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Abstract

This paper compares the density forecasting performance of quantile regressions in

real-time with that of two conventional density forecast methods, using U.S. inflation

and output growth data from 1959 to 2010. Both forecasts with and without factors

are included, and in the latter case, factor selection rules are compared. The density

forecasts using quantile regressions are found to be significantly more accurate than the

two conventional density forecasts. Including factors extracted from macroeconomic

indicators in the quantile density forecast also generally improves density forecast ac-

curacy.
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1 Introduction

Density forecasting has been gaining increasing attention in the last decade. It represents

a complete characterization of the uncertainty associated with a forecast, and thus informs

the user of the forecast about the risks involved in using the forecast for making decisions.

This paper considers density forecasts of U.S. inflation and economic growth, through which

I compare the performance of three commonly used density forecasting approaches. At

the simplest level, the variable of interest is assumed to be normally distributed, in which

case, all one needs to predict are the conditional mean and the conditional variance. The

second approach also centers at the conditional mean, but to avoid parametric assumption

about the error term, it instead uses non-parametric kernel methods to develop the density

forecast. The third approach, which has gained prominence recently, is a quantile regression.

As the ordinary linear regression and the maximum likelihood fit the conditional mean of a

time series, a quantile regression instead fits the conditional quantiles. Connecting all the

conditional quantile estimates forms an estimation of the empirical cumulative distribution

function of the variable to be forecasted.

Meanwhile, another recent development in the forecasting literature has been the recog-

nition that combining the information in large datasets in a way that avoids estimation of

too many parameters may be helpful for forecasting. An approach that has been found to

be useful for point forecasting is to consider a factor-augmented autoregression, i.e. an au-

toregression augmented by the first few principal components from a large dataset (see for

example Stock and Watson (1998), Stock and Watson (2003), Stock and Watson (2005), and

Bernanke et al. (2005)). It would be interesting to know whether such an approach is helpful

in the density forecasting context as well. Therefore, in applying each density forecasting

approach above, I consider univariate autoregressive models and factor augmented autore-

gressions using principal components from a large dataset with about 100 series. In addition,

to see whether the model selection rules designed for factor-augmented point forecasting still
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work well in density forecasting, various approaches to select predictors following Bai and

Ng (2008) are taken into account.

The main contribution of this paper is to find that density forecasts using quantile re-

gression are significantly more accurate than those using two conventional conditional-mean-

centered density forecasting methods: One assumes forecast errors are Gaussian and imposes

normality on the true data generating process. The other allows forecast errors to be non-

Gaussian and attaches the nonparametric kernel density of forecast errors to the conditional

mean forecasts. I do an out-of-sample comparison of the quantile forecasts relative to the

two simple benchmarks using real-time U.S. data from January 1959 to June 2010 at both

monthly and quarterly frequencies. The density forecasts being compared are both au-

toregression and factor augmented autoregression. The comparison uses the test statistic

proposed by Amisano and Giacomini (2007) but takes into account the distortion in the

asymptotic distribution when the models being compared are nested.

Some authors have considered quantile density forecasts for economics activity and in-

flation, such as Manzan and Zerom (2009), Gaglianone and Lima (2009) and De Nicolo and

Marcella (2010), but none of these papers uses factors from a large dataset for prediction.

Also, Manzan and Zerom (2009) related first differences of inflation to predictors, impos-

ing a non-stationary process to inflation dynamics. Moreover, the current paper studies

the density forecasting performance of various factor selection methods, because no atten-

tion has been paid to whether model selection rules designed for point forecasting can work

well in density forecasting or not. It thus especially contributes to the multivariate density

forecasting work using quantile regression in the sense of choosing powerful predictors.

This paper yields the following results. Firstly, density forecasts using quantile regressions

are significantly more accurate than the two conditional mean-centered density forecasts.

This is true across forecasting horizons and both in autoregressions and factor-augmented

autoregressions. Secondly, including factors in the quantile density forecast generally im-

proves forecast accuracy, but including too many factors may cause the accuracy to deterio-
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rate. Thirdly, the best way of selecting predictors for density forecasting is the Least Angle

Regression (LARS). Other predictor selection rules, like the hard threshold, do not work as

well in density forecasting.

The reminder of the paper proceeds in five sections. Section 2 lays out the three den-

sity forecast methods. Within each method, I compare the performance of autoregressions

and factor-augmented autoregressions using four different possible factor selection methods.

Section 3 introduces two sets of tests used in the comparing the performance of density

forecasts across methods and models. It also discusses how the distribution of these test

statistics are affected when the methods being compared are nested. Section 4 discusses the

empirical results from comparing the density forecasts across methods and models. Section

5 concludes.

2 Density Forecasting: Methods and Models

2.1 Methods: Mean-centered versus Quantile-based

In this paper, I consider three methods for density forecasting:

The first method involves a linear regression with normal forecast errors. This consists of

an ordinary least square regression centered at the conditional mean and assuming forecast

errors are Gaussian zero-mean to imply a density forecast.

f(Y h
t+h|Xt) = φ

(Y h
t+h − Ŷ h

t+h

σ̂y

)
. (1)

φ(·) is the probabilistic density function of the standard normal distribution. Ŷ h is the

conditional mean forecast estimated from the ordinary least square regression: Ŷ h = θ̂hXt.
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θ̂h and the conditional variance σ̂2
y are estimated from the regression:

Y h
t = θhXt−h + εt, εt ∼i.i.d N(0, σ2

y).

With Gaussian innovations, the variable of interest is normally distributed. The method

is so-called normal density forecast. To predict the entire distribution, all one needs

to know is the parameters for the first two moments - conditional mean and conditional

variance.

Although it has the advantage of being simple, the method is rigid. Forecast errors are

not always Gaussian. The second method starts with the same conditional mean-centered

regression but uses the kernel density of the forecast errors. In particular, the method

assumes all possible outcomes of Y h
t at time t can be obtained by attaching all historical

forecast errors to the conditional mean forecast,

Y h
t+h = Ŷ h

t+h + es, for s = 1, . . . , t.

The density forecast then is given by the kernel density of Y h
t using these fabricated possible

outcomes.

f(yht+h|Xt) = K
(yht+h − Y h

t+h

hn

)
. (2)

where Y h
t+h is the sum of the mean forecast made at t plus all historical forecast errors. K(·)

is the kernel density function, which typically entails the choice of bandwidth hn. f(Y h
t+h|Xt)

is the predictive density estimated at the realization Y h
t+h. The method is later referred as

semi-parametric density forecast for it estimates the conditional mean via a parametric

method-OLS but the entire distribution using nonparametric kernel-smoothing technique.

In both methods above, the conditioning variables Xt affect the density forecast solely
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through the conditional mean. To allow for more flexibility, the third method considers

quantile estimates. The quantile Qτi(Y
h
t+h|Xt) is the value such that τi (percent) of the mass

of the distribution F (Y h
t+h|Xt) is less than Qτi(Y

h
t+h|Xt). To obtain a density forecast, it is

natural to pick a bunch of τ ′s: τ1, . . . , τn and then apply the kernel smoothing technique to

the corresponding n quantile estimates. Each quantile is predicted by

Q̂τi(Y
h
t+h|Xt) = θ̂h(τi)Xt.

θ̂h(τi) is estimated following Koenker and Bassett (1978). It describes how the τi-th quantile

of the h-period ahead conditional distribution might vary with the regressors in Xt. The

conditional distribution obtained in this way can take any shape. The method is hence

named quantile density forecast. When Y h
t+h is normally distributed, the median forecast

Q̂0.5(Y h
t+h|Xt) given by quantile regression equals the conditional mean forecast given by

OLS. With all other quantiles encompassed by the corresponding percentiles of the normal

distribution, the quantile density forecast is nested by the normal density forecast.

Moreover, the choice of τ ′s raises a couple of issues. First, the smallest and the largest τi

have to be chosen sensibly. For the conventional quantile regression does not work well on the

“extremal quantiles” (see, for example, Chernozhukov (2005)). Second, since the coefficients

in quantile regression are estimated independently, higher quantiles may be smaller than the

lower quantiles. The quantile function may exhibit “crossings”. To deal with this issue, I

follow Chernozhukov et al. (2010)’s approach and rearrange the original quantile estimates

into ascending order. The entire conditional distribution can then be estimated using the

nonparametric kernel density. Specifically,

f(y|Xt) =
1

nhn

n∑
i=1

K
(y − Q̂τi(Y

h
t+h|Xt)

hn

)
, (3)

in which y are evenly interpolated points that generates the domain of f(y|Xt). n is the total
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number of quantiles that are estimated. Epanechnikov kernel is chosen in empirical setting.

The estimated kernel density are normalized to satisfy
∫
K(u)du = 1. The predictive density

is right the kernel density evaluated at the realization Y h
t+h. This approach was also used by

Gaglianone and Lima (2009).

2.2 Models: Autoregression versus Factor Augmentation

In evaluating the forecasting performance of each method above, I considered five differ-

ent models. The autoregressive model (AR/QAR) serves as the benchmark. Four factor-

augmented autoregressive models are also considered. The variable of interest is future

h-period growth Y h
t−1+h, given information available at time t. The conditioning variables

are past values of Y h
t−1+h and static factors extracted from many macroeconomic indicators

selected through various ways. Let k be the index for the four factor-augmented models,

which differ in the factors that are included, as described below. The forecasting equation

augmented by the k-type factors is given by

Y h
t−1+h = γ +

p−1∑
j=0

αjYt−1−j +
r∑
i=1

βki F
k
i,t−1 + εht−1+h, (4)

whereby p, the autoregressive lags and r, the optimal number of factors are selected by the

Bayesian information criterion (BIC). The static factors F k
t−1 are taken to be the first r

principal components of a large number of predictors P k
t−1. The predictors may either be the

entire datasets as in Stock and Watson (1998) or be selected through various ways following
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Bai and Ng (2008). Five variations of the factor augmentation are:

k =



AU no factor augmentation.

PC factors are principal components of all predictors.

Hard factors are principal components of predictors selected by hard threshold.

LARS factors are principal components of predictors selected by LARS.

LARS(SPC) uses LARS to select predictors from [Pt−1 P 2
t−1].

