analytic example. The models we discuss are: (i) Choquet Ex-

pected Utility; (ii) Rank Dependent Expected Utility; (iii) Maximin Expected Utility; (iv) ‘Smooth’

Ambiguity Aversion (Second-Order Expected Utility); (v) Chichilnisky Model of “‘Sensitivity’ to

‘Rare’ Events”; and (vi) Variational Preferences. The final model we believe has the potential to

become an ‘umbrella’ model, encompassing all of the others, depending on the specific situation

modelled. The models share a common notation, summarized in the Appendix, where the full set

of axioms used to derive the various representations is also presented.

2 Minimal Model of Catastrophic Risk

The idea of a ‘catastrophe’, rather than just an extremely bad outcome, must go beyond its rarity

and unpredictability. It encompasses not only deep and wide spread (affecting a significant portion

of the population) losses, but an aspect of fundamental change, an irreversibility of the resulting

situation. Available resources and prior technologies can become sharply limited, standard produc-

tion possibilities and means of interaction infeasible, requiring completely different ways of dealing

with the new post-catastrophe world. And the resulting radical change in the ‘choice set’ suggests

that preferences, including the taste for risk and uncertainty, are also apt to fundamentally change.

While modeling in any detail such an unprecedented situation is perhaps an impossible task, it

behoves us to incorporate whatever we can of the limited qualitative characteristics of such a world

in our simple, reduced form representations. For any decisions in the face of the possibility, the

risk, of such a catastrophic state must consider their consequences in that, as well as other, possible

states.

With this in mind, we suggest that the following comprise a minimal set of essential components

of any “Catastrophic Risk” model:
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• A set of ‘states’ in which consumption/production opportunities, and hence welfare, are

severely limited;

— Very low probability (‘rare’) and very low utility (high loss);

— Severe restriction of production possibilities, limiting ability to recover or raise consump-

tion;

— Uncertain timing and incidence;

• Decisions/‘Acts’, each with impact/consequences across all ‘states’;

— Consequences of ex-ante decisions/acts are dramatically different in catastrophes than

in non-catastrophic states;

• Shift in the ‘evaluation paradigm’ in the event of catastrophe: “state-dependent utility”4

— ex-ante uncertainty/‘ambiguity’ with regard to likelihood of ‘catastrophic’ states;

— ex-post different ordering over consequences, and attitude toward risk, in ‘normal’ and

‘catastrophic’ states.

In this note we will explore, for illustrative purposes, some of these aspects in an extremely

simple 2- or 3-state example, aimed at capturing the implications of different approaches to modeling

decision maker behavior in the face of uncertainty about the likelihood of the ‘catastrophe’. Thus

it attempts to capture, if only in highly reduced form, the differences in consequences and utilities

between ‘normal’ and ‘catastrophic’ states. The illustrative examples, and the decision models

discussed, will use a common notation within the Anscombe-Aumann framework.

2.1 Illustrative Examples

Two examples are used to illustrate the implications of differing formulations/models of decision

making in the face of catastrophic risk. They allow us to clearly show how differing assumptions

about agent behavior impact the evaluation of a decision/action to be taken. The first is in a

fully reduced form, where preferences/utility only reflect the risk attitude toward the occurrence

of a catastrophic state. Hence it illustrates how differing assumptions about agents’ perceptions

of the uncertainty affect their evaluations, the ‘certainty equivalent’ of the situation faced. The

second allows (limited) exploration of how differing attitudes towards uncertainty, and differing risk

attitudes in different states, might affect decisions.

2.1.1 2-outcome Example

In the simplest example, outcomes, (), give the agent’s evaluation (expected utility) of the con-

sequences of optimal decisions in state  and her ‘utility’ function captures her attitude toward

‘state risk’. Let (0) = 05; (1) = 12 – the ‘catastrophic’ and ‘normal’ state outcomes, with

probabilities (0005 0995) respectively, and () = 1+ 1−
1− reflects her constant relative risk aver-

sion, with  = 2 Then the expected value of this situation is () = 11943 and the standard

(expected utility) model gives () = 0907 with a certainty equivalent of 10776 This provides

a benchmark for comparison with other approaches to evaluating ‘state risk’ uncertainty. This

example is used to illustrate differences in evaluations in the first five representations.

4While it is typically not possible to identify unique state probabilities and utilities in the derivable additively

separable representation, we believe it useful to choose a specific representation that captures the intuitively plausible

impact of the state on ex-post (Bernoulli) utilities.
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2.1.2 3-outcome Example

This example is only used with respect to the sixth representation. It allows the introduction of

decisions (Savage ‘acts’) in the face of uncertainty about the true state. Let the underlying states

be  = {0 1} and let there be potentially different outcomes in each of the states  = {05 3 9}
0 = {05 3} 1 = {3 9} Here the probabilities of outcomes depend on the decisions/acts of the
agents, and those will depend on the beliefs of the agent about the probability of the ‘bad’ state,

 = 0. In contrast to the 2-outcome example, there is no given probability for outcomes, and hence

expected value is not well defined. Let  be the probability of the underlying ‘bad’ state. Then,

for example, letting  := (0 1) be the distribution over outcomes in the two states induced by

the act  ∈ F  the ex-ante probability of  = 3 is  · 0(3) + (1− ) · 1(3)
To capture potential changes in preferences in the ‘catastrophe’ state (bad state, with worst

outcome), we consider three Bernoulli utility functions, reflecting two different degrees of ‘risk

aversion’:

0() = 115416 +
1−

1− 
or 0() := () = 05 +

1−

1− 
  = 3; 1 () = ln () 

Note that the first 0 and 1 yield the same ex-post utility in the outcome ( = 3) that is com-

mon to both the catastrophe ( = 0), where it is ‘best’, and the normal state ( = 1), where it is

worst. However, (3)  1(3) allowing illustration of the impact of distinctly lower welfare in the

catastrophic state. Let () be the utility function in state  Then the (subjective) expected

utility (SEU) model yields evaluation of act  , () =
P

  · 0()0() + (1− ) · 1()1()
with 0 = 1 =  if utility is state independent.

