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Abstract

This paper proposes a new method to forecast S&P 500 return distribution by com-

bining quantile regression models using macro-finance variables with volatility-based

models including various standard EGARCH and stochastic volatility specifications. 30

density forecasting models are compared and combined in an out-of-sample forecasting

exercise. Using macro-finance variables is found to help substantially in prediction; the

best forecasts are obtained when all 30 models are combined. The proposed density

forecasts are shown to be useful to an investor with a CRRA utility function in mak-

ing optimal portfolio choice. Using the proposed density forecasts yields a certainty

equivalent return that is up to 0.35% per month higher than can be obtained with the

EGARCH model with a fat-tailed specification.
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1 Introduction

Forecasting the probability distribution of equity return is important for many aspects in

finance. Risk managers need to estimate the return distribution on a forward-looking basis to

measure the market risk. Portfolio managers may forecast the expected portfolio return using

the equity return distribution to make the optimal portfolio choice. Option traders require

a precise and timely estimate of the equity return distribution to determine the dynamic

hedge ratio. However, it is rare to find a method that is consistently superior - the results

can depend on the sample period, the asset class, the frequency of data, and the forecasting

horizon. Many macroeconomic policy makers, portfolio managers and private traders have

recognized that all models are incomplete descriptions of the reality. As a result, they start

to seek answers from forecast combination. Borrowing an idea from the optimal portfolio

construction, recent developments in density forecasting combination identify the optimal

combination of density forecasts by finding the weights that maximize some indicator of the

predictive accuracy. Using such a method, Durham & Geweke (2011) find that combining

42 models with three sources of information about volatility yields a single improved density

forecast of daily S&P500 index returns.

This paper is in a similar spirit but adds a new set of forecasts as inputs: quantile den-

sity forecasts conditional on the macro-finance variables. Although Macro-finance variables

appear to have little value in forecasting the mean of stock returns (Welch & Goyal (2008)),

there is some evidence that they can predict other quantiles of the stock return density (Ce-

nesizoglu & Timmermann (2008)). Many of the macro-finance variables considered in the

literature are useful in predicting either the left, or right tails of the stock return distribution,

but not the entire distribution. In order to obtain the best possible forecast of a future return

distribution, a combination of the forecasts using different macro-finance variables might be

preferable compared to using a single variable. Accordingly, I take a set of density forecasts,

each corresponding to a quantile regression using a single macro-finance variable, and then
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find the optimal combination of these forecasts. Furthermore, it would be interesting to

know whether combining the density forecasts made by macro-finance variables with those

made by volatility-based models can contribute further to density forecasting.

The main contribution of this paper is to find that combining density forecasts made by

macro-finance variables with those made by volatility-based models significantly improves

density forecasting accuracy. The combined density forecast that incorporates information

from both the macro-finance variables and the market volatility, significantly outperforms

the density forecast that utilizes either source of information alone. Meanwhile, the combined

forecasts using macro-finance variables exhibit better forecasting performance than the com-

bined forecasts using a single source of volatility information. The three sources of volatility

considered here are: EGARCH models (the latent volatility), the stochastic volatility, and

the realized volatility extracted from the high-frequency data. Adding the implied volatility

to the combination exercise impairs the forecasting performance. All procedures are strictly

out-of-sample, one-step-ahead predictive distributions for monthly S&P500 index returns

from January 1950 to December 2011. The combined predictive densities are constructed

in way to maximize the log predictive likelihood following Durham & Geweke (2011). The

comparison among forecasts uses the test statistic proposed by Amisano & Giacomini (2007).

The paper also investigates the impact of density forecasts on portfolio decisions. The

investor is assumed to have power utility, and needs an estimate of the entire stock return

distribution to make optimal portfolio choices. Different density forecasts influence the port-

folio choice through different assessments of the expected return using the entire predictive

distribution. The portfolio study shows that combined density forecasts that assimilate in-

formation from the macro-finance variables yield a certainty equivalent return that is up

to 0.35% per month higher than can be obtained with the EGARCH model with a fat-

tailed specification. The advantage of using macro-finance variables are tested through a

few turmoil periods of the stock market. Portfolios that use combined density forecasts with

macro-finance variables can significantly better capture the market surge. Furthermore, as
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investors become more risk averse, the difference in gain brought by different density forecasts

narrows, and the portfolio choices made by users of different forecasts converge.