Details on the hard threshold and LARS predictor selection rules are enclosed in appendix

B.

In point forecasting, the principal component method and the hard threshold are found

most useful in predicting real economic activity. LARS-based methods are found to have

the best performance in forecasting inflation (see Bai and Ng (2008) and Stock and Watson

(2009)). In density forecasting, little or no attention has been paid to examine whether the

predictor selection rules designed for point forecasting can select predictors that are useful in

forecasting the entire distribution. Four factor augmented models (k = PC, . . . , LARS(SPC))

are hence compared with one another as well as with the univariate autoregression models

to study their density forecasting performance.

I adopt the recursive method to obtain the out-of-sample forecasts. T is the total number

of observations and m is the number of observations used to construct the first forecast.

Under the recursive scheme, the parameters are updated as forecast moves forward through

time: for t = m+1, . . . , T , fixing the forecasting origin to the first in-sample period t = 1. At

each time t = m+1, . . . , T , the parameter estimate depends explicitly on all information from

1, . . . , t. Using these parameter estimates, conditional distributions and predictive densities

are constructed for each model in every period.

Furthermore, since a good density forecast will have the feature that the realized value

will take place at a point with a high predictive density, the measure of accuracy for a
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particular density forecast thus uses the predictive likelihood, which is the sum of logarithmic

predictive densities over the out-of-sample forecasting periods:

h(T ) =
T∑

t=m+1

fkt (Y h
t−1+h|Xk

t−1).

fkt (Y h
t−1+h|Xk

t−1) is the predictive density of Y h
t−1+h implied by model-k at date t. At the sim-

plest level, one can plot the predictive likelihood against out-of-sample periods to examine

how the predictive ability of a particular density forecast model evolves over time.

3 Evaluating the Density Forecasts

The motivation for this paper is to explore whether quantile regression has better per-

formance against the conditional mean-centered methods in forecasting the distribution of

future output growth and inflation. This raises the question on how to evaluate a density

forecast method. A good density forecast should meet two criteria: First, when subjecting

to the probability integral transform, it should be uniform and i.i.d., otherwise, the forecast

may not be efficient; Second, among multiple density forecasts that satisfy the uniformity

and i.i.d. after transform, it should exhibit higher forecast accuracy than other density fore-

casts. The evaluation therefore consists of two tests. The first test examines whether there

is misspecification in the predictive distribution so that the density forecast is “unbiased”.

The second test compares the predictive likelihood of two different density forecasts. The

comparison is set between the quantile and the non-quantile forecasts, with other forecasting

conditions such as conditioning variables, model selection methods and forecasting scheme,

etc. the same in each comparison.
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3.1 Test the Goodness of Fit

To assess whether there is distributional misspecification in the quantile density forecast,

I use the the “goodness of fit” test developed by Diebold et al. (1998). The idea behind the

test is simple: forecasts put through the probability integral transform are uniform and i.i.d..

In particular, let Zt be the percentile of where the realization at t was observed in the ex-

ante forecast density. If the density forecast is correctly specified, Zt should be uniformly

distributed on the unit interval and purely random over time. If the density forecast is

poorly specified, the empirical CDF of Zt will violate the unconditional uniformity, or i.i.d,

or both. The simplest way to construct such a test is to compare the CDF of Zt with that of

a percentile index sliding from 0 to 1, which examines whether the “occurrence percentile”

meets the percentile that it is supposed to do. The closer the two CDFs are, the closer the

predictive distribution to the true, and the less likely the density forecast is misspecified.

Specifically, Diebold et al. (1998) suggests combining the Kolmogorov-Smirnov (KS) test

with graphical tools to test the “goodness of fit”. The metric of KS test statistic is simply

the maximum distance between the empirical CDF of Zt and CDF of the percentile index.

Under the null hypothesis, the test statistic converges in distribution to the supreme of the

absolute value of a Brownian bridge. The acceptance of the KS test signifies a “good fit” of

a particular density forecast. Table 3.a and 3.b report the results of KS-test and show that

models using quantile density forecast method generally exhibits a good-fit.

3.2 Compare the Density Forecast Accuracy

To decide whether the quantile density forecast has a better out-of-sample predictive

ability, I use the difference-in-predictive-likelihood test proposed by Amisano and Giacomini

(2007). The test pairwisely compares the forecasts from the quantile models to those from the

mean-centered models with respect to the logarithmic predictive density. The advantage of

one density forecast over another is measured by the difference of the logarithmic predictive
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densities in every period: ∆Lt(Y
h
t−1+h) = log f(Y h

t−1+h|Xt−1)− log g(Y h
t−1+h|Xt−1), where f(·)

is the predictive density of the quantile density forecast; and g(·) is that of either the con-

ditional mean-centered density forecast. Based upon the sequence of {∆Lt(Y h
t−1+h)}Tt=m+1,

the test statistic takes the form of a t-statistic:

AGm,T,h ≡
∆Lt(Y

h
t−1+h)

σ̂/
√

(T −m)
, (5)

where ∆Lt(Y
h
t−1+h) is the sample average of ∆Lt(Y

h
t−1+h), and σ̂2 is a suitable heteroskedas-

ticity and autocorrelation consistent (HAC) estimator of the asymptotic variance σ2 (see

Newey and West (1987)).

σ̂2 ≡ 1

T

T∑
t=m+1

∆L2
t + 2 · 1

T

J∑
j=1

(1− j

J + 1
)

T∑
t=m+1+j

∆Lt∆Lt−j.

For one-period ahead forecast (h = 1), the choice of lag truncation J is set to be 0 as in

Giacomini and White (2006) and Amisano and Giacomini (2007). For longer horizon forecast

(h > 1), the choice of J follows Andrews (1991).

Based upon the value of this statistic, one either fails to reject or rejects the null of equal

predictive ability. The null and alternative can be stated as

H0 : E[∆Lt(Y
h
t−1+h)] = 0 v.s HA : E[∆Lt(Y

h
t−1+h)] > 0.

The test is one-sided rather than two sided because the two models are nested. That is, if

the linear regression model is correctly specified, then it will be equivalent in population to

the quantile regression. It is impossible for the more flexible quantile regression to be less

accurate than the linear regression, in population. The null hypothesis will be rejected if

model-f(·) (quantile density forecast) provides more accurate density forecasts relatively to

model-g(·) (conditional mean-centered density forecasts), in which case, AGm,T,h > 0.
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As a result of the fact that the two models are the same under the null hypothesis, the

asymptotic distribution of the AG statistic is not normal (it would be asymptotically normal

if the models were not nested (Amisano and Giacomini (2007))). The issue is familiar in

the context of point forecasting. For point forecasting, the analog of the AG statistic is

the test proposed by Diebold and Mariano (1995). In the nested case, this has a nonstan-

dard distribution, derived by Clark and McCracken (2001), Clark and McCracken (2005),

McCracken (2007), which is a function of stochastic integrals of Brownian motion. But for

nested density forecasts, no corresponding results are known.

I consider two approaches to deal with the issue. The first is to pretend that the asymp-

totic distribution of the AG statistic is still standard normal, and make inference using

standard normal critical values1. The second is to use a bootstrap approach. Both are

reported in empirical results.

As for the nested point forecasts, the nonstandard asymptotic distribution of AG test

statistic has been derived by Clark and McCracken (2001), Clark and McCracken (2005)

and McCracken (2007), which is a functions of integrals of Brownian motion and may or

may not depend upon unknown nuisance parameters. As for the nested density forecasts,

except that it is nonstandard, little is known. In particular, there are two approaches to

deal with this issue. The first is to pretend that the asymptotic distribution is still standard

normal and make inference using standard normal critical values. For example, one might use

the rolling window approach as in Giacomini and White (2006) to preserve the finite sample

imprecision in parameter estimation so that the difference of predictive likelihood will not

vanish asymptotically. On the other hand, in a recursive forecast scheme, both the in-

sample and the out-of-sample sizes grow, which causes the difference of predictive likelihood

to vanish asymptotically. As such practitioners have to turn to bootstrap approaches and

Monte Carlo analysis of finite-sample size and power to inference. As a result, the finite-

1This would be justified in a rolling window approach as in Giacomini and White (2006) in which the finite
sample imprecision in parameter estimation is preserved and so that the difference in predictive likelihood
will not vanish asymptotically
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sample distribution of AG statistic in recursive density forecast bears a strong resemblance

to those in Clark and McCracken (2005) and McCracken (2007).

3.2.1 Bootstrap Algorithm

The bootstrap aims to simulate finite-sample distribution of AG statistic under the null

using the actual sample. The restricted model is the normal density forecast with Gaussian

errors; the unrestricted model is quantile density forecasts. The null that the additional

quantiles does not provide predictive content over the mean and the variance requires us to

simulate Gaussian forecast errors for bootstrap samples. This makes the bootstrap method

used here differ from the parametric bootstrap method used by Kilian (1997) and Stock and

Watson (2003). The stored residuals are not directly taken for sampling, but their standard

deviation is taken to simulate normally distributed forecast errors. The Gaussian forecast

errors are then obtained by sampling from these normally distributed artificial residuals.

Bootstrapped time series on Y h
t−1+h and Ft−1 are parameterized using model estimates

based on monthly (quarterly) 1959 : 01 − 2010 : 06 data - only the last data vintage. The

Y h
t−1+h takes exactly the same form as the normal density forecasting model for h = 1. The

Ft−1 follows an vector autoregression for r static factors. The lag orders for Yt−1 and Ft−1

are fixed to be one. Forecast errors are simulated by drawing with replacement from the

Gaussian forecast errors. The first observation is drawn from the actual data. More details

about the bootstrap DGP are enclosed in appendix A.

