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Abstract

This paper uses a non-Gaussian state-space model to extract daily business con-

ditions from data observed at mixed frequencies. The model extends the framework

of the ADS (Aruoba, Diebold and Scotti) index by allowing for non-Gaussian distur-

bances for observations. The extracted business conditions index behaves similarly

to the ADS index, but can better capture some extreme economic movements. The

distribution of non-Gaussian shocks is approximated by a mixture of normals. The

likelihood function is computed by particle filter methods. The computation uses the

latest development in graphical processing units (GPU).
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1 Introduction

Measuring macroeconomic conditions on a daily basis is an important task for central

banks, financial institutions, and any other entity whose outcome depends on the state of

macroeconomy. Unfortunately, not all economic data are sampled at the daily frequency.

Financial data are available on a (intra-)daily basis, whereas most macroeconomic data are

sampled weekly, monthly, quarterly or even annually. The unavailability of macroeconomic

variables at higher frequency often leads economic analysis to be conducted at low frequency.

However, policy makers, making decisions in real time, always need accurate and timely esti-

mates of the state of economic activity. Therefore, in order to help policy makers assess the

continuously evolving state of the macroeconomy, there is increasing demand for estimating

the high-frequency economic dynamics using data sampled at mixed frequency.

Ghysels et al. (2006) propose using mixed data sampling (MIDAS) method, which aggre-

gates high-frequency data to low frequency using a polynomial weighting function. As Bai

et al. (2009) uncover the connection between the MIDAS regression and the Kalman Filter,

Aruoba et al. (2009), propose a Gaussian state-space model to extract high-frequency busi-

ness conditions from term spread, initial claims for unemployment insurance, employees on

non-farm payrolls and real GDP growth data. These variables are observable daily, weekly,

monthly and quarterly respectively, but the setting of the model can be easily extended to

arbitrary number of variables observed at any frequency.

This paper is in a similar spirit, but uses a non-Gaussian state-space model to extract

high-frequency business conditions from a variety of stock and flow data observed at mixed

frequencies. It provides a more generic framework for extracting business conditions from

data observed at mixed frequencies. The computation uses the latest development in graph-

ical processing units (GPU). The extracted business condition index behaves similarly to the

3



ADS index, but can better capture the extremal movements of the economy. In particular,

the model permits non-Gaussian disturbances for the observation equation and aims to bet-

ter capture the non-Gaussian shocks to the economy1. The likelihood function is computed

by particle filter methods. The distribution of innovations is approximated by a mixture of

normal distributions.

The reminder of this article is organized as follows. Section 2 briefly reviews the modeling

framework of Aruoba et al. (2009) and proposes the non-Gaussian extension. Section 3 casts

the model in the state-space form and describes the particle filter algorithm. Section 4

compares the daily business condition indicator extracted from non-Gaussian state-space

model with that extracted from Gaussian state-space model. Section 5 concludes.

2 The Modeling Framework

This section briefly reviews the dynamic factor model used to extract the high-frequency

business condition index proposed by Aruoba et al. (2009). The model is cast at daily

frequency, but can be easily extended to data at higher (intra-daily) frequency. For macroe-

conomic series at weekly, monthly and quarterly frequency, the daily data are treated as

missing values. ADS explicitly defines the measurement equations of the stock and the flow

variables using their different underlying structures of temporal aggregation. The model also

allows for lagged state variables and a time trend in the measurement equations. I extend

the model in two directions: first, the innovations to the measurement equations are allowed

to follow a Student’s-t distribution. I use a mixture of k normally distributed components

to approximate the fat-tailed distribution as well as to facilitate the filter iteration. Second,

the generic form of the model brings computation challenge to the model.