3 Alternative Models

We look at six different models that capture uncertainty aversion, models which we feel show

some promise for evaluation of situations with catastrophic risks. All but the fifth, Chichilnisky’s

“sensitivity to rare events,” are built on the Anscombe-Aumann (1963) foundation, implicit in the

axioms presented in the Appendix. And all are inspired by the failure of the Savage subjective utility

framework to adequately capture behavior in the face of fundamental uncertainty, ambiguity with

respect to underlying likelihoods of events. The Ellsberg Paradox, in particular, has provided the

challenge to which most of these models respond. And indeed, it is the true uncertainty, ignorance

about likelihoods and consequences of truly catastrophic events that makes these models of decision

making potentially important to their study.

3.1 ‘Behavioral Probabilities’ and ‘Ambiguity’

3.1.1 Choquet Expected Utility

We begin with the Schmeidler (1989) model of general non-additive valuation of risks using Cho-

quet expected utility (CEU). This captures the idea that an agent’s beliefs are not well specified,

hence cannot be represented by a well specified probability. This representation derives from pref-

erences satisfying axioms 1, 2a, 3, 4, and 6 in the Appendix. The representation allows uncertainty

about likelihoods, and can reflect aversion to the ambiguity that uncertainty creates. Instead of a

probability measure, the state space (Σ) is endowed with capacity,  : Σ −→ [0 1] ;  (∅) = 0

 () = 1; ∀ ∈ Σ  ⊂  =⇒  () ≤  ()  Each potential act,  , is then evaluated using a
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Choquet integral,

 () =

Z
 ≡

Z 0

−∞
[ ( ≥ )− 1] +

Z ∞

0

 ( ≥ )  (1)

 %  ⇐⇒  () ≥  ()

where, in general,  ( + ) 6=  () +  () for differing acts   A distaste for, an aversion to,

ambiguity is captured in the convexity (‘supermodularity’) of the capacity :

∀ ∈ Σ  ( ∪) +  ( ∩) ≥  () +  () 

An agent with such preferences uses a linear functional,  () ≡  ( ◦ ) =
R
 ()  to evaluate

each act/decision that must be taken in the uncertain world. That is, ( % ) ⇐⇒  () ≥  ()

and an optimal act is any ∗ ∈ argmax () = max


 ( ◦ ) 
This formulation can be used to capture other attitudes toward uncertainty/ambiguity, including

pure SEU in situations without ambiguity. Indeed, if acts   are co-monotonic. i.e. ∃, a
probability vector for some permutation of states, , such that

 () =

Z


 =

Z


 =  () 

then  (·) becomes additive with respect to  and ; the comparison involves no ambiguity.

Further, it can capture behavioral distortions of known probabilities, such as those revealed in the

Allais paradox experiments and modeled in Prospect Theory.

3.1.2 Rank Dependent Expected Utility

A special case of non-additive ‘probability’ can be tractably analyzed using a second model, in-

volving known risks, called Rank Dependent Expected Utility (Quiggin, 1982). In this model, the

finite set of outcomes,  = (1 2     )  is ordered from lowest (worst) to highest (best). Let

 = (1 2     ) be the probabilities of each ‘outcome’, and  () be the cumulative distri-

bution function of x, evaluated at  The agent is assumed to have a standard Bernoulli utility

function over certain outcomes, (), but to systematically distort the probabilities that she uses

in evaluating prospects/decisions by using a probability weighting function that depends on the

value/rank of the outcome. Such a function can capture the systematic deviations found in the

experimental literature, such as overweighting or underweighting extreme (i.e. near zero or one)

probabilities.

A representation of the preferences of such an agent is given by  : R2 −→ R the RDEU
function:

 ( ) =

X
=1

()() (2)

where  : R −→ [0 1]  = 1 2     ; () := [ ()] − [ (−1)] weights outcome  as a
function of the cumulative distribution of  using a probability weighting function,  : [0 1] −→
[0 1] (0) = 0 0 ≥ 0 that captures the agent’s behavioral understanding of the probabilities. This
allows non-linear (as revealed in behavioral experiments) probabilities, while preserving first-order

stochastic dominance. Quiggin’s felicitous example is:

 ( ) =
 ³

  + (1−  )1−
´1 ;

 ∈ (0 1) 
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which ‘overweights’ extreme events [()    near 1 or  ], generalizing Tversky, Kahneman

(1992). Thus it captures empirical behavioral regularity at both the individual and group lev-

els (experimental evidence; Gonzales, Wu, 1999).5 Note that a concave ( ) implies classic risk

aversion.

The distortion of probabilities that this implies is easy to see graphically. It is clear in the overall

shape of Figure 1, where the (dashed) diagonal shows the non-distorted cumulative probabilities.