The remainder of the paper proceeds in four sections. Section 2 lays out the five classes

of density forecasting models and the density combination technique. Section 3 presents a

real-time portfolio study that examines the impact of the combined density forecasts intro-

duced in section 2 on optimal portfolio choices. Section 4 concludes.

2 Models and Estimation

2.1 Forecasting Models

There are five classes of models that are being considered and compared: (I) com-

bined quantile density forecasting models using macro-finance variables, (II) single-model

quantile density forecast using macro-finance variables or their principal components, (III)

EGARCH models, (IV) stochastic volatility models (SVOLs, or SVs for short), and (V)

realized volatility models using high-frequency data (RVs). Each class contains four to eight

models. Each model provides an approximation to the stock return distribution but none of

them is literally true. Models within each class or across classes are combined to form the

predictive densities at the end of each month. The premise of density forecast combination

is to combine multiple data generating processes and various sources of information. The

forecaster is assumed to stand at the close of trading month t− 1 and tries to make density

forecasts for stock return at month t.

Quantile Density Forecasting This approach involves modeling a particular quantile of

the stock return distribution using macro-finance variables. Intuitively, if a macro-finance

variable consistently well predicts the lower quantiles (τ < 10%), then it is possible that
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the variable can predict the market crash. If some variable always exhibits strong power in

predicting only the upper quantiles (τ > 90%), its movement may imply a market surge.

Specifically, let Qτ (yt|xt−1) be the value such that τ (percent) of the mass of the distribution

F (yt|xt−1) is less than Qτ (yt|xt−1). Each quantile is predicted by

Q̂τ (yt|xi,t−1) = β̂i0(τ) + β̂i1(τ)yt−1 + β̂i2(τ)xi,t−1. for i = 1 . . . , N , (1)

where i refers to each of the N macro-finance variables. β̂i0(τ) and β̂i1(τ) are estimated

following Koenker & Bassett (1978). They describe how the τ -th quantile of the future

return might vary with a particular variable, xi,t−1. By choosing a fine grid of quantiles,

say, τ ′s: 0.01, . . . , 0.99, one can trace out the entire return distribution conditional on xi,t−1.

Since the estimation uses finite sample, the estimated quantiles might be too close to one

another, or even the same, and may exhibit “crossings”1, which causes the density estimation

that directly flips the difference of quantiles unreliable. Alternatively, the predictive density

of stock return at t can be estimated by the nonparametric kernel density:

f(yt|xi,t−1) =
1

nhn

0.99∑
τ=0.01

K
(yt − Q̂τ (yt|xi,t−1)

hn

)
, for i = 1, . . . , N .

This approach was also used by Gaglianone & Lima (2009) and Zhao (2011). Moreover, each

macro-finance variable exhibits different predictive power on different quantiles (Cenesizoglu

& Timmermann (2008)). Different models of macro-finance variables may give different

density forecasts. Weighting these densities in way that maximizes a certain measure of the

predictive accuracy may give a relatively precise shape of the future return distribution.

Another recent development in the forecasting literature has been the recognition that

using the first few principal components from a large dataset can avoid estimation of too

many parameters, and is helpful for point forecasting. (see Stock & Watson (1998), Stock

1To deal with this issue, I follow Chernozhukov et al. (2010)’s approach and rearrange the original quantile
estimates into ascending order.
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& Watson (2003), Stock & Watson (2005)). Zhao (2011) and Manzan & Zerom (2009)

find that using the first few principal components from a large dataset is also helpful in

density forecasting. I hence considered density forecasts using the first few principal

components of all N macro-finance variables. In particular, each quantile of yt is predicted

by

Q̂τ (yt|xt−1) = β̂0(τ) + β̂1(τ)yt−1 + β̂2(τ)ft−1. (2)

where ft−1 are the first r principal components of xt−1︸︷︷︸
N×1

. r is set to be 1 in the empirical study2.

In addition, to see whether it is better to use different number of factors in forecasting

different quantiles, the quantile-varying factor selection rule (ATIC) proposed by Ando &

Tsay (2011) are taken into account. The details of the ATIC factor selection rule are enclosed

in Appendix C.