1The new version that takes into account the non-Gaussian shocks to the transition equation is forth-
coming
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The Dynamic Factor Model at Daily Frequency: The state of the economy is as-

sumed to evolve at daily frequency. Much higher (intra-daily) frequencies could be used

if desired. Let xt denote underlying business conditions on day t, which evolve daily with

AR(p) dynamics,

xt = ρ1xt−1 + ρ2xt−2 + . . .+ ρpxt−p + et, (1)

where et is a white noise innovation with unit variance. xt is the single factor that tracks

and forecasts the real economic activity (see Stock and Watson (1989)). Let yit denote the

i-th daily economic or financial variable at day t. yit depends linearly on xt and possibly also

on various exogenous variables and/or lags of yit:

yit = ci + βixt + δi1w
1
t + · · ·+ δikw

k
t (2)

+ γi1y
i
t−Di

+ · · ·+ γiny
i
t−nDi

+ uit. (3)

wt = w1
t , . . . , w

k
t are exogenous variables. uit are contemporaneously and serially uncorrelated

innovations. i is the index of the macro-financial variables incorporated in the model, i =

1, . . . ,M . Notice that the lags of the dependent variable yit are in multiples (n) of Di, where

Di > 1 is the number of days within the frequency of the observed yit. nDi lags of yit are

included because modeling persistence only at the daily frequency would be inadequate, as

it would decay too quickly.

Temporal Aggregation: Stock versus Flows. Economic and financial variables, al-

though evolving daily, are not actually observed daily. Let ỹit denote the same variable, yit,

observed at a lower frequency (call it the “tilde frequency”). The relationship between yit

and ỹit depends crucially on whether yit is a stock or flow variable.

If yit is a stock variable measured at a non-daily low frequency, the appropriate treatment

is straightforward, because stock variables are simply point-in-time snapshots. At any time
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t, either yit is observed, in which case ỹit = yit, or it is not, in which case ỹit = NA, where NA

denotes missing data (“not available”). The stock variable measurement equation is:

ỹit =


yit = ci + βixt + δi1w

1
t + . . .+ δikw

k
t + γi1y

i
t−Di

+ · · ·+ γiny
i
t−nDi

+ uit

if yit is observed.

NA otherwise.

(4)

Now consider flow variables. Flow variables observed at non-daily low frequencies are

intra-period sums of the corresponding daily values,

ỹit =


∑Di−1

j=0 yit−j if yit is observed.

NA otherwise,
(5)

where Di is the number of days per observational period (e.g. Di = 7 if yit is measured

weekly). Combining this fact with Equation (2), we arrive at the flow variable measurement

equation.

ỹit =



∑Di−1
j=0 ci + βi

∑Di−1
j=0 xit−j + δi1

∑Di−1
j=0 w1

t−j + . . .+ δik
∑Di−1

j=0 wkt−j

+γi1
∑Di−1

j=0 yit−Di−j + · · ·+ γin
∑Di−1

j=0 yit−nDi
+ u∗it

if yit is observed.

NA otherwise.

(6)

ỹit−Di
=
∑Di−1

j=0 yit−Di−j, which is the observed flow variable on period ago (e.g. last week,

last monthly, last quarter,...), and u∗it is the sum of the uit over the tilde period.

Discussion of two subtleties is in order. First, note that in general Di is time-varying,

as for example the first quarter may have 90 or 91 days; the second quarter has 91 days;

the third and the fourth quarter have 92 days. To simplify the notation, we ignored the

difference in Di. In the subsequent empirical implementation, Di is in fact time-varying.

6



On the one hand, the first important contribution of this paper is to assume uit follows a

student’s t distribution. The distribution of uit is approximated by K normally distributed

components.

g(uit|σ2
i , λ) =

K∑
k=1

pkN(zt|mk, ν
2
k). (7)

where g(·|σ2
i , λ) is a Student’s t distribution with mean 0, variance σ2

i λ/(λ−2), and λ degree

of freedom. N(zt|mk, ν
2
k) denotes the density function of a normal distribution with mean

mk and variance ν2k . The values of pk, mk and ν2k are found on the basis K = 7 by minimizing

the squared difference between g(uit|σ2
i , λ) and the normal mixture, as in

min
p∗k,m

∗
k,ν

∗2
k

[
g(uit|σ2

i , λ)−
K∑
k=1

pkN(zt|mk, ν
2
k)
]2
. (8)