In each of 400 bootstrap replications, the bootstrapped data are used to recursively es-

timate the conditional mean-centered density forecast (restricted) and the quantile density

forecast (unrestricted). The estimated models for Y h
t−1+h and Ft−1 are taken to be correctly

specified in bootstrapping artificial data. The resulting forecasts are used to calculate fore-

cast test statistics. Critical values are simply computed as percentiles of the bootstrapped

test statistics.
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3.2.2 Monte Carlo Evidence

It is important to provide Monte-Carlo simulation evidence on the finite sample size and

power of the AG test. Ideally, I would do this for both the version of the test using normal

critical values and the version of the test using bootstrap critical values. Unfortunately,

the computation cost of doing a bootstrap evaluation of out-of-sample forecasts within a

Monte Carlo simulation is too great. For the bootstrap, I rely on the fact that the bootstrap

often works well in small samples, though acknowledge that this is by no means always the

case. Thus, my Monte Carlo simulations consider only the size and power of the AG test

comparing the sample test statistics to standard normal critical values (500 replications per

simulation).

The Monte-Carlo DGP consists of one power DGP and two size DGPs - one without

factors and the other in presence of factors. Each experiment is performed at both monthly

and quarterly frequency. The sample length is taken to be the same as those in the real

data. The number of replications for each experiment is 500. For both size and power

DGPs, I generate data using independent draws of innovations from the normal distribution

and the autoregressive structure of the DGP. The initial observation of each DGP uses the

unconditional mean of each simulated data series. I consider results for a variety of forecast

frequencies: As for monthly forecast, Y is the monthly CPI with forecast horizons: h =

1, 3, 6, 12 months. The DGP is parameterized using model estimates based on monthly

1959 : 01 − 2010 : 06 data. The total sample length is T = 622 months with the first

recursive in-sample periods m = 120 months; As for quarterly forecast, Y is the quarterly

GDP with forecast horizons: h = 1, 2, 4, 8 quarters. The DGP is parameterized using model

estimates based on quarterly 1959 : Q1−2010 : Q2 data. The total sample length is T = 210

quarters with the first recursive in-sample periods m = 40 quarters.

Size DGP To evaluate the actual size of the AG test when models in compare are nested,

the DGP ensures that the restricted model (mean-centered density forecasts) are true in
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real-time. The data generating process follows:

 yt

ft

 =

 α β

0 φ

 yt−1

ft−1

+

 σy · uy,t

uf,t

 , (6)

with a constant γ, where
[
uy,t uf,t

]′
∼i.i.d N(0(1+r)×1, I(1+r)). Without factor augmenta-

tion, the coefficient β is set at 0. In presence of factor augmentation, factor is simulated

through an univariate AR(1) process, with autoregressive coefficient φ set at 0.75. The pre-

dictors Xt are generated by Xt = Λft + εXt ∼ N(0, 1). Parameters α, β, Λ and σy were all

calibrated from the real data.

Power DGP To evaluate the actual power of AG test, the DGP ensures the quantile den-

sity forecast outperforms the mean-centered density forecasts in real-time. This is achieved

by specifying that

yt = γ + α(Ut)yt−1 + uy,t, (7)

where uy,t is standard normal, Ut is uniformly distributed on the unit interval, and the

autoregressive coefficient α is selected by Ut in way that

α(Ut) =

 0 if Ut < 0.5;

c if Ut ≥ 0.5.
(8)

Ut corresponds quantile τ in models. The CDF of yt takes the form:

Fy(τ) =

 γ + Φ−1(τ), if τ < 0.5;

γ + cyt−1 + Φ−1(τ), if τ ≥ 0.5.
(9)
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c is set to slide from 0.1 to 0.8. Φ−1 is the inverse CDF of the standard normal distribution

and so the lower regression model is normally specified. As the autoregressive coefficient

stochastically switches between 0 and c, the data series stochastically switches between a

random walk and a Gaussian AR(1). The constant γ was set at the fitted values from an

autoregression using the real data. The power experiment is not factor-augmented.

Each Monte Carlo simulation involves first estimating restricted and unrestricted models

using the density forecast methods introduced in Section 2. The statistics computed with

the Monte Carlo data from a given draw represent the “sample” statistics. Based on 500

Monte Carlo draws, I report the percentage of Monte Carlo trials in which the null of equal

predictive accuracy is rejected in favor of quantile density forecast. It is the percentage

of trials in which the sample test statistics exceed the standard normal critical values. In

the reported results, the tests are compared against 5% one-sided standard normal critical

values, so that the nominal size of the tests is 5%. Using 10% critical values yields similar

findings.

Monte Carlo Results Table 4.a − 4.b and Table 5 provide the actual size and power of

the AG test, respectively. The results presented in Table 4.a − 4.b and Table 5 indicate

following main findings:

First, the AG test is undersized at all forecasting horizons. For example, as shown in

Table 4.a’s results for the DGP of a univariate autoregression, with T = 210 and m = 40,

the 5% size of the AG test ranges from 0.00 (h < 8) to 0.04 (h = 8); 10% size ranges from

0.00 to 0.11 (h = 8). As the sample length increases from T = 210 to T = 622, the 5% size

all decrease to 0.00; the largest 10% size decreases to just 0.02 (h = 12). Figure 1.a − 1.b

and 2.a− 2.b show the finite-sample distribution of AG statistic is skewed to the right with

respect to the standard normal distribution when two models in compare are nested. Figure
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1.a−1.b and 2.a−2.b also indicate that the AG statistics for large samples have heavier tails

and drift into the negative orthant much quicker than for small samples. The size distortion

establishes the findings by bootstrap. The under-size property implies that the standard

normal critical value might signal that the quantile density forecast is not superior in cases

where the quantile density forecast is superior.

Meanwhile, the AG test has very low power for c < 0.3, and becomes more powerful as c

increases, as forecast horizon shortens, or as sample size increases. For example, in Table 5,

for one-step ahead autoregressive forecast, as c increases from 0.1 to 0.8, the power increases

from 0.00 to 1.00; Setting c = 0.7, as h increases, the power decreases from 0.99 to 0.08

in quarterly forecast, and from 1.00 to 0.10 in monthly forecast; As sample size increases

from T = 210 to T = 622, the power almost doubles at medium-long horizons when the

comparison is set between quantile density forecast and normal density forecast, but de-

creases when the comparison is set between quantile density forecast and semi-parametric

density forecast. The one-step ahead forecasts are often more powerful than forecasts at

other horizons. Forecasts at longer horizons are subject to temporal averaging problem. The

underpower property indicates that the standard normal critical value might signal that the

quantile density forecast is not superior in cases where it is superior.

Overall, although assimilating the impacts of the semi- and non-parametric density fore-

casts into the asymptotic distribution of AG statistic requires non-trivial calculations, density

forecast users can rely on the finite-sample distributions to make inference. The nonstan-

dard limiting distribution of the AG statistic for nested density forecast models can be

well-approximated by the finite-sample distributions given by the bootstrap approaches or

the Monte Carlo analysis.
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4 Empirical Results

4.1 Data and Methods

This section presents results on the application of the methods, models and tests intro-

duced in Section 2 and Section 3. I focus on forecasting two macroeconomic variables for

the United States: inflation, as measured by the log growth of consumer price index (urban,

all items) (CPI), and real economic growth, as measured by the domestic output growth

(GDP). Data on CPI and GDP are taken from the Federal Reserve Bank of Philadelphia’s

Real-Time Data Set for Macroeconomists (RTDSM). The data set reflects what the macroe-

conomic data exactly looked like at each historical date so that forecasting using this data

set unveils what the forecast would have performed as they looked at the time (Clark and

McCracken (2009)). Let zt−1 be the observation at each date t: all forecasts are made using

annualized Y h
t−1+h = 1

h
log
(
zt−1+h/zt

)
and Yt−1 = log

(
zt−1/zt−2

)
. As for the predictors, I

use a 68-variable dataset directly gathered from the Federal Reserve Bank of Saint Louis

database FRED2 than using the 215 series of fully-revised data used by Stock and Watson

(2002a). In addition to the reason of data availability, the relatively parsimonious dataset

is chosen because Faust and Wright (2009) and Bernanke and Boivin (2003) both find that

factor models generally give less accurate point forecast in the smaller dataset than in the

215-variable dataset. These series were all transformed to be stationary by taking first or

second differences, logarithms, or first or second differences of logarithms, following the stan-

dard practice. Forecasting is executed at both monthly and quarterly frequency. The sample

period spans from January 1959 to June 2010.

For the estimation, I use a recursive scheme in the pseudo-out-of-sample forecasting.

This entails fully recursive factor extraction, model selection, and density estimation. For

2I would like to thank Jonathan for always bailing me out on dataset throughout the days I was working
on this paper.
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example, for h = 1, the first forecast was made using data from 1959 : 01 through 1968 : 12,

forming a predictive distribution for Y h
t−1+h of 1969 : 01. As the realization value of 1969 : 01

comes in, all factors and information criteria were then recomputed using data from 1959 : 01

through 1969 : 01, and form a predictive distribution for Y h
t−1+h of 1969 : 02. All order and

predictor selection is fully recursive. The conditioning variables used to produce density

forecasts change from one month to next. What is constant is only the rule by which that

model is selected. Moreover, monthly GDP data is simulated in real-time via Chow-Lin

interpolation using six monthly macroeconomic series3.

4.2 Forecasting Results

Using the above methodology, Figure 5.b, as an example, shows how the out-of-sample

predictive distribution of the quarterly output growth from January 1960 to June 2010

evolves using quantile autoregression. The drastic distributional change in the mid-1980s

justifies the finding by McConnell and Perez-Quiros (2000) and Kim and Nelson (1999) that

there is a substantive decline in the volatility of output growth since 1984.

Tables 1.a − 1.d and Tables 2.a − 2.d report the out of sample forecast results. The

forecasting horizon is h = 1, 3, 6, 12 for monthly forecasts, and h = 1, 2, 4, 8 for quarterly

forecasts. In each table, the comparison is two-fold: between quantile and mean-centered

methods and among different sets of predictors. The comparison among methods provides

evidence that supports the advantage of using quantile regression over conditional mean-

centered methods. The comparison among predictors explores the role that dynamic factors

play in forecasting the conditional distribution of future inflation and output growth. To

avoid clutter in notation,CPI-Hard Threshold refers density forecast for future inflation in

3The six series are: civilian employment, all items consumer price index for all urban consumers, real
disposable personal income, industrial production index, ISM Manufacturing: PMI composite index, all
employees total non-farm payrolls, and real personal consumption expenditures. They are all the seasonally
adjusted annual rate of the monthly data series.
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which the predictors are pre-selected by the hard threshold; GDP-QAR/AR refers density

forecast for future output growth conditioning on the autoregressive lags; and so on. In each

model, entries in the first row are predictive likelihood, in which a larger value signifies a

more accurate density forecast. Entries in the second row are the AG test statistics. When

the AG test statistic is positive and significant, it indicates that the quantile density fore-

cast provide more accurate density forecasts than normal density forecasts (first column) or

than semi-parametric density forecasts (second column). The third row reports the boot-

strap p-values. The fourth row reports asymptotic p-values, by which I mean the p-values

obtained by comparing the sample test statistic to the standard normal distribution. The

conclusions for inflation and output growth are different in details but share three common

characteristics.