Different levels of distortion are indicated by color:  = 01 – red;  = 02 – black;  = 03

– green;  = 05 – blue. In Figure 2, we magnify the graph in the vicinity of zero, near the

probability of the worst possible outcome, showing that lower  generates a greater increase in the

exaggeration of the perceived probability of the worst event.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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q(F)

Figure 1: Perception of Outcome Distribution

0.0e+0 2.0e-5 4.0e-5 6.0e-5 8.0e-5 1.0e-4
0.00

0.02

0.04

0.06

F

q(F)

Figure 2: ‘Rare Event’ Probability Perception

5Overweighting at the bottom may capture ‘fear’ of the worst outcome, as overweighting at the top may capture

‘hope’ for the best outcome.
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Analytic Example. The impact of preferences displaying rank dependent expected utility can

be seen in the 2-outcome example. Such an agent dramatically overestimates the likelihood of the

‘catastrophic’ outcome, , leading to a dramatically diminished valuation (certainty equivalent) of

the prospect of facing that catastrophe. Letting  = 02  (0005) = 0079453  (0995) = 093456

and hence () = 11254 and () = 0777 with a -certainty equivalent of 4489 This

is illustrated in Figure 3, where ‘circles’ indicate expected utility and ‘boxes’ RDEU results. Note

the non-additivity of the Quiggin probabilities, indicating extra weight at the extremes.

1 2 3 4 5 6 7 8 9 10 11 12

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

x

U

Figure 3: Catastrophic Risk: EU(x) & RDEU(x) Certainty Equivalent

3.1.3 Maximin Expected Utility

Another promising model of preferences in the face of true uncertainty is the maxmin expected

utility representation of Gilboa and Schmeidler (1989). Rather than ‘distorting’ probabilities, this

model captures an agent’s ignorance/uncertainty about the likelihood of events in a set, Φ ⊂ ∆(Σ)
of potential/conceivable probability distributions over (Σ), with general  and Φ assumed weak∗-
compact.6 Preferences over outcomes are represented by  (·) – strictly increasing, continuous,

weakly concave – and the agent’s evaluation of an ‘act’/decision  , a real-valued, measurable,

bounded function, is given by

 () ≡ min
∈Φ

µZ


 ( ())  ()

¶
 (3)

This derives from preferences satisfying axioms 1, 2b, 3, 4, 5, and 6, where axiom 5, a ‘convex-

ity of preferences’ or ‘preference for hedging’ assumption, gives the uncertainty aversion based

on supermodularity/convexity of the capacity in CEU. Hence the optimal decision/act is, ∗ ∈
6This is the  (∆ (Σ)  0 (Σ)) topology: a net {}∈Υ converges to  iff  () −→  ()  ∀ ∈ Σ
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argmax () = max


½
min
∈Φ

¡R

 ( ())  ()

¢¾
 the maximizing act against the minimizing dis-

tribution over outcomes.

This formulation provides a cognitive interpretation of Choquet Expected Utility, when Φ =

 () = { ∈ ∆ (Σ)|  () ≥  ()  ∀ ⊂ Σ}  and ∆ (Σ) is the space of all finitely additive
probability measures on . Then probabilities can be understood as based on past experience.

However, Φ can be more general, containing  ∈  () for any capacity 

This formulation of preferences clearly separates the agent’s ‘uncertainty’, captured in Φ, and the

agent’s attitude/aversion towards that uncertainty, captured in  (·) Indeed, it displays a strong
uncertainty aversion, an unwillingness to place any order, any likelihood, over the distributions

in Φ, behaving as if the worst possible distribution there is actually true. The only limits to this

pessimism in the face of ambiguity/uncertainty are in the size of the set Φ Indeed, if Φ is a singleton,

this criterion reduces to maximizing (subjective) expected utility – there is no ambiguity. On the

other hand, if the agent is entirely ignorant of (or unwilling to contemplate) possible probability

distributions, it reduces to the Wald Maximin Criterion:

max


n
min


 ( ())
o


3.1.4 Smooth Ambiguity Aversion (Second Order Expected Utility)

This representation of preferences in the face of uncertainty/ambiguity extends the prior model

by assuming a more sophisticated handling of the possible distributions of outcomes. Rather than

assuming the worst, the decision maker places a (subjective) distribution over the set Φ allowing

her to weigh the likelihood of different distributions governing the impact of acts on (payoff relevant)

outcomes. One particularly clear model is that of Klibanoff, Marinacci, and Mukerji (KMM, 2005)

which parametrizes the agent’s uncertainty about a deeper (second-order) ‘state’,  ∈ Θ that
determines the distribution of states,  ∈ ∆ (Σ)  affecting the payoffs to acts.7 The agent’s

subjective distribution  over Θ reflects her uncertainty about the distribution, , governing

‘events’ in . The attitude toward this ‘state risk’ is then modeled through introducing another

strictly increasing function,  : R −→ R, which together with  :  −→ R captures the ‘taste for
ambiguity’ of this agent. As usual,  reflects the agent’s ‘attitude toward risk’.

Based on the assumption that both first-order and second-order preferences are mutually con-

sistent and have expected utility representations, the decision relevant preference representation

over acts,  , becomes:

 () = −1E
¡
−1

¡
E ◦ 

¢¢ ≡ −1E
¡
E ◦ 

¢
≡ −1

µZ
Θ



µ
−1

µZ


 () 

¶¶
 ()

¶
 (4)

where −1
¡R


 () 

¢
is the certainty equivalent of the gamble induced by decision 

( % ) ⇐⇒  () ≥  ()

⇔ −1E
¡
−1

¡
E ◦ 

¢¢ ≥ −1E
¡
−1

¡
E ◦ 

¢¢


7This is derived assuming ‘second order’ preferences over ‘acts’ mapping the set of all probabilities over a sufficiently

rich ‘state space’ directly into consequences, that is consistent with first-order preferences over Savage acts from ‘states’

to consequences, both satisfying the (subjective) expected utility hypothesis. KMM (2005), pp. 1856-9.
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‘Acts’ are thus ranked by the ‘certainty equivalent’ (CE) of the induced (by ) distribution of the