On the other hand, the setting in Equation (6) requires using all lags of xt as state

variables. This leads to up to 92 state variables2 if Equation (1) is written in state-space

form as transition equations. In order to avoid the clumsiness of state variables, I adopt the

method proposed in the appendix of Aruoba et al. (2009), which uses a time-varying vector

denote the temporal aggregation of the state variables, xt. Take the transition equation in

modeling weekly observation for example,

CW,t = ζtCW,t−1 + xt

= ζtCW,t−1 + ρ1xt−1 + ρ2xt−2 + . . .+ +ρpxt−p + ξt

ζt =

 0 if t is the first day of the week

1 otherwise

2There are up to 92 days in a quarter. As the lowest frequency increases to annually, the above setting
may lead to up to 365 state variables
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This aggregation will facilitate the iteration in both the measurement equations and the

transition equations.

State-space Representation To extract daily component xt from date at mixed frequen-

cies, Equation (2) − (5) are first integrated into the follow equation system. Measurement

Equation:


ỹ1t

ỹ2t

ỹ3t

ỹ4t


︸ ︷︷ ︸

yt

=


β1 0 0 0

0 β2 0 0

β3 0 0 0

0 0 0 β4


︸ ︷︷ ︸

Zt


xt

CW,t

CM,t

CQ,t


︸ ︷︷ ︸

αt

+


0 0 0

γ2 0 0

0 γ3 0

0 0 γ4


︸ ︷︷ ︸

Γt


ỹ2t−W

ỹ3t−M

ỹ2t−Q


︸ ︷︷ ︸

ωt

+


u1t

ũ∗2t

ũ3t

ũ∗4t


︸ ︷︷ ︸

εt

. (9)

Using the temporal aggregation of state variables to reduce the the number of state variables,

the transition equation is written as follows:


xt

CW,t

CM,t

CQ,t


︸ ︷︷ ︸

αt

=


ρ 0 0 0

ρ ζW,t 0 0

ρ 0 ζM,t 0

ρ 0 0 ζQ,t


︸ ︷︷ ︸

T


xt−1

CW,t−1

CM,t−1

CQ,t−1


︸ ︷︷ ︸

αt−1

+


et

et

et

et


︸ ︷︷ ︸

ηt

, (10)

(8) and (9) together can be cast into the state-space form:

yt = Ztαt + Γtωt + εt (11)

αt+1 = Tαt + Rηt (12)

εt ∼ (0,Ht) (13)

ηt ∼ (0,Q). (14)
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where Q is the variance of the daily shocks in the transition equation, Q = σ2. Ht is the

variance-covariance matrix of the innovations to the measurement equation. For simplicity,

shocks to the observed variables are assumed to be uncorrelated. In the state-space model,

Ht is a diagonal matrix of four unknown parameters that denote the variances of the observed

variables.

Ht =


σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


. (15)

The fat-tailed state-space model further estimates the degree of freedom, λ, the parameter

that controls the shape of the Student’s t distribution. The variance of measure equations

in the fat-tailed model is λ
(λ−2) ·Ht. As the fat-tailed distribution is approximated by seven

normal distributions, the variance of uit uses the variance of normal component k with prob-

ability pk (see equation 8).

In addition, yt may contain missing values on any given day t, because each variable

in yt is observed at different frequency. Some variables may only be available by the end

of the week, the month and quarter. To deal with the missing values, let Wt be a vector

that indicates whether observations at different frequencies are available at day t. If only

daily and weekly observations are available, Wt =
[

1 1 0 0
]
. If only daily and monthly

observations are available, Wt =
[

1 0 1 0
]
. The measurement equation can thus be

transformed into:

Wt · yt = Wt · Ztαt + Wt ·Xtβ + Wt ·Gtut

This transformation replaces the missing observations (“NaN” value) on a particular day

9



with 0. The filtered the business condition on day t is thus a weighted combination of ob-

servations available.