Furthermore, I also considered a multivariate density forecast - forecasting each quan-

tile using all N macro-finance variables directly as conditioning variables. It simply replaces

ft−1 in equation (2) by xt−1︸︷︷︸
N×1

. Although the forecast also uses the information extracted from

macro-finance variables, its forecasting performance is significantly worse (see Section 2.3).

Forecast combination plays a critical role in improving the forecasting performance. In real-

ity, it is highly likely that the dynamics of the stock return is driven by multiple sources of

information, while the true data generating process is a combination of multiple distributions.

EGARCH Following Bollerslev (1987), the EGARCH model takes the form:

yt = µY + σY exp(
k∑
i=1

hi,t/2)εj,t (3)

hi,t = αihi,t−1 + βi(|εj,t−1| − (2/π)1/2) + γiεj,t−1. (4)

2When r > 1, the forecast accuracy is worse than when r = 1.
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where y and h are the vectors of data and volatilities. hi,t has up to two components (i =

1, 2) - one captures a persistent long-term trend in the level of volatility; the other captures

short-term fluctuations around it.

The innovations in the conditional mean equation, εt, is specified to distribute as Gaus-

sian, Student’s t- (Bollerslev (1987)) and the Generalized Error Distribution (GED) (Nelson

(1991)). Gaussian εt has up to two normal components (j = 1, 2). The two fat-tailed distri-

butions capture the excess kurtosis of stock return. εt is always standardized to have mean

zero and variance one.

Parameters µY , σY , αi, βi, and γi are estimated by maximum likelihood estimation. If

γi < 0, the model captures the leverage effect, in which volatility tends to rise in response to

“bad news” and to fall in response to “good news”.

Since the next period’s volatility in EGARCH has already been determined when the

forecast is made, yt is a monotonic function of εt. The predictive distribution of yt thus

has closed form. According to the density transformation theorem, the density of yt is just

a linear function of that of εt. In particular, fY (y) = fε(g
−1(y))|∂g

−1(y)
∂y
|, and g−1(y) =

ε = (y − µY )/[σY exp(
∑k

i=1 hit/2)]. Eight models estimated in real-time and later used

to form the combined density forecasts in this class are: EGARCH − Gaussiani=1,j=1,

EGARCH−Gaussiani=1,j=2, EGARCH−Gaussiani=2,j=1, EGARCH−Gaussiani=2,j=2,

EGARCH − ti=1,j=1, EGARCH − ti=2,j=1, EGARCH − GEDi=1,j=1 and EGARCH −

GEDi=2,j=1.

Stochastic Volatility Model Stochastic volatility models offer a natural alternative to

the GARCH family of time-varying volatility models. The general form of the univariate
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SVOL model3 can be represented by

yt = exp(ht/2)
√
λtεt, (5)

ht = µ+ φ(ht−1 − µ) + ηt, t = 1, . . . , T. (6)

ηt = ρεt +
√

1− ρ2ut, ut ∼ N(0, 1). (7) εt

ηt

 ∣∣ (ρ, σ) ∼ i.i.d.N2(0,Σ), (8)

Σ =

 1 ρσ

ρσ σ2

 . (9)

The parameters are θ = (φ, σ, ρ) and µ, where µ is the intercept, φ is the volatility persistence

and σ is the standard deviation of the shock to ht. The basic univariate stochastic volatil-

ity (SVOL) model specifies that conditional volatility follows a log-normal auto-regressive

process (λt = 1) with innovations assumed to be independent of the innovations in the

conditional mean equation (ρ = 0) (see Kim et al. (1998)).

Since equity return data commonly exhibit volatility clustering and non-Gaussian distri-

butions, the basic SVOL model can be extended in two ways: (1) with a fat-tailed distribution

of the conditional mean innovations and (2) with a leverage effect via correlation between

the volatility and the mean innovations (see Jacquier et al. (2004) and Omori et al. (2007)).

The fat-tailed SVOL model specifies ν/λt ∼ χ2
ν , in which case,

√
λtεt follows a student-t

distribution with ν degree of freedom, ν ∼ Gamma(16, 0.8), and λ−1
t ∼ Gamma(ν/2, ν/2).

The fat-tailed SVOL can deal with outliers by introducing a large λt without increasing ht.

It is more outlier resistant than the basic SVOL.