First, density forecasts using quantile regression are significantly more ac-

curate than the two conditional mean-centered density forecasts. This is true

across forecasting horizons and both in autoregressions and factor-augmented

autoregressions.

As indicated by Tables 1.a − 1.d and Tables 2.a − 2.d, when the comparison is between

quantile density forecast and normal density forecast, the AG statistics are all positive and

significant of the 5% or 10% level at all forecasting horizons. The significance holds even

when the inference uses (potentially conservative) standard normal critical values. When the

comparison is between quantile density forecast and semi-parametric density forecast, the

results for inflation and output growth are slightly different. For inflation, there is signifi-

cant improvement from using the quantile regression at all forecasting horizons in univariate

forecast but only at short horizons in presence of factors. For output growth, the AG test is

not always significant and there is no certain pattern associated with the modeling specifi-

cation or the forecasting horizon. In addition, holding other forecasting condition the same,

Figures 6.a − 6.b, as an example, plot how the forecasting accuracy (in terms of predictive

21



likelihood) of the quantile density forecast exceeds that of the normal density forecast as the

out-of-sample periods increase.

Second, including factors in quantile density forecast generally improves fore-

cast accuracy but including too many factors may cause the accuracy to deteri-

orate.4

Figures 4.1.a − 4.3.b plot the predictive likelihood against the number of factors for all

the predictor selection methods that I consider. The multivariate factor-augmented models

outperform the autoregression model if the number of factors is small. Except in semi-

parametric forecast of inflation, one can always observe a decline in the predictive likelihood

as more factors are included. Even with semi-parametric density forecasts where factor

augmentation seems crucial in improving forecast accuracy, including more than ten factors

does not show much advantage over the forecast using only the first two factors.

For inflation, factors are very useful in predicting the conditional distribution of future

inflation, especially when using quantile regression. For output growth, only a small num-

ber of factors have strong predictive power over the autoregressive lags. This is true across

forecasting approaches and horizons. Univariate autoregressive density forecast of quarterly

output growth shows remarkable advantage at medium and long horizons. This indicates

that fluctuation in macroeconomic indicators are more relevant in predicting the short-run

fluctuation in the distribution but not the long run trend of output growth.

Third, the best way of selecting predictors for density forecasting is based

upon Least Angle Regression (LARS). Linear factor selection rules such as hard

threshold and Bayesian information criterion do not work well in density fore-

casting.

4Taking into account the temporal averaging issue, the analysis is mainly base on the results from the
forecasting of monthly CPI and that of quarterly GDP.
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Least Angle Regression outperforms other selection methods for two reasons: First, the

principal components are the linear combination of the predictors that explain most vari-

ances in the predictors, but do not consider their relationship with the variable being forecast.

LARS is a variable search algorithm that mitigates this problem. Second, hard thresholding

selects predictors of high marginal predictive power, but the selected predictors might be

correlated with one another, which turns out to impair the density forecast. LARS searches

predictors that are most correlated with the variable of interest but least correlated with the

previous selected predictors. In addition, LARS(SPC) goes one step further and uses the

squared predictors to incorporate higher-moment relationships between the variable to be

forecast and the predictors. In Figure 4.1.a− 4.3.b, as the number of factors increases or as

forecasting horizon lengthens, the forecast accuracy of the hard threshold model deteriorates

more quickly than any other factor models; LARS and LARS(SPC) start to outperform the

principal component models and the hard threshold models for all the density forecasting

methods. Since the distribution of inflation is more volatile than that of output growth, the

LARS(SPC) forecasts exhibit the best performance among all factors models for all density

forecasting methods and forecasting horizons for inflation; while the best factor model for

output growth forecast uses either LARS or LARS(SPC).

Moreover, Bayesian information criterion cannot select the appropriate number of factors.

Given all else equal, density forecasts using BIC selected number of factors generally exhibit

lower predictive likelihood than density forecasts using only a fixed number of factors. For

example, as shown in Table 2.a and 2.b, the predictive likelihood of factor-augmented models

increases by 10 to 20 as the number of factors is reduced from what BIC selected to one.

Point forecasting studies like Stock and Watson (2002b) and Faust and Wright (2009) have

also found that the forecast accuracy is worse under BIC than under the choice of few fixed

factors. Meanwhile, as the number of factors changes from a fixed number to that selected by

BIC, factor-augmented density forecasts become less accurate than univariate autoregressive
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forecasts. Take forecasts of the quarterly output growth as an example: when the number

of factors is set to be one, factor-augmented models exhibit higher predictive likelihood

than models using only univariate autoregressive lags5(see Table 2.d). When the number of

factors is BIC-determined, the predictive likelihood of factor models falls below that of the

autoregressive models at all forecasting horizons for all the density forecasting methods6(see

Table 2.c).

5 Conclusion

This paper finds that density forecasts using quantile regression is significantly more

accurate than two conventional conditional-mean-centered density forecasts in forecasting

the conditional distribution of future U.S. inflation and output growth. This paper also con-

tributes to the empirical work on factor models, especially that of Stock and Watson (1998),

by providing empirical evidence that including factors in the quantile density forecast can

improve the forecast accuracy when our goal is to forecast the entire conditional distribution

of future inflation and output growth. Certain linear factor selection rules such as Bayesian

information criterion and hard threshold can not select factors that adapt to density fore-

casting well. The best way of selecting predictors for density forecasting is based upon Least

Angle Regression. It would be interesting to develop model selection rules that can select

factors especially powerful in density forecasting, based on the distributional connections

between the variable to be forecasted and the predictors.

5The sole exception appears in quantile density forecast at h = 1.
6The sole exception is semi-parametric PC-model at h = 1.
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A Bootstrap Procedure

• Step 1: For each model k, write equation (4) in companion form yields:

 Yt−1+h

Ft−1+h

 =

 α(L) β

0 Φ(L)

 Yt−1

Ft−1

+

 εYt−1+h

Gεft−1+h

 (10)

Yt is M × 1. Ft is r. The constant term γ is included in the regression but not written

here for notation simplicity. Since the true number of dynamic factors is q. G is set to

be r × q. εYt and εft are structural shocks. Write the above VAR into MA form :

A(L)Xt−1+h = vt−1+h = Rεt−1+h =

 IM 0M×q

0r×M Gr×q

 εYt−1+h

εft−1+h

 , (11)

in which E(εt−1+hε
′
t−1+h) = I and E(vt−1+hv

′
t−1+h) = Σ = Rεt−1+hε

′
t−1+hR

′ = RR′.

• Step 2: To simulate normally distributed data series, the first step is to simulate Gaus-

sian forecast errors while identifying R to preserve the inter-dependent relationship

among innovations. The underlying structural shocks εs are generated from a multi-

variate normal distribution N(0p×1, Ip), where p = M + r. R is identified from Σ, the

variance-covariance matrix of the residuals from the forecast using the last data vin-

tage. For identification purpose, two restrictions are imposed here. The first restriction

assumes innovations to Yt−1+h have no contemporaneous effects on factors. The sec-

ond restriction assumes innovations to factors that explain less variation in the many

predictors have no contemporaneous effect on factors that explain more variation. The
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artificial forecast errors later used for bootstrap are constructed in way that

v̂t−1+h = R̂εt−1+h =



IM 0M×1 0M×1 . . . 0M×1

01×M γf11 0 . . . 0

01×M γf21 γf22 . . . 0

...
...

01×M γfr1 γfr2 . . . γfrr





εYt−1+h

εf1t−1+h

εf2t−1+h

...

εfrt−1+h


. (12)

• Step 3: I then re-sample bootstrap forecast errors vboott−1+h from the normally distributed

artificial forecast errors v̂t−1+h. The bootstrap data generating process follows

 Y boot
t−1+h

F boot
t−1+h

 =

 α̂(L) β̂

0 Φ̂(L)

 Yt−1

Ft−1

+ vboott−1+h, (13)

in which α̂(L), β̂, Φ̂(L) are OLS estimates. Each simulated sample then participates in

a real-time recursive out-of-sample density forecast and yields a AG test stat. Every AG

test stat simulated in this way satisfies the null hypothesis of equal forecast accuracy,

all of which form bootstrap distribution later used to determine the significance.
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B Predictor Selection

B.1 Hard Threshold

The method of hard thresholding simply uses t-test to determine whether the i-th pre-

dictor in Pt−1 is significant in predicting Yt−1+h while controlling the autoregressive lags of

Yt−1. The selection rule is purely based upon simple linear relationship between the variable

to be forecasted and the predictors. Specifically,

• Let Wt−1 be the vector of a constant γ and p lags of Yt−1. For each i = 1, . . . , N , regress

Y h
t−1+h on Wt−1 and each predictor Pi,t−1. In the meantime, let ti be the t−statistic

associated with Pi,t−1.

• Obtain a ranking of the marginal predictive power of Pi,t−1 by sorting |t1|, |t2|, . . . , |tN |

in descending order.

• Let k∗α be the total number of series whose |ti| exceeds some threshold significance level

α. Forecasts using sample data takes α = 1.65. Forecasts in the Monte Carlo takes

α = 0.29 to prevent null.

• Then the selected predictors P1,t−1, . . . , Pk∗α,t−1 form a new large predictor matrix Pt(α).

The static factors Fhard
t−1 are estimated by taking the principal components of Pt(α).