3 Estimation

Let ψ = (Z,Γ, σ, λ) denote the parameters of the model. By the law of total probability,

it follows that the density of the data Yt = (y1, . . . , yt) given ψ can be expressed as

f(Yt|ψ) =
t∏

s=1

f(Ys|Ys−1, ψ) =
t∏

s=1

∫
f(Ys|αs, ψ)f(αs|Ys−1, ψ)dαs.

On the one hand,

f(Ys|αs, ψ) = St(Ys|Zsαs + Γsωs,Hs, λ)

is the Student’s-t density function with mean Ztαt + Γtωt, variance Ht and λ degrees of

freedom. On the other hand, density f(αs|Ys−1, ψ) cannot be expressed in closed form.

This makes the likelihood function of above model not easily available. Fortunately, it is

possible to estimate the likelihood function by a simulation method, called particle filtering

(see Chib et al. (2002)). For each t, the particle filter delivers a sample of draws on αt from

the filtered distribution f(αt|Yt−1, ψ). These draws allow to estimate the one-step ahead

density of yt

f(yt|Yt−1, ψ) =

∫
St(Yt|Ztαt + Γtωt,Ht, λ)f(αt|Yt−1, ψ)dαt.

by simple Monte-Carlo averaging of St(Yt|Ztαt + Γtωt,Ht, λ) over the draws of αt from

f(αt|Yt−1, ψ).
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In particular, I consider the auxiliary particle filter introduced in Chib et al. (2002). This

filter first creates a group of proposal values α1
t , . . . , α

R
t . These values are then reweighted to

produce draws {α1
t , . . . , α

M
t } that correspond to draws from the target distribution. Typi-

cally, we take R to be five or ten times larger than M . We now summarize the steps involved

for the filter in period t.

Step 1. Generate M draws from the steady state distribution of αt. To initialize

the particle filter, we first simulate M trajectories of α0|0 and P0|0. The next step is to

propose candidate values of α1|0 and P1|0 using each particle. Given {α1
t|t, . . . , α

j
t|t . . . , α

M
t|t}

from (αt|Yt, ψ), the one-day ahead business condition of each draw is simulated as

αjt+1|t = Tαjt|t + chol(P j
t|t)zt, zt ∼ N(0, 1)

P j
t+1|t = TP j

t|tT
′ +Q

vj = WY ′ −WZajt+1|t −WΓtωt

Fj = (WZ)P j
t+1|tZ

′W ′ +WHjW
′

wj =
Γ[(λ+ p)/2]

π1/2Γ(λ/2)
(λ− 2)−p/2|Fj|1/2

[
1 +

v′jF
−1
j vj

λ− 2

−(λ+p)/2]
,

j = 1, . . . ,M.

The variance of measurement equation innovations in Hj, is formed by drawing from the

K normal mixture components. qk,mk, ν
2
k are selected to closely approximate the exact

Student’s t density with mean 0 variance σ2
i and degree of freedom λ. The variance-covariance

matrix of εt (see equation (9)), Hj, is hence obtained by stacking the variance of k−th normal

component with probability qk.

Step 2. Sample R draws from the M draws of αt. Sample R times the integers

1, 2, . . . ,M with probability proportional to {wj}Mj=1 (i.e. Each draw is drawn with proba-

bility wj/
∑M

j=1wj). Let the sample indexes be k1 . . . , kj, . . . , kR, and associate these with
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αk1t|t, . . . , α
kj
t|t, . . . α

kR
t|t . kj means the k−th draw in 1, . . . , R takes the jth draw from 1 to

M . Two arbitrary draws kj and (k + s)j may take the value as a result of sampling with

replacement. For each value of kj from Step 1, simulate

αkt+1|t = Tα
kj
t|t + chol(P

kj
t|t )ut, ut ∼ N(0, 1)