Meanwhile, the correlated SVOL model specifies the innovations of the volatility to be

correlated with the innovations of the conditional mean. Negative correlations (ρ < 0)

between mean and variance errors can produce a leverage effect in which negative (positive)

3referred as SV in tables and figures.
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shocks to the mean are associated with increases (decreases) in volatility. For example, if

ρ = −0.6 and |εt| = 1.5, then the expected volatility will be 60% higher for negative versus

positive shocks. The asymmetry in the correlated SVOL model also induces left-skewness in

the marginal distribution of the stock return, which is consistent with the non-parametric

evidence of Gallant et al. (1997).

To estimate SVOL, each model is viewed as a hierarchical structure of three condi-

tional distributions: the conditional distribution of stock returns, p(y|h); the conditional

distribution of volatility, p(h|θ); and the marginal or prior distribution of parameters, p(θ).

Estimation of SVOL models uses the Markov-Chain Monte Carlo method. The choice of

priors and posteriors of the parameters follows Kim et al. (1998), Jacquier et al. (2004) and

Omori et al. (2007). h|θ is smoothed by augmented Kalman filter as in Kim et al. (1998)

and Omori et al. (2007). Estimation details are enclosed in the Appendix A.

In sum, as the actual realizations of return volatility are not directly observable, EGARCH

and SVOL models deal with the fundamental latency of return volatility through strong para-

metric assumptions. An alternative approach is to invoke option pricing models to invert

observed equity prices into market-based forecasts of implied volatility over a fixed future

horizon. However, these procedures are model-dependent and incorporate a volatility risk

premium in the measure, so that they generally do not provide unbiased forecasts of the

volatility of the underlying asset. This is justified by four models in the subsection of Im-

plied Volatility Model.

Realized Volatility Model Realized volatility is a nonparametric ex-post estimate of the

return variation. The most obvious realized volatility measure is the sum of finely-sampled

squared return realizations over a fixed time interval. In principle, high-frequency returns

are capable of providing very precise information about the latent volatility state. Volatility
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filtered from high-frequency data is often used as a proxy for the variance in that month.

This uses the insight of Merton (1980) and Nelson (1992) that volatility may be arbitrarily

precisely estimated using sufficient high-frequency data in a frictionless market.

Since the macroeconomic variables are collected at the monthly frequency, this study

uses the sum of the daily squared returns to approximate the monthly variance. Return

data at the higher frequency is not used because they are likely affected by various market

microstructure frictions or noise, arising from bid-ask bounces, a discrete price grid, and so

on. In particular, the monthly variance is calculated using the equation.

σ2
t =

Nt∑
i=1

r2
it + 2

Nt∑
i=2

ritri−1t.

where Nt is the number of trading days in month t and rit is the return on the ith day of

month t. The second term accounts for the autocorrelation observed in daily returns. Using

this correction introduced by French & Stambaugh (1987) slightly improves the forecast

accuracy. σ2
t is then treated as the realized volatility (RV) in modeling the return:

yt+1 = µt + σtεt, (10)

log σ2
t = φ0 + φ1 log σ2

t−1 + ut. (11)

The logarithm of the realized volatility is assumed to follow an AR(1). φ0, and φ1 are

estimated via OLS. The specification of the return innovations εt is the same as those in the

EGARCH models. µt is estimated by maximum likelihood. The predictive density of yt is

formed by integrating across uncertainty in the volatility state σ̂tεt. Four models considered

in this class include: RV − Gaussianj=1, RV − Gaussianj=2, RV − t, and RV − GED.

Empirical results show that the density forecasting accuracy of this class of model critically

depends on the distribution chosen for the return innovations.
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Implied Volatility Model In addition, option-pricing models allow us to “back out” mar-

ket estimates of stock-price volatility, which is referred to as the implied volatility. Based

on real-time option prices, the implied volatility reflects investors’ consensus view of future

expected stock market volatility. The Chicago Board Options Exchange (CBOE) regularly

computes the implied volatility of S&P 500 (VIX) since January, 1990, and the implied

volatility of S&P 100 (VXO) since January, 1986. Both indices measure the market’s ex-

pectation of future 30-day volatility of S&P 100 index and S&P 500 index respectively.

To exploit the information contained in the implied volatility, I considered two cases.