• Estimate the optimal number of factors r using Bayesian information criteria without

constant term and lags of Yt as specified in Stock and Watson (2002b), and

F hard
t−1︸ ︷︷ ︸
r×1

⊂ Fhard
t−1 .
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B.2 Least Angle Regression

LARS Algorithm Let µ̂k be the current OLS estimate of Y h
t−1+h using the k selected

predictors: µ̂k = Pt−1β̂(k) (coefficients corresponds to unselected factors are set to be zero).

Define ĉk = P
′
t−1(Y h

t−1+h − µ̂k) to be the vector of current correlations at the k-th step

selection. ĉkj is proportional to the correlation between predictor Pj,t−1 and the k-th step

residuals.

Formally, the LARS algorithm begins at µ̂0 = 0. Let K be the set of indices corresponding

to variables with the largest absolute correlations.

Ĉ = max
j
|ĉkj | K = {j : |ĉkj | = |Ĉ|}. (14)

Let sj = sign(ĉkj ) and define the active predictor matrix corresponding to K as

PK = (sjPj,t−1)j∈K . (15)

Let GK = P ′KPK and AK = (1′KG
−1
K 1K)−1/2, where 1K is a vector of ones equaling the size of

K. The algorithm proceeds by finding the unit vector making equal acute angles with each

predictor in PK . The equiangular vector uK can be defined as

uK = PKωK , (16)

where ωK = AKG
−11K . Given the inner product vector aK = P ′uK , LARS then updates µ̂

as

µ̂k+1 = µ̂k + γ̂uK (17)
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where

γ̂ =
+

min
j∈K

( Ĉ − ĉj
AK − aj

,
Ĉ + ĉj
AK + aj

)
(18)

“min+” indicates the minimum is taken over only the positive components.

Algorithm Illustration

Figure B.2: The LARS algorithm in the case of N = 2 predictors; Y h
t−1+h is the projection

of Y h
t−1+h into L(P1,t−1, P2,t−1). Beginning at µ̂0 = 0. The residual vector Y h

t−1+h − µ̂0 has

greater correlation with predictor P1,t−1 than with P2,t−1 . The algorithm then searches along

the vector from µ̂0 to P1,t−1, and the next LARS estimate is µ̂1 = µ̂0 + γ̂1P1,t−1. γ̂1 is the

step length of the search. In the N = 2 case, it is chosen such that Y h
t−1+h− µ̂1 bisects angle

∠P2,t−1µ̂1P1,t−1. Then, as the residual vector moves to be Y h
t−1+h − µ̂1, the second selection

starts. After finding that the predictor 2 has the greatest current correlation, the search

switches to another hyperplane spanned by P2,t−1, µ̂2, and Y h
t−1+h. µ̂2 = µ̂1 + γ̂2u2, where u2

is the unit bisector; µ̂2 = Y h
t−1+h in the case N = 2, but not for the case N > 2.

33



Table 1.a Real-time Density Forecast on Monthly CPI (BIC): Sample Periods 1959 : 01− 2010 : 06

Forecast Horizon H = 1M H = 3M H = 6M H = 12M

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

CPI-Hard Threshold −1209.06 −1301.32 −1219.95 −1114.01 −1266.43 −1121.72 −1008.47 −1237.72 −1027.07 −1035.16 −1270.03 −1011.62

AG-stat 2.05 0.74 2.46 0.45 2.42 1.09 2.39 −1.00

Boot. p-value (0.00∗) (0.07) (0.00∗) (0.08) (0.00∗) (0.01∗) (0.00∗) (0.86)

Asy. p-value [0.02∗] [0.23] [0.01∗] [0.33] [0.01∗] [0.14] [0.01∗] [0.84]

CPI-LARS(k) −1213.36 −1286.31 −1215.01 −1110.17 −1248.03 1106.31 −1023.57 −1209.04 −1019.31 −1031.30 −1287.90 −1004.34

AG-stat 2.06 0.13 2.13 −0.27 2.04 −0.19 2.07 −1.07

Boot. p-value (0.00∗) (0.33) (0.00∗) (0.50) (0.00∗) (0.45) (0.00∗) (0.83)

Asy. p-value [0.02∗] [0.45] [0.02∗] [0.61] [0.02∗] [0.58] [0.02∗] [0.86]

CPI-LARS(SPC) −1201.87 −1307.65 −1227.24 −1109.58 −1302.45 −1131.06 −1020.60 −1310.39 −1057.29 −1031.06 −1277.49 −1045.34

AG-stat 2.80 1.90 2.35 0.97 2.25 1.33 2.61 0.61

Boot. p-value (0.00∗) (0.00∗) (0.00∗) (0.02∗) (0.03∗) (0.01∗) (0.00∗) (0.02∗)

Asy. p-value [0.00∗] [0.03∗] [0.01∗] [0.17] [0.01∗] [0.09] [0.00] [0.27]

CPI-Principal Component −1209.36 −1275.96 −1214.32 −1108.50 −1237.84 −1123.19 −1010.52 −1218.02 1042.20 −1033.18 −1209.27 −1028.36

AG-stat 1.88 0.37 1.98 0.84 2.19 1.48 2.12 −0.19

Boot. p-value (0.00∗) (0.28) (0.00∗) (0.02∗) (0.00∗) (0.00∗) (0.00∗) (0.17)

Asy. p-value [0.03∗] [0.36] [0.02∗] [0.20] [0.01∗] [0.07] [0.02∗] [0.57]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

CPI-QAR/AR −1222.45 −1284.69 −1229.09 −1110.11 −1238.61 −1123.23 −1031.11 −1199.86 −1038.20 −1043.96 −1223.97 −1065.70

AG-stat 1.69 0.48 2.02 0.75 2.35 0.34 2.25 0.95

Boot. p-value (0.00∗) (0.48) (0.02∗) (0.27) (0.04∗) (0.35) (0.12) (0.01∗)

Asy. p-value [0.05∗] [0.32] [0.02∗] [0.23] [0.01∗] [0.37] [0.01∗] [0.17]

Note: (·) is the bootstrap p-values. [·] is the asymptotic p-values. ∗ indicates significance at 5% level. Epanechnikov kernel entails the choice of bandwidth

hn = 2.34 ·σQ̂yt (τi|Xt−1)
·n(−1/5) (n = 99), the rescaled versions of which are also considered: 0.8hn is used in the monthly CPI autoregressive forecast; 0.5hn is used

in monthly GDP forecast. Define ∆Q̂max
yh
t−1+h

(τi|Xt−1) to be the maximum distance of all pairwise adjacent quantiles, I add two points that are 2 ·∆Q̂maxyt
(τi|Xt−1)

away from the minimum and the maximum quantile estimates to smooth the tails.



Table 1.b Real-time Density Forecast on Monthly CPI (one factor): Sample Periods 1959 : 01− 2010 : 06

Forecast Horizon H = 1M H = 3M H = 6M H = 12M

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

CPI-Hard Threshold −1221.94 −1287.85 −1228.34 −1117.02 −1230.34 −1120.28 −1017.51 −1201.52 −1030.41 −1022.97 −1200.10 −1013.84

AG-stat 1.77 0.41 1.72 0.22 1.81 0.62 1.91 −0.47

Boot. p-value (0.00∗) (0.13) (0.01∗) (0.23) (0.04∗) (0.06) (0.06) (0.39)

Asy. p-value [0.04∗] [0.34] [0.04∗] [0.41] [0.04∗] [0.27] [0.03∗] [0.68]

CPI-LARS(k) −1228.36 −1290.33 −1234.06 −1123.62 −1251.32 1132.17 −1027.52 −1239.24 −1063.54 −1037.60 −1258.84 −1047.38

AG-stat 1.78 0.39 1.93 0.48 2.04 1.59 2.05 0.50

Boot. p-value (0.00∗) (0.23) (0.00∗) (0.10) (0.01∗) (0.00∗) (0.03∗) (0.03∗)

Asy. p-value [0.04∗] [0.35] [0.03∗] [0.32] [0.02∗] [0.06] [0.02∗] [0.31]

CPI-LARS(SPC) −1236.91 −1284.82 −1227.94 −1122.11 −1237.85 −1123.67 −1039.63 −1200.54 −1037.29 −1050.40 −1226.63 −1067.47

AG-stat 1.28 −0.61 1.84 0.09 2.19 −0.12 2.08 0.80

Boot. p-value (0.00∗) (0.62) (0.00∗) (0.25) (0.00∗) (0.40) (0.03∗) (0.01∗)

Asy. p-value [0.10] [0.73] [0.03∗] [0.46] [0.01∗] [0.55] [0.02∗] [0.21]

CPI-Principal Component −1224.64 −1287.84 −1233.12 −1122.33 −1247.16 −1136.80 −1029.01 −1220.12 1049.67 −1032.58 −1223.84 −1049.07

AG-stat 1.67 0.58 1.85 0.83 1.89 0.98 2.02 0.78

Boot. p-value (0.00∗) (0.12) (0.00∗) (0.03∗) (0.03∗) (0.03∗) (0.04∗) (0.03∗)

Asy. p-value [0.05∗] [0.28] [0.03∗] [0.20] [0.03∗] [0.16] [0.02∗] [0.22]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

CPI-QAR/AR −1222.45 −1284.69 −1229.09 −1110.11 −1238.61 −1123.23 −1031.11 −1199.86 −1038.20 −1043.96 −1223.97 −1065.70

AG-stat 1.69 0.48 2.02 0.75 2.35 0.34 2.25 0.95

Boot. p-value (0.00∗) (0.48) (0.02∗) (0.27) (0.04∗) (0.35) (0.12) (0.01∗)

Asy. p-value [0.05∗] [0.32] [0.02∗] [0.23] [0.01∗] [0.37] [0.01∗] [0.17]

Note: When the number of factors reduced from what BIC selected to one, the predictive likelihoods of quantile density forecast and semi-parametric density

forecast both decline, while that of normal density forecast increases but still lower than that of the two. This indicates that some factors though may not have strong

predictive power in the conditional mean, but may be crucial in forecasting the higher moments.