P k
t+1|t = TP

kj
t|tT

′ +Q

vk = WY ′ −WZa∗jt+1|t −WΓtωt

Fk = (WZ)P k
t+1|tZ

′W ′ +WHkW
′

wk =
Γ[(λ+ p)/2]

π1/2Γ(λ/2)
(λ− 2)−p/2|Fk|1/2

[
1 +

v′kF
−1
∗j vk

λ− 2

−(λ+p)/2]
,

k = 1, . . . , R.

This gives the density of (αt+1|Yt, ψ).

Step 3. Produce filtered sample of αt Resample {α1
t+1|t, . . . , α

k
t+1|t, . . . , α

R
t+1|t}M times

with probability proportional to

wk
wkj

=
St{yt|αkt+1|t, λ}

St{yt|α
kj
t+1|t, λ}

.

Let the sample indexes bem1 . . . ,mk, . . . ,mM , and associate these with αm1

t+1|t, . . . , α
mk

t+1|t, . . . α
mM

t+1|t.

mk = k, which randomly drawn from k = 1, . . . , R. The draws are viewed as the filtered

sample of {α1
t+1, . . . , α

M
t+1} drawn from (αt+1|Yt+1, ψ). Each particle is updated as in,

amt+1|t+1 = amk

t+1|t + Pmk

t+1|t(WZ)′F−1mk
vmk

;

Pm
t+1|t+1 = Pmk

t+1|t − P
mk

t+1|tZ
′W ′F−1mk

∗W ∗ Z ∗ Pmk

t+1|t;

m = 1, . . . ,M.
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Once we have a sample from (αt+1|Yt+1, ψ), the mean of the sample draws provides an

estimate of E(αt+1|Yt+1, ψ) which is the unbiased estimator of the daily business condition.

Furthermore, the particle filtering steps can be used to estimate the likelihood ordinate as

summarized by the following steps.

Step 4: Likelihood function of the Model

• Set t = 1, initialize ψ and obtain a sample of α
(g)
t−1|t−1(g ≤M).

• For each value of α
(g)
t−1|t−1 sample

α
(g)
t|t−1 ∼ N(Tα

(g)
t|t , σ

2)

• Estimate one-step ahead density as

f̂(yt|Yt−1, ψ) =
1

M

M∑
g=1

St(Yt|Ztαt + Γtωt,Ht, λ).

• Apply the filtering procedure in Step 2-3 to obtain α1
t|t, . . . , α

M
t|t from αt|t|Yt, ψ.

• Increment αt|t to αt+1|t and goto 2.

• Return the log likelihood ordinate

log f(y|ψ) =
T∑
t=1

log f̂(yt|Yt−1, ψ).

The parameters are obtained using maximum likelihood. The details on the constraints, the

choice optimization algorithm,and the computation method are discussed in the following

section.
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4 Empirical Results

4.1 Parameter Estimation

This section discusses the parameter estimation method and reports the estimation re-

sults. The parameters are restricted as −1 ≤ β3, β4, ρ ≤ 1, 0 < σ2 ≤ 25 and 2.1 ≤ λ ≤ 30 to

maximize the sample log-likelihood. I convert the constrained optimization into the uncon-

strained optimization, and finds the optimum using the interior-point algorithm. In addition,

the computational speed matters in our context - the computation must be finished within

one business day; otherwise, the daily indicator will never be able to assimilate the newly

available observation. Traditional computation technique are too slow to to deal with com-

putationally heavy project using particle filter. To increase the computational speed, the

device used in this paper is a graphics processing unit (GPU), which consists of many cores

(processing units) connected to a host (conventional desktop or laptop computer with one

or a few central processing units) through a bus (for data transfer between host and device).

The device is designed for single instruction multiple data (SIMD) processing, which is com-

patible with the setting of particle filter. Besides Matlab, the software used is the CUDA

extension of the C programming language (Nvidia, 2011), which is freely available.