CEs of the ‘lotteries’ in each ‘state’.8 This formulation separates ‘ambiguity’ (beliefs) from ‘attitude

toward ambiguity’ (tastes): the distribution  over Θ |Θ|  1 captures ambiguity (beliefs); the

composite function  :=  ◦ −1 captures attitude toward ambiguity — concavity ⇐⇒ ‘ambiguity

aversion’. As a firmly (subjectively) held belief,  also reflects the pessimism/optimism of the agent,

with a ‘pessimistic’ agent more heavily weighting the state(s), , with the greatest probability of

disaster. Here, ambiguity aversion is an aversion to ‘mean preserving spreads’ in the distribution of

E◦ induced by  and  If, however, the composite function  is linear, then we have ‘ambiguity
neutrality’, implying the reducibility of the compound distribution, rendering the representation

observationally equivalent to expected utility with the subjective prior 

Analytic Example. The impact of these preferences can again be nicely illustrated in our 2-

outcome example of catastrophic risk. Suppose that the agent’s uncertainty about the state of the

world is fully captured by 2 possible distributions: in 0 the probabilities are (005 095) while in

state 1 they are (0005 0995) as above.
9 Hence in the worst case ( 0), the catastrophic state is

10 times as likely as in our base case. Let the agent’s underlying aversion to risk be reflected in the

utility function, () as above, and let () := 1 + 1−
1− = 10− 1

33
( = 4), reflecting ambiguity

aversion; () :=  ◦ −1() =
µ
1− 1

3( 1
−1)

3

¶
= 1 − 1

3
( − 1)3 is a clearly concave function. The

two ‘valuation’ functions, () over outcomes and 
¡
−1 (·)¢ over certainty equivalents of risky

prospects, are presented in Figure 4, where the utilities are normalized to be equal in the best of

all possible outcomes.10
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Figure 4:  () [blue] and () [black], equal at  = 12

8 () represents identical preferences to  () ≡ E (E ◦ ) (KMM, 2005), as  is strictly monotonic. We
find it more convenient to work with certainty equivalents in the fixed outcome space than with (subjective) utility

values.
9Note that this worst case places a lower probability (005) on the ‘catastrophe’ than does the RDEU distortion

(0795) above.
10In this normalization, if the certainty equivalent of a risk were the worst possible outcome, the ‘utility’ would be

(05) = −175  (05) = −1 a true catastrophe. The precise normalization of origin is, however, irrelevant to the
decision; only the curvature has meaning.
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The circles on () in Figure 5 indicate the expected values and expected utilities of the gambles,

and boxes give the certainty equivalents, in ‘states’ 0 and 1 respectively. The agent’s uncertainty

relates to which of these ‘worlds’ obtains, leading her to evaluate this ambiguity by ‘weighting’

these worlds with the distribution 
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Figure 5: SOEU Evaluations with RDEU Comparison

Here the evaluation function,  is given by:

 ≡ −1
ÃX




³
−1

³
 () + ()

´´
 ()

!


that is, it is the certainty equivalent of the -weighting of the -values of each -certainty equivalent

in each ‘world’,  Let the agent believe  = (4 6)  i.e. that there is a 40% chance that the truly

catastrophic world obtains. Then

 = −1 (04 ·  (55814) + 06 ·  (107623))
= −1 (0915 932 711) = 7110299

indicated by circles on () [the upper curve] and the x-axis in Figure 5. A more pessimistic view,

 = (6 4)  yields  = 642423, as indicated in the graph with diamonds. Note that both these

views are more optimistic than give by the Quiggin probability distortion in the RDEU model; see

the + on () in Figure 5.
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Indeed, this second order approach remains valid when first-order preferences are assumed to

be RDEU (hence non-additive), so that the inner integral becomes a Choquet integral. If we

look at the RDEU valuation in the 0 world, using ( ) above, we find that the decision maker’s

weights assigned to the 2 outcomes sum to only 07413 as she assesses (005) = 00702 and

(095) = 06711 Hence her rank-dependent ‘expectation’ of the outcome is 80883 and her RDEU

valuation is 054498 as illustrated in Figure 6.
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Figure 6: RDEU CEs & SOEU Evaluations

Here we also illustrate the SOEU when  = (4 6) – there’s only a 40% chance of the disastrous

world in which there is a 5% chance of a catastrophe, rather than just 0.5% – with a ‘box’ on the

‘second order’ utility [upper curve], :

 = −1 (04 ·  (22471) + 06 ·  (107623)) = 3036
With the more pessimistic view,  = (6 4),  = 26589 [lighter box]. Hence with Choquet/Quiggin

expected utility over outcomes, the agent places much greater weight on the possibility of disaster,

and a much lower evaluation of the world containing such a prospect, than does an agent with

SOEU preferences and  beliefs.

3.2 “Sensitivity to Rare Events: A Topology of Fear”

This model takes a radically different approach to providing a formal, hence analytically useful, rep-

resentation for preferences in the face of truly catastrophic risks. Rather than using the Anscombe-

Aumann framework as above, this model begins from the von Neuman-Morgenstern axioms of weak

preference, independence, monotonicity, continuity and boundedness of utility, and monotone con-

tinuity of beliefs (countably additive measure on the space/-field of events). Chichilnisky (2000,

2009, 2010a, 2010b) argues that the resulting countably additive valuation functional, the expected

utility representation, cannot, in principle, deal with catastrophic risk, as it necessarily ignores “rare

events,” the only events relevant for true catastrophe. Such a functional arises from the assump-

tion of monotone continuity of preferences on the -field of events. Continuous bounded utility and

monotone continuity imply the impact of any catastrophe, however large, becomes analytically neg-

ligible as its likelihood (Lebesgue measure of the event) diminishes to zero. Or, if marginal utility
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is unbounded, the potential catastrophic risk swamps all other considerations, however unlikely its

occurrence may be (Buchholz, Schymura (2010)). Hence, she argues, to analyze truly catastrophic

risks, we need to break free of the standard model, and develop new analytic foundations for that

analysis.