The first is to model the return as in equation (10), but substitute σt with the end-of-month

VIX or VXO. Due to the four different specifications of the return innovation, four models of

each implied volatility index are combined with other 30 forecasts. The combination starts

from January, 1986 for VXO, and from January, 1990 for VIX, with all other 30 forecasts

using information up to January, 1950. The second method uses the implied volatility as

one of the conditioning variables to perform the quantile density forecast as in equation (1),

the forecast of which is then combined with forecasts that use N macro-finance variables.

The combination starts from January, 1995. It turns out that the implied volatility does not

help improving the predictive accuracy in either case. The failure of the implied volatility

might be due to that it is not an unbiased estimator of the return volatility.

2.2 Forecast Combination and Comparison

All forecasts are out-of-sample and in real-time. I adopt the recursive method to obtain

the out-of-sample forecasts, in which the parameters are updated as the forecast moves

forward through time, with the forecasting origin fixed to be the first in-sample period. The

predictive accuracy of any density forecast is measured by the log predictive likelihood, which

is the sum of logarithmic predictive densities over the out-of-sample forecasting periods.
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At the end of month t−1, {f(ys|xs−1,ys−1, Am)}t−1
s=q+1 is the historical predictive density

of model Am, in which q is the number of observations used to construct the first forecast.

The forecaster combines the models in each class by finding the weights that maximize the

log predictive likelihood of that class. In particular, the optimal weight vector w∗t−1 is chosen

to maximize:

ft−1(wt−1) =
t−1∑

s=q+1

log
[ M∑
m=1

wt−1,mf(ys|xs−1,ys−1, Am)
]
. (12)

M is the number of models that are being combined. w∗t−1 = (w∗t−1,1, . . . , w
∗
t−1,M)′ is a weight

vector satisfying

M∑
m=1

w∗t−1,m = 1, w∗t−1,m ≥ 0, for m = 1, . . . ,M.

Given any interval on the support of the stock return distribution, different forecasts may

result in different predictive densities. The optimal weight w∗t−1 is then used to weight these

predictive densities to form an estimate of the true density corresponding to this particular

interval. The predictive density of yt is the weighted average of the predictive densities

obtained by each model by the end of t− 1:

f(yt|xt−1,yt−1,w
∗
t−1) =

M∑
m=1

w∗t−1,mf(yt|xt−1,yt−1, Am). (13)

Geweke & Amisano (2011) show that ft−1(wt−1) is at least weakly concave, and for

t > M , ft−1(wt−1) is in general strictly concave. Given the concavity of the log likelihood

function, the optimal pool4 can (and often does) assign positive weight to all participating

models.

The formation of optimal prediction pool has interesting parallels to optimal portfolio

4Any prediction rule combines many individual prediction rules with weights nonnegative and summed
to one, is referred as a prediction pool.
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construction without short sales. Given a collection of risky assets, the optimal portfolio

will typically include a mix of risky assets rather than placing all weight on the single asset

with the highest Sharpe ratio. Even though a particular asset may have a comparatively

low return when it is negatively correlated with the market return, it can improve the

performance of the portfolio through diversification. The optimal portfolio will typically

have better performance than any of the individual assets alone.

These same points also hold true for the optimal prediction pool. Given a collection of

models, the goal is to maximize log predictive likelihood. The optimal pool typically includes

a mix of models rather than placing all weight on the single model with the highest predictive

likelihood. Even though a particular model may produce an inferior predictive likelihood

on average, it can enter the optimal prediction pool with positive weight if it occasionally

but regularly outperforms the other prediction models. The pool will generally have better

performance than any of the models it comprises.

The optimal prediction pool fundamentally differs from the Bayesian model averaging

and the conventional forecast competition. The Bayesian model averaging identifies the true

model as sample size grows, by assigning all weight to the model with the highest expected

predictive likelihood under the data generating process. The conventional forecast competi-

tion identifies the model closest to the data generating process in Kullback-Leibler distance

asymptotically, which leads to a horse race with a single ultimate winner. Nonetheless, in the

optimal prediction pool, each model contributes a strength that balances some weakness of

the other models. The optimal prediction pool proves superior to the single-model forecasts

and wins the horse race in the conventional forecast competition.