Table 1 reports the statistical inference results of the parameters estimated by particle

filter. Two models are taken into account: the Gaussian Kalman-filter model (ADS index)

and the fat-tailed Particle filter model (2.1 < λ ≤ 30). All parameters are positive and

significant at 5% significance level. The fat-tailed Particle filter model estimates the de-

gree of freedom of the Student’s t distribution at 3.0465. The small λ strongly rejects the

normality of the observable variables. Without taking into account the fat-tailed specifica-

tion, the Gaussian Kalman-filter Model squeezes all extremal values into variance estimates.

σ1, σ2, σ3, σ4, σ estimated by the Gaussian Kalman-filter model are larger than those esti-
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mated by the fat-tailed Particle filter model3. The variance of the shocks to the term spread

σ1 reaches 2.9583 when estimated by the Gaussian Kalman Filter model, which doubles

what estimated by the fat-tailed Particle filter model, σ1 = 1.3370. The variance of the

term spread is σ1λ/(λ− 2) = 3.8922 based on the fat-tailed specification. Other parameters

estimated by two models are close to one another.

To test whether the non-Gaussian specification is necessary in extracting daily business

condition, a likelihood ratio test is considered. The test statistic takes the form of

D = −2 ln
( Likelihood for null model

Likelihood for alternative model

)
= −2 ln(Likelihood for Gaussian Model)︸ ︷︷ ︸

null

+2 ln(Likelihood for Fat-tailed Model)︸ ︷︷ ︸
alternative

The limiting distribution of D is approximately a χ2 distribution with degrees of freedom

14. Table 2 reports the likelihood ratio test results. A positive and significant test statistic

indicates that we couldn’t reject the non-Gaussian state-space model, which better captures

the fat-tailed dynamics of the real economy.

4.2 Results Interpretation

Designed to track real business conditions on a daily basis, the extracted business condi-

tion index is in accord with the U.S. economic history from 1960 to 2007. It blends high- and

low-frequency information and incorporates the dynamics of both stock and flow variables.

Its underlying (seasonally adjusted) economic indicators are: the daily yield curve term

spread, defined as the difference between 10-year and 3-month U.S. Treasury yields; weekly

3The variance of observed variables in the fat-tailed Particle filter model is σ1λ/(λ − 2), σ2λ/(λ −
2), σ3λ/(λ− 2), σ4λ/(λ− 2).

4The Gaussian state-space model needs 3 parameters to estimate the variance of εt, in addition to which
the non-Gaussian model uses another parameter λ to control the shape of the Student’s distribution. The
Gaussian state-space model (null) nests the Non-Gaussian state-space model (alternative).
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initial claims for unemployment insurance; monthly employees on nonagricultural payrolls;

and quarterly real GDP. Except that monthly payroll employment is stock variable, all three

other variables are flow variables. The sample period is from April 1, 1960 to February 20,

2007.

The average value of the ADS index is zero. Progressively bigger positive values indicate

progressively better-than-average economic conditions, and vice-versa. The ADS index is

used to compare business conditions at different times5. A value of −7.0, for example, would

indicate business conditions significantly worse than at any time in either the 1990 − 91

or the 2001 recession, during which the ADS index never dropped below −5.0. Figure 1

compares the dynamics of the fat-tailed ADS index and Gaussian ADS index. Both ADS

indices capture the dynamics of the U.S. economy from 1960 to 2007. The fat-tailed ADS

index exhibits two characteristics.

First, the dynamics of fat-tailed ADS index are generally similar to those of

the Gaussian ADS index.

The 1960s began with a mild recession. This corresponds to the barely negative start

to both ADS indices. The first downward movement appears when unemployment peaked

at 7.1% in May 1961. The positive movement in the mid-1960s corresponds to the recovery

lead by the Fed’s interest rate reduce, as well as the increase in the aggregate expenditure

cause by “Kennedy tax cuts” (1964), the “Great Society” domestic programs (the Johnson

administration), and the Vietnam War.