To do so, Chichilnisky introduces axioms requiring “equal treatment” of both ‘rare’ and ‘fre-

quent’ events, and dispenses with monotone continuity as contradicting sensitivity to rare events.

This requires a richer space of ‘states’ than other formulations – both unboundedness and cardi-

nality no less than the continuum – one rich enough to capture all possible consequences, however

unlikely, of any ‘act’. To develop a basic representation, the simplest such space,  = R1 is used. It
is endowed with Lebesgue measure (), hence assuming that the underlying ‘states’ are ‘equiproba-

ble’, with the likelihood/probability of an event depending on the ‘number’ of states in it. Functions

  : R −→ R are ‘acts’ generating “lotteries,”, giving the ‘utility’ payoffs (()) and (()) to

each ‘state’ . The consequences, ◦ are assumed to be a.s.() bounded functions. To insure that
the impact of both frequent (()  0) and rare ( ⊂   () = 0) events are captured, the space

of ‘acts’, F : =∞ (R) [essentially bounded functions], is endowed with the topology generated by
the esssup norm, k·k∞  felicitously named the “topology of fear” (Chichilnisky, 2009).

To generate a preference representation, Chichilnisky (2009, 809-810) applies a new axiom in

the classic decision theory framework (Arrow, 1971), “sensitivity to rare events.” This gives 3

(summary) axioms for a ranking (preference representation):

Axiom 1. The ranking  : ∞ (R)→ R is linear and k·k∞-continuous;
Axiom 2. The ranking  : ∞ (R)→ R is sensitive to rare events: the ordering of  and  can depend

on consequences in events of arbitrarily small (Lebesgue) measure;11

Axiom 3. The ranking  : ∞ (R) → R is sensitive to frequent events: the ordering of  and  is

dependent on payoffs in events of sufficiently large (Lebesgue) measure;12

Under these axioms, a preference representation for the evaluation of acts with potential extreme

consequences is shown to exist.13 The representation is a bounded linear functional on ∞ (R) 

 () = 

Z
R
 (())1()+ (1− )h ◦  2i (5)

where  ∈ (0 1] 1, 2 ∈ ∗∞ – continuous linear functionals on ∞; 1 ∈ 1(R)
R
R 1() = 1

and 2 is a purely finitely additive functional. The parameter  is an essential aspect of the

underlying preferences:

( % ) ⇐⇒ 

Z
R
 (())1()+ (1− )h ◦  2i

≥ 

Z
R
 (())1()+ (1− )h ◦  2i

 reflects the decision maker’s ‘belief’ in the reality of extremely rare events, while 2 provides her

‘evaluation’ of the consequences in such events. Both arise from a ‘sensitivity’ to rare events, with

11Formally, the negation of “insensitivity to rare events:” ∀  ∃ =  ( )  0 s.t.  ()   ()⇐⇒ ( 0) 
 (0) ∀ 0 0 satisfying  0 =  0 =  a.e. on  ⊂ R when ()  
12Formally, the negation of “insensitivity to frequent events:” ∀  ∃ =  ( ) ∈ (0 1)  s.t.  ()   ()⇐⇒

 ( 0)   (0) ∀ 0 0 satisfying  0 =  0 =  a.e. on  ⊂ R when ()  
13The proof is non-constructive, using the axiom of choice.
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2 placing a value on unmeasurable events within those of Lebesgue measure zero, and  providing

the ‘utility weight’ placed on the “normal” outcomes of the ‘lottery’  Notice that, in the absence

of ‘extreme outcomes’,  () reduces to classic expected utility. This could also occur if the agent

refuses to consider the possibility of extreme events, or is “paralyzed by fear,” hence setting  = 1

This model would seem to provide a very direct way to deal with true catastrophe, but its math-

ematical complexity, the non-constructive derivation, and general lack of explicit analytic form for

the purely finitely additive (pfa) valuation functional make it hard to see how this representation

can be applied, aside from elucidating some general principles.14 Thus Chichilnisky has proposed

a finite-state version of the representation, which however lacks the same firm mathematical foun-

dation.

3.2.1 Finite-State Version with Extreme Event

Let  ⊂ R  and F be as in the ‘ambiguity’ models above, and ∗ ∈  be a ‘rare’ catastrophic

state if its probability ∗   for some arbitrarily small   0. By analogy, we have the preference

representation,  : R −→ R,

 () =  · h i+ (1− ) ·min


 (6)

which puts extra ‘weight’ on the catastrophic outcome, min (). Here the first term is an ‘expected

utility’ based on the ‘subjective’ probability vector, , and the utility vector, (), resulting from

the act, while the second puts independent weight on the worst that can happen. Maximizing ()

trades offmaximization of expected utility against the minimization of catastrophic loss. Again,  is

a critical preference parameter, which might be derived from a constrained optimization formalizing

that trade-off:

max
∈

h i  min


 ≥  (7)

or

max
∈

min
≥0

h
h i+ 

³
min


 − 
´i
≡ max

∈
min
≥0

 ( ) 

giving  = 1
1+



This formulation satisfies analogies of Axioms 2 and 3 above, but not Axiom 1: it is not

continuous (Chichilnisky, 2010), raising a question about its necessity and uniqueness. It also must

assume (for relevance) that ∗ at which min  occurs (the ‘catastrophe’) is ‘rare’:   ∗  0

However, it provides a wide range of valuations of potentially catastrophic lotteries, from standard

EU ( = 1) to the Wald maximin criterion ( = 0)  depending on the (subjective) value of 

Finally, it is easier to apply that the rich model, while maintaining its intuition, and it appears

to be justified by the axioms supporting the final model of preferences that we explore below,

“variational preferences.”