Table 1.c Real-time Density Forecast on Quarterly CPI (BIC): Sample Periods 1959 : Q1− 2010 : Q2

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

CPI-Hard Threshold −343.46 −358.53 −370.33 −319.19 −361.01 −348.30 −327.30 −392.61 −325.48 −334.60 −577.66 −346.90

AG-stat 1.47 1.90 2.01 1.82 1.81 −0.20 1.52 1.24

Boot. p-value (0.00∗) (0.04∗) (0.00∗) (0.03∗) (0.02∗) (0.80) (0.06) (0.08)

Asy. p-value [0.07] [0.03∗] [0.02∗] [0.03∗] [0.03∗] [0.58] [0.06] [0.11]

CPI-LARS(k) −343.17 −370.50 −365.23 −318.44 −388.55 −343.27 −332.65 −442.62 −329.57 −379.84 −939.25 −372.13

AG-stat 2.08 1.75 2.61 1.87 1.64 −0.26 1.68 −0.25

Boot. p-value (0.00∗) (0.05∗) (0.00∗) (0.07) (0.02∗) (0.91) (0.17) (0.89)

Asy. p-value [0.02∗] [0.04∗] [0.00∗] [0.03∗] [0.05∗] [0.60] [0.05] [0.60]

CPI-LARS(SPC) −348.02 −458.48 −374.28 −331.63 −484.32 −358.44 −337.04 −534.06 −351.30 −364.74 −1179.26 −385.74

AG-stat 2.28 2.13 2.87 1.80 2.83 0.98 2.05 1.61

Boot. p-value (0.00∗) (0.05∗) (0.00∗) (0.08) (0.00∗) (0.18) (0.08) (0.01∗)

Asy. p-value [0.01∗] [0.02∗] [0.00∗] [0.04∗] [0.00∗] [0.16] [0.02∗] [0.05∗]

CPI-Principal Component −342.05 −358.36 −364.36 −323.49 −361.41 −342.14 −326.17 −390.89 −327.71 −347.50 −569.26 −347.71

AG-stat 1.56 1.84 1.93 1.30 1.88 0.17 1.50 0.01

Boot. p-value (0.00∗) (0.04∗) (0.00∗) (0.18) (0.02∗) (0.64) (0.35) (0.60)

Asy. p-value [0.06] [0.03∗] [0.03∗] [0.10] [0.03∗] [0.43] [0.07] [0.49]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

CPI-QAR/AR −349.55 −366.38 −363.65 −318.68 −377.29 −347.59 −327.20 −421.19 −352.44 −339.48 −564.39 −354.42

AG-stat 1.60 1.65 2.21 1.87 2.05 2.18 1.62 1.65

Boot. p-value (0.01∗) (0.15) (0.00∗) (0.04∗) (0.00∗) (0.00∗) (0.23) (0.01∗)

Asy. p-value [0.06] [0.05∗] [0.01∗] [0.03∗] [0.02∗] [0.01∗] [0.05∗] [0.05∗]

Note: When the comparison is between quantile density forecast and normal density forecast, significance exists despite various modeling specifications at all

forecasting horizons. When the comparison is between quantile density forecast and semi-parametric density forecast, significance exists only at short horizons in

factor models; at all horizons in quarterly autoregressive forecasts, but not at all in monthly autoregressive forecasts.



Table 1.d Real-time Density Forecast on Quarterly CPI (one factor): Sample Periods 1959 : Q1− 2010 : Q2

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

CPI-Hard Threshold −345.63 −366.82 −366.63 −318.92 −384.80 −351.63 −329.77 −447.44 −333.60 −373.10 −838.89 −377.40

AG-stat 1.59 1.82 2.24 2.10 2.01 0.39 2.07 0.17

Boot. p-value (0.00∗) (0.06) (0.00∗) (0.01∗) (0.00∗) (0.64) (0.01∗) (0.66)

Asy. p-value [0.06] [0.03∗] [0.01∗] [0.02∗] [0.02∗] [0.35] [0.02∗] [0.43]

CPI-LARS(k) −346.69 −366.35 −369.39 −318.16 −362.23 −346.63 −326.50 −389.19 −323.26 −342.25 −575.34 −348.44

AG-stat 1.63 1.94 2.09 1.93 1.78 −0.38 1.49 0.53

Boot. p-value (0.00∗) (0.02∗) (0.00∗) (0.02∗) (0.04∗) (0.84) (0.40) (0.27)

Asy. p-value [0.05∗] [0.03∗] [0.02∗] [0.03∗] [0.04∗] [0.65] [0.07] [0.30]

CPI-LARS(SPC) −351.77 −384.31 −379.57 −317.18 −373.49 −347.42 −329.94 −427.05 −345.92 −337.89 −560.25 −339.20

AG-stat 1.98 2.08 2.05 1.77 2.28 1.85 1.58 0.15

Boot. p-value (0.00∗) (0.01∗) (0.00∗) (0.07) (0.01∗) (0.02∗) (0.22) (0.37)

Asy. p-value [0.02∗] [0.02∗] [0.02∗] [0.04∗] [0.01∗] [0.03∗] [0.06] [0.44]

CPI-Principal Component −348.13 −364.87 −363.20 −323.91 −376.31 −343.11 −339.46 −472.66 −346.69 −372.53 −714.55 −375.63

AG-stat 1.38 1.31 2.11 1.34 1.58 0.59 1.80 0.14

Boot. p-value (0.00∗) (0.24) (0.00∗) (0.26) (0.02∗) (0.61) (0.07) (0.66)

Asy. p-value [0.08] [0.09] [0.02∗] [0.09] [0.06] [0.28] [0.04∗] [0.44]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

CPI-QAR/AR −349.55 −366.38 −363.65 −318.68 −377.29 −347.59 −327.20 −421.19 −352.44 −339.48 −564.39 −354.42

AG-stat 1.60 1.65 2.21 1.87 2.05 2.18 1.62 1.65

Boot. p-value (0.01∗) (0.15) (0.00∗) (0.04∗) (0.00∗) (0.00∗) (0.23) (0.01∗)

Asy. p-value [0.06] [0.05∗] [0.01∗] [0.03∗] [0.02∗] [0.01∗] [0.05∗] [0.05∗]

Note: The general pattern in all three density forecast methods is that: as the number of factor reduced to one, the forecast accuracy of LARS-based models

increases, while that of hard threshold model and simple PC model decreases. This indicates that in density forecast the Least Angle Regression is an effective method

in selecting the most relevant predictors.



Table 2.a Real-time Density Forecast on Monthly GDP (BIC): Sample Periods 1959 : 01− 2010 : 06

Forecast Horizon H = 1M H = 3M H = 6M H = 12M

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

GDP-Hard Threshold −872.65 −866.71 −893.44 −633.26 −630.79 −627.16 −622.49 −639.91 −640.27 −671.89 −652.30 −637.67

AG-stat −0.67 1.35 −0.25 −0.34 0.79 0.45 −0.97 −0.67

Boot. p-value (0.06) 0.19 (0.10) (0.59) (0.06) (0.02∗) (0.68) (0.05∗)

Asy. p-value [0.75] [0.09] [0.60] [0.63] [0.21] [0.33] [0.83] [0.75]

GDP-LARS(k) −883.76 −877.58 −903.84 −624.71 −646.31 −648.23 −622.78 −620.61 −609.89 −692.01 −676.93 −631.02

AG-stat −0.52 1.39 1.26 1.23 −0.13 −0.37 −0.56 −1.15

Boot. p-value (0.03∗) (0.17) (0.00∗) (0.05∗) (0.26) (0.07) (0.60) (0.15)

Asy. p-value [0.70] [0.08] [0.10] [0.11] [0.55] [0.64] [0.71] [0.87]

GDP-LARS(SPC) −863.04 −873.18 −894.85 −632.21 −714.16 −679.61 −643.60 −753.62 −681.27 −725.93 −835.39 −648.31

AG-stat 0.99 2.29 2.56 −2.73 −2.51 −1.42 −2.00 −1.54

Boot. p-value (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.35)

Asy. p-value [0.16] [0.01∗] [0.01∗] [0.00∗] [0.01∗] [0.08] [0.02∗] [0.94]

GDP-Principal Component −869.19 −865.18 −874.95 −637.49 −634.65 −625.62 −642.68 −629.81 −619.60 −655.87 −639.24 −624.65

AG-stat −0.45 0.64 −0.25 −0.72 −0.89 −0.69 −0.82 −0.80

Boot. p-value (0.04∗) 0.55 (0.04∗) (0.72) (0.27) (0.26) (0.59) (0.17)

Asy. p-value [0.67] [0.26] [0.60] [0.76] [0.81] [0.76] [0.79] [0.79]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

GDP-QAR/AR −845.21 −851.15 −860.96 −647.95 −670.13 −656.95 −626.59 −651.32 −631.87 −628.50 −629.90 −584.40

AG-stat 1.08 1.08 2.71 0.70 1.54 0.23 0.08 −1.12

Boot. p-value (0.00∗) 0.60 (0.00∗) (0.37) (0.00∗) (0.29) (0.12) (0.55)

Asy. p-value [0.14] [0.14] [0.00∗] [0.24] [0.06] [0.41] [0.47] [0.87]

Note: (·) is the bootstrap p-values. [·] is the asymptotic p-values. ∗ indicates significance at 5% level. Epanechnikov kernel is chosen to estimate predictive

likelihoods. The bandwidth are chosen to be 0.5hn. The quantile-varying bandwidth choices suggested by Hall and Sheather (1988) and Bofingeb (1975) are also

considered. In practice, the quantile density estimation even with a constant bandwidth choice still outperforms the mean-centered density forecast methods.