The 1970s was a dark period of the U.S. economy. Both ADS indices are highly volatile

during this period. The positive start of both indices refer to the economic boom caused by

the price control of the Nixon administration and the Fed’s low interest rates. The downward

5published by the Real-Time Data Research Center of the Federal Reserve Bank of Philadelphia (http:
//www.phil.frb.org/research-and-data/real-time-center/).)
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movement of ADS indices started in 1973, when price controls were relaxed and the first oil

crisis occurred. In the meantime, there was another adverse supply shock: a sharp increase

in food prices caused by bad weather. Inflation rose to 11% in 1974. Then in 1979, the

second oil shock struck. Inflation was 11.4% in 1979 and 13.5% in 1980.

The first half of the 1980s is a classic example of a disinflation - a temporary rise in

interest rates reduced inflation permanently, at a cost of recession. As Volcker’s Fed raised

interest rates sharply in late 1979 and early 1980, both ADS indices start with a sharp drop

in the 1980s. The positive jump of both ADS indices in 1986 corresponds to the beneficial

supply shock - the oil price decrease in 1986. At the end of the decade, strong spending on

consumption and investment pushed output above potential and reduced unemployment to

5%. Inflation crept above 5% and the Fed responded by raising interest rates in 1989. This

made both ADS indices fall below 0 again in the late-1980s.

The negative ADS indices indicate that the 1990s started with a mild recession, caused

partly by the 1989 interest rate increase. Two other factors were negative expenditure

shocks: the fall in consumer confidence when Iraq invaded Kuwait, and the credit crunch

that followed the S&L crisis. Both ADS indices enter the 2000s with negative values. This

is consistent with that the economy slowed in early 2000s, dampening the euphoria about

the New Economy. Responding to the recession, the Fed reduced interest rates steadily.

The federal funds rate fell from 6.5% in 2000 to 1.0 percent in late 2003. Low interest rates

stimulated spending; Tax-cuts proposed by the new Bush administration (enacted in 2001

and 2002) also stimulate spending. By the end of 2003, unemployment was falling. Both

ADS indices exhibit significant positive jump. As the economy recovered, fears of deflation

waned and the Fed raised interest rates. In 2005-2006, the economy seemed to settle into an

equilibrium, with unemployment around 5%, inflation around 2% and the federal funds rate

5.25%; but both ADS indices have fell below 0, preluding the large crisis starting in August,

2007.
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The fat-tailed ADS index better captures the volatile movements of real econ-

omy than the Gaussian ADS index.

The fat-tailed ADS index is more sensitive to the volatile movements of the real economy.

Four stylized periods are the mid-1970s, the mid-1980s, the mid-1990s, and the beginning

of the 2000s. The gaussian ADS index is more robust to the volatile movements of the real

economy, and hence is too smooth to reflect sufficient details.

In the mid-1970s, three adverse shocks hit the economy: the relaxed price control, the

oil crisis, and food price inflation caused by bad weather. The fat-tailed ADS index exhibits

downward movements during this time whereas the Gaussian ADS index does not. During

this period, the Fed raised interest rate sharply. High interest rates caused a recession:

output fell and the unemployment rate rose to 9.0 percent in mid-1975. As the Fed switched

gears and lowered interest rates, both ADS indices moves above zero, but the fat-tailed ADS

index moves further.

In mid-1981, the nominal federal funds rate exceeded 17% and the real rate was almost

8%6. The decrease in aggregate consumption; along with high interest rates, pushed output

down and unemployment up. The spike in interest rates caused the deepest recession since

the Great Depression: unemployment reached 10.8% in 1982. This is reflected by the negative

drop of the fat-tailed ADS index, but not by the Gaussian ADS index.