Figure.1 illustrates how the individual density forecasts are combined to form a pre-

dictive distribution. The forecast is made one-month ahead for June, 2008. The blue line

represents the predictive distribution made by book-to-market ratio. The red line represents

the predictive distribution made by term-spread. The black line is the combined predictive
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distribution produced by the optimal predictive pool using all 11 macro-finance variables5.

To compare of the out-of-sample forecasting performance of any two forecasts, I use the

likelihood ratio test developed by Amisano & Giacomini (2007). The test statistic takes the

form of a t-statistic:

AGq,T ≡ ∆Lt(yt+1)

σ̂/
√

(T − q)
,

where

∆Lt(yt+1) ≡ 1

T − q

T∑
t=q+1

Lt(yt+1) =
1

T − q

T∑
t=q+1

log f(yt+1|xt,yt)− log g(yt+1|xt,yt).

f(·) and g(·) are the predictive densities of two competing density forecasts. σ̂2 is a finite-

sample estimate of the asymptotic variance of ∆Lt(yt+1) 6. The null and the alternative are

stated as

H0 : E[∆Lt(yt+1)] = 0 v.s HA : E[∆Lt(yt+1)] > 0.

The null hypothesis will be rejected if model-f(·) provides more accurate density forecasts

relatively to model-g(·), in which case, AGq,T > 0. When the models being compared are

nonnested, the asymptotic distribution of the test statistic follows the standard normal

distribution. When a combined forecast is compared with a forecast that it incorporates,

5The optimal pooling weights assigned to the 11 macro-finance variables are: dividends(D12)(0.0000),
earnings(E12)(0.0061), stock variance(svar)(0.0000), book to market ratio(b/m)(0.2325), net
equity expansion(ntis)(0.0000), term spread(tms)(0.3048), default yield spread(dfy)(0.0000),
inflation(infl)(0.1711), unemployment rate(ume)(0.0297), industrial production growth(ip)(0.2557),
non-farm payroll(nfp)(0.0000).

6For h > 1, σ̂2 uses the heteroskedasticity and autocorrelation consistent (HAC) estimator of the asymp-
totic variance(see Newey & West (1987)). For one-period ahead forecast (h = 1), the choice of lag truncation
is set to be 0 as in Giacomini & White (2006) and Amisano & Giacomini (2007).
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the forecasts that are compared might be nested7, in which case, the asymptotic distribution

of the AG statistic is not normal8.

To check if there is distortion in the distribution of the statistic, bootstrap p-values are

reported. The procedure starts with re-sampling from {
[
f(·) g(·)

]
}Tt=q+1 for N = 500

times and produces N bootstrap test statistics: AGboot
q,T . When there is no distortion, the

bootstrap test statistics form a distribution that is the same as the asymptotic distribution.

The 1− α confidence interval (one-sided) is then constructed using the percentile-t interval,

as in

{AGq,T : AGq,T ≤ ĀG
boot
q,T − σ̂AGF̃ boot

α },

where ĀG
boot
q,T and σ̂AG are the mean and the standard deviation of the 500 bootstrap test

statistics. F̃ boot refers to the bootstrap distribution of the AG test statistics.

Furthermore, one may compare the predictive accuracy of competing density forecasts

over a specific region of interest. In particular, The predictive accuracy given a region

of interest can be measured by the censored likelihood(csl) score function (see Diks et al.

(2011)), given by

Scsl(f̂t; yt+1) = I(yt+1 ∈ At+1) · log f̂t(yt+1) + (1− I(yt+1 ∈ At+1)) · log
(
1−

∫
At+1

f̂t(y)dy
)
,(14)

where At+1 is the region of interest, and f̂t(yt+1) is estimated by f(yt+1|xt,yt). This scoring

rule takes into account the accuracy of the density forecast for the total probability of yt+1

7Two models are nested if one is a special case of the other; they are nonnested if neither can be represented
as a special case of the other. Vuong (1989) provided a general distribution theory for the likelihood ratio
test that covers nested and nonnested models, which tests whether the two densities f and g have the same
Kullback-Liebler information criterion. The true data generating process can be unknown and differ from
both f and g.