Table 2.b Real-time Density Forecast on Monthly GDP (one factor): Sample Periods 1959 : 01− 2010 : 06

Forecast Horizon H = 1M H = 3M H = 6M H = 12M

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

GDP-Hard Threshold −862.12 −866.26 −902.66 −617.99 −628.31 −624.55 −616.20 −622.30 −610.86 −637.35 −656.09 −577.28

AG-stat 0.53 2.22 1.31 0.50 0.50 −0.21 0.74 −1.73

Boot. p-value (0.00∗) (0.01∗) (0.00∗) (0.35) (0.02∗) (0.23) (0.04∗) (0.77)

Asy. p-value [0.30] [0.01∗] [0.09] [0.31] [0.31] [0.58] [0.23] [0.96]

GDP-LARS(k) −852.41 −858.28 −886.98 −634.16 −639.05 −622.83 −636.41 −653.36 −613.90 −635.81 −653.37 −587.38

AG-stat 0.72 2.24 0.69 −0.75 1.07 −0.72 0.54 −1.20

Boot. p-value (0.00∗) (0.02∗) (0.01∗) (0.80) (0.01∗) (0.50) (0.05∗) 0.40

Asy. p-value [0.24] [0.01∗] [0.24] [0.77] [0.14] [0.76] [0.29] [0.88]

GDP-LARS(SPC) −846.41 −851.46 −859.28 −645.40 −670.26 −655.99 −631.50 −663.09 −640.07 −656.14 −671.32 −602.36

AG-stat 0.82 1.07 2.31 0.84 1.80 0.36 0.54 −1.26

Boot. p-value (0.00∗) (0.38) (0.00∗) (0.17) (0.00∗) (0.14) (0.06) (0.51)

Asy. p-value [0.21] [0.14] [0.01∗] [0.20] [0.04∗] [0.36] [0.30] [0.90]

GDP-Principal Component −848.30 −854.28 −876.63 −634.00 −644.42 −632.67 −618.76 −636.88 −627.14 −638.35 −638.96 −578.88

AG-stat 0.87 2.14 1.26 −0.09 1.06 0.32 0.03∗ −1.50

Boot. p-value (0.00∗) 0.04∗ (0.00∗) (0.60) (0.01∗) (0.13) (0.14) (0.56)

Asy. p-value [0.19] [0.02∗] [0.10] [0.54] [0.15] [0.37] [0.49] [0.93]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

GDP-QAR/AR −845.21 −851.15 −860.96 −647.95 −670.13 −656.95 −626.59 −651.32 −631.87 −628.50 −629.90 −584.40

AG-stat 1.08 1.08 2.71 0.70 1.54 0.23 0.08 −1.12

Boot. p-value (0.00∗) 0.60 (0.00∗) (0.37) (0.00∗) (0.29) (0.12) (0.55)

Asy. p-value [0.14] [0.14] [0.00∗] [0.24] [0.06] [0.41] [0.47] [0.87]

Note: Quantile density forecast significantly outperforms the normal density forecast at all horizons but significantly outperforms the semi-parametric density

forecast only at short forecasting horizon. As the number of factors reduced from what BIC selected to one, the forecast accuracy of all three methods increases. This

indicates that BIC does not work well in density forecasting of future output growth.



Table 2.c Real-time Density Forecast on Quarterly GDP (BIC): Sample Periods 1959 : Q1− 2010 : Q2

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

GDP-Hard Threshold −419.71 −444.40 −422.94 −382.00 −419.47 −409.39 −450.64 −477.14 −416.03 −467.30 −690.32 −371.24

AG-stat 1.09 0.24 1.77 1.93 0.84 −1.59 1.69 −2.44

Boot. p-value (0.01∗) (0.24) (0.00∗) (0.01∗) (0.10) (0.81) (0.01∗) (0.99)

Asy. p-value [0.14] [0.40] [0.04∗] [0.03∗] [0.20] [0.94] [0.05∗] [0.99]

GDP-LARS(k) −419.16 −438.60 −412.61 −402.10 −418.67 −408.55 −441.03 −485.17 −405.86 −432.82 −698.27 −368.25

AG-stat 1.29 −0.69 0.76 0.41 1.11 −1.65 1.54 −2.21

Boot. p-value (0.00∗) (0.74) (0.01∗) (0.47) (0.04∗) (0.77) (0.03∗) (0.81)

Asy. p-value [0.10] [0.76] [0.22] [0.34] [0.13] [0.95] [0.06] [0.99]

GDP-LARS(SPC) −403.68 −485.10 −424.52 −405.68 −440.76 −400.84 −404.89 −550.64 −383.96 −398.61 −636.66 −349.73

AG-stat 1.74 1.59 1.04 −0.31 2.17 0.82 2.21 −1.54

Boot. p-value (0.00∗) (0.00∗) (0.24) (0.35) (0.00∗) (0.10) (0.00∗) (0.16)

Asy. p-value [0.04∗] [0.06] [0.15] [0.62] [0.01∗] [0.79] [0.01∗] [0.94]

GDP-Principal Component −405.64 −413.47 −399.50 −380.53 −421.93 −404.72 −396.65 −455.50 −405.93 −394.99 −482.94 −362.77

AG-stat 0.76 −0.65 1.66 2.04 1.38 0.53 1.95 −1.43

Boot. p-value (0.00∗) (0.95) (0.00∗) (0.01∗) (0.01∗) (0.21) (0.01∗) (0.73)

Asy. p-value [0.22] [0.74] [0.05∗] [0.02∗] [0.08] [0.30] [0.03∗] [0.92]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

GDP-QAR/AR −400.37 −410.05 −411.52 −378.61 −392.46 −396.77 −375.50 −383.75 −382.89 −355.16 −370.68 −348.01

AG-stat 1.79 1.20 1.21 1.54 1.02 0.52 1.09 −0.49

Boot. p-value (0.00∗) (0.40) (0.00∗) (0.09) (0.01∗) (0.33) (0.09) (0.42)

Asy. p-value [0.04∗] [0.11] [0.11] [0.06] [0.15] [0.30] [0.14] [0.69]

Note: Quantile density forecast significantly outperforms the normal density forecast at all horizons but significantly outperforms the semi-parametric density

forecast only at short forecasting horizon. When the number of factors is selected by BIC, forecasts conditional on autoregressive lags outperforms all factors models

at all forecasting horizons under all density specifications. BIC does not work well in forecasting the conditional distribution of future output growth.



Table 2.d Real-time Density Forecast on Quarterly GDP (one factor): Sample Periods 1959 : Q1− 2010 : Q2

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q

with factors Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P. Quantile Normal Semi.P.

FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR FAVAR

GDP-Hard Threshold −400.74 −403.52 −406.28 −370.27 −383.23 −391.74 −364.03 −369.85 −375.86 −361.88 −375.06 −334.82

AG-stat 0.45 0.62 1.89 1.91 0.59 0.83 0.83 1.36

Boot. p-value (0.01∗) (0.61) (0.00∗) (0.04∗) (0.05∗) (0.14) (0.20) (0.70)

Asy. p-value [0.33] [0.12] [0.03∗] [0.07] [0.28] [0.20] [0.20] [0.91]

GDP-LARS(k) −404.62 −408.47 −407.75 −382.36 −399.45 −397.21 −366.25 −370.54 −371.70 −355.50 −362.71 −323.00

AG-stat 0.47 0.30 1.10 1.48 0.40 0.41 0.48 −1.74

Boot. p-value (0.00∗) (0.75) (0.00∗) (0.06) (0.03∗) (0.27) (0.26) (0.79)

Asy. p-value [0.32] [0.38] [0.14] [0.07] [0.35] [0.34] [0.32] [0.96]

GDP-LARS(SPC) −400.83 −412.47 −408.62 −380.52 −432.09 −397.68 −382.52 −393.60 −387.83 −353.93 −387.47 −350.36

AG-stat 1.54 0.84 1.09 1.38 0.96 0.36 1.44 −0.25

Boot. p-value (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (1.00)

Asy. p-value [0.06] [0.20] [0.14] [0.08] [0.17] [0.36] [0.07] [0.60]

GDP-Principal Component −404.67 −405.87 −402.19 −379.00 −389.42 −399.80 −366.69 −371.35 −371.46 −345.11 −364.06 −327.56

AG-stat 0.20 −0.26 1.15 1.83 0.49 0.39 1.28 −1.20

Boot. p-value (0.02∗) (0.91) (0.00∗) (0.02∗) (0.04∗) (0.28) (0.07) (0.62)

Asy. p-value [0.42] [0.60] [0.13] [0.03∗] [0.31] [0.35] [0.10] [0.89]

without factors QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR QAR AR s.p.AR

GDP-QAR/AR −400.37 −410.05 −411.52 −378.61 −392.46 −396.77 −375.50 −383.75 −382.89 −355.16 −370.68 −348.01

AG-stat 1.79 1.20 1.21 1.54 1.02 0.52 1.09 −0.49

Boot. p-value (0.00∗) (0.40) (0.00∗) (0.09) (0.01∗) (0.33) (0.09) (0.42)

Asy. p-value [0.04∗] [0.11] [0.11] [0.06] [0.15] [0.30] [0.14] [0.69]

Note: When the number of factors is reduced to one, the predictive likelihood of all factor models largely increases. Factor models provide more accurate density

forecast than the univariate autoregression forecasts at all forecasting horizons under various density specification. This indicates including only the first few factors

might improve the forecast accuracy upon the univariate forecasts.



Table 3.a Kolmogorov Smirnov Test for Quarterly Data

(Sample Periods 1959 : Q1− 2010 : Q2)

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q

with factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

CPI-Hard Threshold 0.15 0.13 0.12 0.34 0.13 0.24 0.11 0.37

CPI-LARS(k) 0.14 0.14 0.14 0.17 0.13 0.25 0.22 (0.00∗)

CPI-LARS(SPC) 0.16 0.09 0.14 0.17 0.15 0.12 0.19 (0.02∗)

CPI-Principal Component 0.13 0.26 0.13 0.22 0.11 0.46 0.13 0.20

without factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

CPI-QAR/AR 0.09 0.70 0.09 0.62 0.12 0.28 0.14 0.14

with factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

GDP-Hard Threshold 0.11 0.42 0.09 0.70 0.14 0.14 0.19 (0.02∗)

GDP-LARS(k) 0.10 0.53 0.15 0.13 0.15 0.10 0.19 (0.02∗)

GDP-LARS(SPC) 0.07 0.90 0.15 0.13 0.20 (0.02∗) 0.22 (0.00∗)

GDP-Principal Component 0.07 0.92 0.07 0.87 0.10 0.51 0.15 0.13

without factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

GDP-QAR/AR 0.11 0.38 0.13 0.22 0.17 0.06 0.23 (0.00∗)

Table 3.b Kolmogorov Smirnov Test for Monthly Data

(Sample Periods 1959 : 01− 2010 : 06)

Forecast Horizon H = 1M H = 3M H = 6M H = 12M

with factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

CPI-Hard Threshold 0.09 0.56 0.12 0.19 0.09 0.49 0.11 0.25

CPI-LARS(k) 0.11 0.27 0.12 0.20 0.11 0.30 0.13 0.11

CPI-LARS(SPC) 0.03 0.99 0.03 0.99 0.04 0.99 0.07 0.98

CPI-Principal Component 0.08 0.68 0.12 0.17 0.10 0.39 0.11 0.22

without factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

CPI-QAR/AR 0.05 0.98 0.07 0.76 0.05 0.98 0.05 0.97

with factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

GDP-Hard Threshold 0.06 0.94 0.07 0.74 0.08 0.62 0.12 0.20

GDP-LARS(k) 0.04 1.00 0.04 1.00 0.07 0.86 0.11 0.23

GDP-LARS(SPC) 0.08 0.64 0.10 0.31 0.15 (0.03∗) 0.20 (0.00∗)

GDP-Principal Component 0.04 1.00 0.06 0.90 0.08 0.58 0.09 0.47

without factors KS.stat. p.val. KS.stat. p.val. K.S.stat. p.val. K.S.stat p.val.