Starting in the mid-1990s, the economy exceeded expectations. Unemployment fell below

6% percent in 1994 and reached 3.8% in April 2000. Without spurring inflation, the natural

rate of unemployment fell because of high productivity growth. The fat-tailed ADS index

displays a lot of positive movements during this period of time whereas the Gaussian ADS

index simply remains negative and does not respond to these underlying changes.

The fat-tailed ADS index also reflects the recession started in 2001, caused by the fall

in investment when companies scaled back their computer spending. Consumption also fell

because the stock market fell, reducing people’s wealth. The Gaussian ADS index simply

6Around the same time, the Carter administration temporarily imposed “credit controls”
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smoothed all these negative shocks and remains positive during this period of time, whereas

unemployment peaked at 6.4% in June 20037.

5 Conclusion

This paper contributes to ADS index study proposed by Aruoba et al. (2009) by in-

corporating a fat-tailed distribution of macroeconomic shocks. It provides a more general

framework for extracting the business conditions from data observed at fixed frequencies.

The computation uses the latest development in graphical computing units (GPU). The ex-

tracted business condition index behaves similarly to the ADS index, but can better capture

some extreme economic fluctuations.

7One possible explanation is that inflation was low entering the 2000s, and the recession pushed it lower.
Inflation was about 1% in 2003.
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6 Appendix

Table 1: Parameter Estimation Results

(Sample Periods: Apr 1, 1962- Feb 20, 2007)

Fat-Tailed ADS Index Gaussian ADS Index

Parameters Coef. Std. Err. t p-value Coef. Std. Err. t p-value

β1 0.4543 0.0032 139.46 (0.00∗) 0.5753 0.1614 3.56 (0.00∗)

β2 0.5273 0.0032 161.85 (0.00∗) 0.6184 0.1663 3.72 (0.00∗)

β3 1.2354 0.0040 306.96 (0.00∗) 1.3018 0.2096 6.21 (0.00∗)

β4 1.3670 0.0044 306.96 (0.00∗) 1.2327 0.2052 6.01 (0.00∗)

γ2 0.6823 0.0033 209.44 (0.00∗) 0.6354 0.1664 3.82 (0.00∗)

γ3 0.6648 0.0032 204.09 (0.00∗) 0.7085 0.1654 4.28 (0.00∗)

γ4 0.5976 0.0033 183.46 (0.00∗) 0.6486 0.1664 3.90 (0.00∗)

ρ 0.5815 0.0021 276.22 (0.00∗) 0.6600 0.2059 3.20 (0.00∗)

σ1 1.3370 0.0058 229.58 (0.00∗) 2.9583 1.0682 2.77 (0.00∗)

σ2 1.1360 0.0042 270.210 (0.00∗) 1.4721 0.3146 4.70 (0.00∗)

σ3 1.0529 0.0036 291.53 (0.00∗) 1.1954 0.1593 7.50 (0.00∗)

σ4 1.1283 0.0041 272.04 (0.00∗) 1.5195 0.3475 4.37 (0.00∗)

σ 1.0706 0.0037 286.71 (0.00∗) 1.1579 0.1588 7.29 (0.00∗)

λ 3.0465 0.0099 306.96 (0.00∗) −− −− −− −−



Note: Both state-space models have positive and significant parameter estimates, but fat-tailed state-space model has higher

predictive likelihood. The variance of observed variables in the fat-tailed model is λ/(λ− 2) times those of the Gaussian model.
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Table 2: Likelihood Ratio Test Results

(Sample Periods: Apr 1, 1962- Feb 20, 2007)

Model Fat-Tailed ADS Index Gaussian ADS Index

Log-likelihood −22913.18 −28898.04

Likelihood ratio test statistic 11969.72

Likelihood ratio test p-value (0.00∗)

Note: A positive and significant likelihood ratio test statistic indicates that the fat-tailed state-space model significantly

outperforms the Gaussian state-space model.



Figure 1: Daily Business Condition Index: Fat-tail vs. Gaussian
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