Analytic Example. The implications of this formulation can be easily seen in our 2-state exam-

ple. There the probabilities and outcomes associated with the some act are given, so we parametrize

the preference representation by :

 ( ;) =  · h i+ (1− ) ·min




=  (0005() + 0995()) + (1− ) () 

14Some pfa functionals can be expressed as limits, as in the example Chichinilsky (2009, p. 814) gives. One

satisfactory infinite dimensional application has been made in Figuieres, Tidball (2012) where limiting outcomes are

evaluated. In the case of pure uncertainty, and it might be possible to isolate the valuation of ‘rare’ events along an

ultrafilter net, but I do not see clearly how to do that.
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Hence  ( ;) = 190708− 10  ( ; 1) = 090708 and  ( ; 0) = −10 showing the vast range
of valuations that variation of  generates. When  = 05  = −004646 and the certainty
equivalent of this lottery becomes 09556 clearly reflecting “fear” of the ‘bad’ outcome. It is

depicted in Figure 7, where boxes show the expected utility, the certainty equivalent, and its

utility. Indeed, the appropriate choice of  can replicate the evaluation of any of our preference

representations. For example,  = 092497 =⇒  = 0764, which is identical to the  (with

 = 02) evaluation reflecting just a little “fear” – see Figures 3 and 7.
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Figure 7: ‘Topology of Fear’ & RDEU(x) Certainty Equivalents

Clearly this representation can generate more extreme responses to extreme hazards than the other

modifications of expected utility.

3.3 Variational Preferences : An Umbrella Model?

These preferences were introduced by Maccheroni, Marinacci, and Rustichini (2006) as a unifying

framework for understanding the various models of decisions in the face of ambiguity based on a

common behavioral (axiomatic) foundation. The models encompassed include those above, and

the “multiplier preferences” model of Hansen and Sargent (2001), which is motivated by model

uncertainty in control problems. These are a ‘class’ of preferences that can be specialized to cover

most other forms of ambiguity respecting preferences, as discussed in Strzalecki (2011), as well as

expected utility when the agent is ‘ambiguity neutral’. In addition, variational preferences support

the representation suggested for the finite state Chichilnisky model (6).

The common behavioral foundation is laid out in the notation and axioms in the Appendix.

Under Axioms 1 through 6, preferences % defined on F are representable by

 () = min
∈∆(Σ)

∙Z
()+ ()

¸
 (8)

where  :  → R is an affine utility; () : ∆ → [0 1] is an ‘index’ of ambiguity aversion, a

convex lower-semicontinuous function with inf∆ () = 0 Over the space of countably additive

probabilities, ∆ (Σ), () = sup∈F
¡
 ( )−

R
()

¢
 where  is the certainty equivalent of
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act  and, with Axiom 7, is unique. () is a “penalty” on less likely distributions, so lower ()

reflects higher ‘ambiguity aversion’.

The other preference representations can be generated by specifying the form of the ‘ambigu-

ity index’, () For example, multiple priors (maximin) preferences result from () = () =½
0, if  ∈ 

∞, otherwise
 “multiplier preferences from () =  ( k ) where  ( k ) is the rel-

ative entropy of  with respect to  ∈ ∆ (Σ)  a fixed, countably additive, non-atomic mea-
sure, and () =  ( k ) gives mean-variance preferences, with  () =

R
 − 1

2
 () =

min∈∆(Σ)
R
 +  ( k )  where  (· k ) : ∆ → [0 1] is the relative Gini concentration in-

dex.15 All other variational preferences are ambiguity averse, as Axiom 5 indicates a “preference

for hedging.”

Defining %1 as “more ambiguity averse” than %2 if, ∀ ∈ F and  ∈   %1  =⇒  %2 
it is clear that {1 ≤ 2 for affine equivalent   = 1 2} ⇔ {%1 is more ambiguity averse than
%2} “Ambiguity neutral” (subjective) expected utility, with prior , arises from () = () =½

0, if  = 

∞, otherwise
; this is the model with minimal ambiguity aversion. the case of maximal

ambiguity aversion in this model is given by the Wald criterion: () = 0 ∀ ∈ ∆ so that

 %  ⇔ min
∈∆(Σ)

Z
() ≥ min

∈∆(Σ)

Z
();

 %  ⇔ min
∈

(()) ≥ min
∈

(())

Other cases of less extreme ambiguity aversion can be defined using a convex combination of these

extremes. Let  ∈ (0 1)  and

 () = (1− )

Z
() + min

∈
 ( ()) 

Here, if () = min12∈∆ {(1− ) (2) + (1) : (1− ) 2 + 1 = } = (1−)+∆() then
this is a special case of variational preferences that gives the same representation as the finite-state

“topology of fear” preferences.

Analytic Example. This model can clearly replicate the outcomes of any of the above repre-

sentations in our 2-outcome example; it can replicate any degree of ‘aversion to uncertainty’ in the

face of a potentially catastrophic event. So we turn to the more elaborate (3-outcome) example

with distinct outcomes in each of the two states, normal ( = 1) and catastrophic ( = 0) set up

above (Section 2.1.2). Let there be 3 distinct acts mapping  into ∆ ()   = {05 3 9}:

F =
⎧⎨⎩

 : f0=(25 75 0) 1 = (0 8 2)

 : 0 = (5 5 0) 1 = (0 6 4)

 : 0 = (7 3 0) 1 = (0 5 5)

⎫⎬⎭  (9)

These acts differ in mitigation effort with respect to the potential disaster,  = 05 Act  takes the

possibility of disaster most seriously, placing the greatest effort on mitigation, diverting resources

to that effort, and hence reducing the likelihood of the ‘best’ configuration of outcomes. Act 

pays little attention to the possibility of a disastrous outcome, ‘maximizing’ the likelihood of the

‘best’ outcomes, as well as of the ‘catastrophe’; it might be considered “business as usual” behavior.