GDP-QAR/AR 0.06 0.87 0.11 0.27 0.14 0.08 0.16 (0.02∗)

Note: (∗) indicates significance at 5% level. Acceptance indicates a “good fit” of the quantile density forecast.



Table 4.a Monte Carlo Size I: DGP- Gaussian AR yt = α̃yt−1 + P · uy,t ∼ N(0, P2

1−α̃2 )

Sample size & Num.of Replication T = 210, Rep = 500 T = 622, Rep = 500

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q H = 1M H = 3M H = 6M H = 12M

Quantile-AR 95%int. Coverage Ratio 0.87 0.87 0.87 0.84 0.90 0.89 0.89 0.88

Gaussian AR 95%int. Coverage Ratio 0.94 0.93 0.92 0.89 0.95 0.94 0.93 0.92

Semi.Param. AR 95%int. Coverage Ratio 0.87 0.86 0.85 0.83 0.95 0.94 0.93 0.92

Quantile-AR 99%int. Coverage Ratio 0.97 0.98 0.99 1.00 0.98 0.98 0.97 0.97

Quantile-AR vs. Gaussian AR H = 1Q H = 2Q H = 4Q H = 8Q H = 1M H = 3M H = 6M H = 12M

5% Rej.Freq. 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

10% Rej.Freq. 0.00 0.00 0.01 0.11 0.00 0.00 0.00 0.02

Quantile-AR vs. Semi.Param. AR H = 1Q H = 2Q H = 4Q H = 8Q H = 1M H = 3M H = 6M H = 12M

5% Rej.Freq. 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10% Rej.Freq. 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

5% Rej.Freq. KS Test 0.00 0.01 0.00 −− 0.00 0.00 0.02 0.02

Table 4.b Monte Carlo Size II: DGP - FAVAR (Gaussian) yt = α̃yt−1 + β̃ft−1 + P · uy,t

Sample size & Num.of Replication T = 210, Rep = 500 T = 622, Rep = 500

Forecast Horizon H = 1Q H = 2Q H = 4Q H = 8Q H = 1M H = 3M H = 6M H = 12M

Quantile-FAVAR 95%int. Coverage Ratio 0.87 0.87 0.87 0.84 0.89 0.89 0.88 0.88

FAVAR (Gaussian) 95%int. Coverage Ratio 0.94 0.93 0.92 0.89 0.95 0.94 0.93 0.92

Semi.Param. FAVAR 95%int. Coverage Ratio 0.87 0.86 0.85 0.83 0.89 0.88 0.88 0.87

Quantile-FAVAR 99%int. Coverage Ratio 0.97 0.98 0.99 1.00 0.98 0.97 0.97 0.96

Quantile-FAVAR vs. FAVAR (Gaussian) H = 1Q H = 2Q H = 4Q H = 8Q H = 1M H = 3M H = 6M H = 12M

5% Rej.Freq. 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00

10% Rej.Freq. 0.00 0.00 0.01 0.13 0.00 0.00 0.00 0.01

Quantile-FAVAR vs. Semi.Param. FAVAR H = 1Q H = 2Q H = 4Q H = 8Q H = 1M H = 3M H = 6M H = 12M

5% Rej.Freq. 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10% Rej.Freq. 0.12 0.05 0.00 0.00 0.00 0.00 0.00 0.01

5% Rej.Freq. KS Test 0.00 0.01 0.00 −− 0.00 0.00 0.01 0.00

Notes: Table 4.a,b shows when density forecast models are nested, AG test in finite-sample is generally undersized, in

which case the asymptotic critical value might signal that the quantile density forecast is not superior in cases where the quantile

density forecast is superior.

– Due to the overlapping structure in real-time forecast, I discard the overlapping part to ensure an uncorrelated white noise

Zt as suggested by Weiss (1978). But quarterly sample is too short, there is no way to perform this modification for h = 8.



Figure.1.a Quantile-AR vs. Gaussian AR (Size)

T = 210

−6 −5 −4 −3 −2 −1 0 1
0

2

4

6

8

10

12

14

16
Forecast Horizon H =1

−5 −4 −3 −2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18
Forecast Horizon H =2

−5 −4 −3 −2 −1 0 1 2
0

2

4

6

8

10

12

14

16
Forecast Horizon H =4

−5 −4 −3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

14

16
Forecast Horizon H =8

T = 622

−10 −8 −6 −4 −2 0 2
0

5

10

15

20

25
Forecast Horizon H =1

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25
Forecast Horizon H =3

−7 −6 −5 −4 −3 −2 −1 0 1 2
0

2

4

6

8

10

12

14

16

18
Forecast Horizon H =6

−6 −5 −4 −3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

14

16

18
Forecast Horizon H =12

Notes: (Without factors) red line is the standard normal distribution. Histogram is the asymptotic distribution of AG− stat

under the null. As sample size increases, the asymptotic distribution of the AG stat is skewed to the right with respect to the

asymptotic one. The comparison is between quantile density forecast and normal density forecast.
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Figure.1.b Quantile-AR vs. Semi.Param-AR (Size)
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asymptotic one. The comparison is between quantile density forecast and semi-parametric density forecast.
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Figure.2.a Quantile-FAVAR vs. FAVAR (Gaussian) (Size)
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Figure.2.b Quantile-FAVAR vs. Semi.Param. FAVAR (Size)
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respect to the asymptotic one. The comparison is between quantile density forecast and semi-parametric density forecast.

47



Table 5 Monte Carlo Power: DGP yt = α̃+ β̃(Ut)yt−1 + Φ−1(Ut), Ut ∼ [0 1].

Sample size & Num.of Replication T=210, Rep= 500 T=622, Rep= 500

Methods QAR vs. Gaussian AR

Forecast Horizon H=1Q H=2Q H=4Q H =8Q H=1M H=3M H=6M H =12M

c = 0.1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

c = 0.2 0.01 0.00 0.00 0.01 0.03 0.00 0.00 0.01

c = 0.3 0.04 0.00 0.00 0.01 0.37 0.00 0.00 0.00

c = 0.4 0.28 0.01 0.00 0.01 0.91 0.03 0.01 0.01

c = 0.5 0.62 0.08 0.02 0.02 1.00 0.14 0.03 0.01

c = 0.6 0.92 0.25 0.07 0.03 1.00 0.53 0.10 0.06

c = 0.7 0.99 0.46 0.19 0.08 1.00 0.89 0.37 0.10

c = 0.8 1.00 0.72 0.28 0.14 1.00 0.97 0.61 0.23

Methods QAR vs. Semi.Param AR

Forecast Horizon H=1Q H=2Q H=4Q H =8Q H=1M H=3M H=6M H =12M

c = 0.1 0.10 0.02 0.01 0.00 0.07 0.00 0.00 0.00

c = 0.2 0.14 0.03 0.00 0.00 0.30 0.00 0.00 0.00

c = 0.3 0.34 0.04 0.01 0.00 0.73 0.01 0.00 0.00

c = 0.4 0.64 0.08 0.01 0.00 0.97 0.03 0.00 0.00

c = 0.5 0.85 0.22 0.02 0.00 1.00 0.09 0.00 0.00

c = 0.6 0.97 0.39 0.04 0.00 1.00 0.25 0.01 0.00

c = 0.7 0.99 0.56 0.11 0.01 1.00 0.55 0.02 0.00

c = 0.8 1.00 0.75 0.14 0.01 1.00 0.76 0.07 0.00

Notes: Except for long horizon, the power of the test increases as distance between c and 0 increases. The AG test exhibits

under-power property either when c and 0 are too close or as the forecasting horizon lengthens. This indicates even when the

quantile density forecast is superior than the mean-centered methods under some cases, the inference using asymptotic critical

value may not suggest so.



Figure.3.a Quantile-AR vs. Gaussian AR (Power)
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Figure.3.b Quantile-AR vs. Semi.Param AR (Power)
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Figure.4.1.a. Gaussian AR versus FAVAR: Quarterly GDP
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Figure.4.1.b. Gaussian AR versus FAVAR: Monthly CPI
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Figure.4.2.a QAR versus Quantile-FAVAR: Quarterly GDP
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Figure.4.2.b. QAR versus Quantile-FAVAR: Monthly CPI
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Figure.4.3.a. Semi.Param. AR versus Semi.Param. FAVAR: Quarterly GDP
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Figure.4.3.b. Semi.Param. AR versus Semi.Param. FAVAR: Monthly CPI
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Figure.5.a. Kolmogorov Smirnov Test: Monthly CPI
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Figure.5.b. Density Transition of Quarterly GDP from 1969:01+H to 2009:06+H

Notes: Enclosed are just two examples. Results from all models can be provided upon request.
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Figure.6.a. Horse Race of Predictive Accuracy between QAR and Gaussian AR (monthly CPI)
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Figure.6.b. Horse Race of Predictive Accuracy between QAR and Gaussian AR (Quarterly GDP)
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Notes: Enclosed are just two examples. Results from all models can be provided upon request.

55