Finally,  cautiously compromises between these two approaches.

15Maccheroni, Marinacci, and Rustichini (2006), pp. 1449-50.
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To illustrate the implications of variational preferences for choice in the face of ‘catastrophe’,

we adapt a variational preferences representation with state dependent preferences:

 () = min
∈[01]

{0 {0(0)}+ (1− )1 {1(1)}+ ()}   =   

and let

() = 5 (− 02)2   ∈ [0 06] ; () = ∈ (06 1]
This assumes the agent believes that the ‘most realistic’ estimate the probability of the catastrophic

state is  = 02 and that   06 is ‘impossible’. We also assume that the agent is more risk averse

in the ‘catastrophic’ state, and consider 2 cases: (i) Utility level independent of ‘state’ in the

most likely configuration of outcomes,  = 3; (ii) Utility level is also “state dependent” even when

different ‘states’ yield same outcomes ( = 3):

(i) 0 () = 115416 +
1−

1− 
;1() = ln () ;  = 3; 0(3) = 1(3);

(ii) 0() = 05 +
1−

1− 
;1() = ln () ;  = 3; 0(3)  1(3)

Note that the coefficient of relative risk aversion is 3 in state  = 0 and 1 in state  = 1. The

consequences of the 3 acts,    (diamond, box, and circle, respectively, in the graphs) in the

catastrophic state,  = 0 are illustrated in Figures 8 and 9 in terms of expected utilities (and

values) and certainty equivalents, with  yielding the highest value.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

-1.0

-0.5

0.0

0.5

1.0

x

U

Figure 8: ‘Catastrophe State’ lotteries, 0(3) = 1(3)

Note that the certainty equivalents remain the same despite the distinctly lower utility levels in

case (ii), showing the irrelevance of that normalization within a state. But that irrelevance vanishes

as soon as we study the full consequences, evaluating the outcomes of various acts across states.

Case (i) is illustrated in Figure 9, where the green lines connect the outcomes each of the acts   

(least to highest spread) generates in each of the states.
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Figure 9: (3) normalization, and the span of ‘act’ lotteries
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Figure 10: 0 ()  1 () — expected values, CEs and utilities of   

When we take the loss of utility/wellbeing seriously in the catastrophic state, 0 ()  1 ()

and more risk averse, the ‘stakes’ in the decisions/acts become much more serious, as can be seen

in Figure 10. Here the expected values of outcomes, as a function of  of the acts   and  are
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illustrated, where

 () = 095385 at  = 33600; Certainty Equivalent: 23664;

 () = 091151 at  = 40658; Certainty Equivalent: 200999;

 () = 080615 at  = 45646; Certainty Equivalent: 1611532

and  Â  Â  Hence ambiguity aversion has led this agent to choose the most cautious, least

remunerative act,  With complete faith in her ‘best estimate’, reflecting absence of ambiguity,

 = 02 [⇔ () = 0], and  Â  Â  as  () = 10463  () = 11249 and  () = 11350 This

leads her to choose the least cautious, most remunerative, act, to pursue “business as usual.” If the

agent’s preferences are described by the MEU (maximin) representation, then she believes  = 06

and  Â  Â  as  () = 13023  () = 10986 and  () = 090917

It is straightforward to adjust this representation to incorporate RDEU probability distortions

or “smooth ambiguity” preferences working with the certainty equivalents of the underlying ‘act

lotteries’ and their ‘ambiguity weightings’. More interesting is the impact of the finite version of the

“topology of fear” model (Chichilnisky, 2010b). As noted above, this arises from the representation

(8)16,  () = min∈∆(Σ)
R
()+ () with

() = min
12∈∆

{(2) + (1− ) (1) : 2 + (1− ) 1 = } = +(1−)∆()

where () =

½
0, if  = 

∞, otherwise
 giving for any act 

 () = 

Z
() + (1− )min

∈
 ( ())  (10)

= [0 {0(0)}+ (1− )1 {1(1)}] + (1− )0 {0(0)} 
In our example, we need to specify the agent’s (subjective) distribution over   and the relevant

expected utility in each state for each act. Using the ‘best guess’ from above, (0) = 02 and the

lottery generated by each act (9), we can calculate for each act the expected utility in each state,

the impact of  on the overall evaluation,  (·;) and the evaluation and certainty equivalent for
 = 5.

 () () ()

0 −00417 −05278 −09167
1 13183 15381 16479

 (·;) 1088− 00417 1 6527− 05278 20517− 09167
 (·; 5) 5023 29855 10915

Cert Equiv 16525 13479 1115 3

Clearly, if the agent puts full utility weight on the impact of the catastrophe ( = 0)  the most

cautious act  is optimal, while if the agent places no special weight on the catastrophic outcome

( = 1), the ordering is reversed,  Â  Â  the least cautious being the best. That remains

the ordering as long as   9747 [the agent feels little fear], below which [ ∈ (90796 9747)]
 Â  Â  . For  below 08608 the most cautious strategy again becomes dominant:  Â  Â 

Thus only if the agent puts little weight (less than 0.14) on the catastrophic state will she opt for

any but the most cautious act. Finally note that the certainty equivalents of these acts for  = 05

are given in terms of the‘normal state’ utility in the final row of the table above. In all cases they

are substantially below those in our variational preferences example depicted in Figures 9 and 11,

indicating the extreme ambiguity aversion of preferences incorporating fear of a catastrophe.

16Letting  = 1−  for notational consistency with that model.
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4 Lessons and Conclusions

In this note we have reviewed and illustrated six different models of how decision makers might

evaluate catastrophic risks, how their preferences deal with uncertain prospects. These models are

grounded in a set of similar behavioral axioms, with differences in axioms identifying them. Each

model shares a behavioral foundation based on a distaste for (‘fear of’) uncertainty/ambiguity,

i.e. a lack of even probabilistic knowledge of, or firm beliefs about, the underlying events driving

(potential) outcomes. And all yield a greater degree of caution, a desire to “hedge” against the

unknown, than does the model of a well-informed agent with (subjective) expected utility prefer-

ences. Hence they each provide a cognitive explanation for the predictive shortcomings of the SEU

model, providing a rational basis for observed human behavior in the face of true uncertainty.

In doing so, these models would appear better able to provide predictions of the human responses

to potential catastrophe than the SEU model does. In an economic analysis of catastrophic risk,

where the decisions, actions, and reactions of millions of (potentially impacted) individuals must

be considered in policy formation, such models should be a critical tool. Whatever the policy

considered, risk mitigation, management or reaction planning, an equilibrium analysis of individual

behavioral responses which may further, undercut, or even negate policy measures, is essential.

These models, and in particular that of “variational preferences,” could be extremely helpful in

that analysis.

Indeed, the cognitive structures that these models reflect may also be relevant to decision makers

responsible for developing and implementing social policy with regard to catastrophic risks. On

the other hand, it might be argued that relevant social preferences should differ from individual,

captured in the models above, much as social discount rates should differ from those of individuals.

That is an argument and analysis that goes beyond the present discussion. Even if the optimal

rational social choice criterion is best reflected in minimally (or zero?) discounted SEU, where

likelihoods (the ‘state’ distribution) are based on the best scientific evidence, each of these models

admits SEU as an “ambiguity neutral” boundary case. Further, they each indicate the direction

of potential bias that can arise from “uneasiness” about that scientific evidence/knowledge. With

that in mind, we feel that the final model presented, that of “variational preferences,” provides the

most practical, analytically tractable model representation of ambiguity/uncertainty respecting

preferences. Through its flexible specification of a convex ‘ambiguity penalty’ function it captures

most of the other representations.

These representations with their clear axiomatic foundations lend themselves to experimental

testing or which model better captures agent behavior in the face of very unknown probability,

high cost gambles. It is now also important to develop specific models of situations involving great

uncertainty and (potentially) vast costs to the decision maker, and to bring such models to data.

One example might be the analysis of the mixed response in threatened populations to (mandatory)

evacuation orders.17 Finally, work is needed placing these models of individual behavior within an

equilibrium framework within which policy decisions must be made. All these remain on our

research agenda.

5 APPENDIX: Axiomatic Foundations of Representations

5.1 Notation

The following notation is common to all the models presented.

17See, for example, the studies of Dow and Cutter (2000) and Lindell, Lu, and Prater (2005).
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(Σ) — states, with algebra of events;

∆ (Σ) — all finitely additive probability measures on (Σ)

 — set of consequences, convex ⊂ R

F — set of ‘acts’  :  →  simple functions

0 (Σ) — real valued, measurable simple functions

(Σ) — supnorm closure of 0 (Σ)

0 (Σ) — simple maps into  ⊂ R
 :  → R — affine utility

 : 0 (Σ ()) −→ R — “certainty equivalent” representing ‘beliefs’

In the examples, we simplify to:
 = {0 1}  the ‘catastrophic’ and ‘normal’ states, respectively;

 = 0 ∪1 ⊂ R; 0 ∩1 6= ∅;
∆ () a set of finitely additive measures on ;

F = { :  → ∆ () | (0) ∈ ∆0 (1) ∈ ∆1}
 :  → R a ‘state-dependent’ utility function.

5.2 Axioms

1. Weak Order: % complete, transitive on F .

2. Weak Certainty Independence:   ∈ F ,   ∈   ∈ (0 1)

 + (1− ) %  + (1− ) =⇒  + (1− )  %  + (1− ) 

(a) Independence:    ∈ F   ∈ (0 1)

 %  ⇔  + (1− ) %  + (1− )

(b) Comonotonicity Independence (Schmeidler, 1989):    ∈ F pairwise comonotonic,

 ∈ (0 1)
 Â  ⇔  + (1− ) Â  + (1− );

•  and  are comonotonic if ¬∃  ∈  () Â () ∧ () Â ()

(c) Certainty Independence (CI: Gilboa-Schmeidler, 1989):

 %  ⇔  + (1− ) %  + (1− )

Lemma 1 % satisfies CI iff   ∈ F ,   ∈    ∈ (0 1)

 + (1− ) %  + (1− ) =⇒  + (1− )  %  + (1− ) 

3. Continuity: ∀   ∈ F  { ∈ [0 1] |  + (1− )  % } and { ∈ [0 1] |  %  + (1− ) }
are closed.

4. Monotonicity [state independence condition]:   ∈ F , () % () ∀ =⇒  % 

5. Uncertainty/Ambiguity Aversion:   ∈ F ,  ∈ (0 1)

 ∼  =⇒  + (1− )  % 

6. Nondegeneracy:  Â  for some   ∈ F (∆ ()) 
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7. Unboundedness: ∃ Â  ∈  s.t. ∀ ∈ (0 1)  ∃ ∈  satisfying either (i)  Â +(1− )

or (ii)  + (1− )  Â 

8. Monotone Continuity: If   ∈  [ ∈ ∆ ()] {}≥1 ∈ Σ with 1 ⊇ 2 ⊇ · · · and
∩≥1 = ∅ then  Â  =⇒ ∃0 ≥ 1 s.t. 0 Â 

• Axioms 1, 3, 4 imply ∀ ∈ F , ∃ ∈  a “certainty equivalent.”

• Ambiguity Neutrality ⇐⇒ SEU: () =
R
()
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