8The issue is familiar in the context of point forecasting. For point forecasting, the analog of the AG
statistic is the test proposed by Diebold & Mariano (1995). When point forecasts are nested, Diebold &
Mariano (1995) test statistic has a nonstandard distribution, derived by Clark & McCracken (2001), Clark
& McCracken (2005), McCracken (2007), which is a function of stochastic integrals of Brownian motion.
When density forecasts are nested, no corresponding results are known.
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falling into the region of interest. The test statistic takes the same form as Amisano &

Giacomini (2007) test above.

2.3 Forecasting Results

In this section, density forecasts made by individual models are first grouped and com-

bined according to the source of information they use. Then these combined density forecasts

are compared with one another. Afterwards, all 30 models are combined together to generate

a single combined density forecast that incorporates the information from both macroeco-

nomic variables and the market volatility.

I take the sample period from January, 1950 to December, 2011. The stock return series

is derived from the S&P500 price index data, pt, as yt = 100 log(pt/pt−1), so that yt repre-

sents the continuously compounded return on the index. I use eleven macro-finance variables

to make the forecast - dividends(D12), earnings(E12), stock variance(svar), book to mar-

ket ratio(b/m), net equity expansion(ntis), term spread(tms), default yield spread(dfy),

inflation(infl), unemployment rate(ume), industrial production growth(ip), and non-farm

payroll(nfp). The first eight variables are taken from the dataset maintained by Goyal and

Welch9. The last three variables are taken from the Federal Reserve Bank of Philadelphia’s

Real-Time Data Set for Macroeconomists (RTDSM). The data set reflects what the macroe-

conomic data exactly looked like at each historical date, so that forecasting using the dataset

unveils what the forecast would have performed as they looked at the time (Clark & Mc-

Cracken (2009)). As for realized volatility models, the daily return data from January 2,

1950 through December 31, 2011 are obtained from CRSP value-weighted returns (including

dividends).

9I pick the sample period also because December, 2011 is the last observation available in Goyal and
Welch’s dataset by October, 2012. The Additional details on data sources and the construction of these
variables are provided by Welch & Goyal (2008).
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Table.1. reports the log predictive likelihood obtained by the above 30 density fore-

casts. The higher the predictive likelihood, the better is the forecast. For legibility, I use

the EGARCH Student’s-t(i = 1, j = 1) as the benchmark forecast. The reported value

is the difference in the log predictive likelihood between the forecast of interest and the

EGARCH Student’s-t(i = 1, j = 1), which has a log predictive likelihood of −1858.2. Be-

sides, ∆(Ai, Aj) = exp{[
∑T

t=q+1 Lt(yt+1, Ai) −
∑T

t=q+1 Lt(yt+1, Aj)]/(T − q)} represents a

geometric average proportional difference in predictive densities. A difference of 6.4080 in

log predictive likelihood generally corresponds to a 1% increment in “probability” over the

entire sample period.

The first column reports the predictive likelihood achieved by combined density fore-

casts. The other columns report that of all single-model forecasts. The combined density

forecast using all 30 models (Comb.All) exhibits the highest predictive likelihood. The

combined density forecast using the realized volatility (Comb.RV ) is the second best. The

combined quantile density forecast using all N variables (Comb.MF ) and the single-model

forecast with ATIC-selected factors (ATIC − Factor) outperform the combined forecast

of EGARCH models (Comb.EGARCH) and the combined forecast of stochastic volatility

models (Comb.SV ). Even using only the first eight macro-finance variables, Comb.MF and

ATIC − Factor have outperformed many individual models that use volatility information

alone, though not the combined forecasts. Adding the last three real-time macroeconomic

variables substantially improves the predictive accuracy. The success of Comb.MF and

ATIC − factor owes to utilizing different conditioning information in forecasting the differ-

ent parts of the return distribution. In addition, adding implied volatility to the combination

exercise impairs the forecasting performance. Combining all 30 models with VXO index re-

duces the log-predictive likelihood by 2.55. Combining all 30 models with VIX index reduces

the log-predictive likelihood by 2.76. Using implied volatility in quantile density forecasting

leads to a log-predictive likelihood 262.05 points lower than the benchmark forecast.

Table.2.a reports the results of the Amisano & Giacomini (2007) test. The row of the table
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represents the forecast that is being compared to, as f(·) in constructing the test statistic.

The column of the table represents the forecast that is used to compare f(·), as g(·) in

constructing the test statistic. Given that all combined forecasts are mixtures of multiple

data generating processes, their major difference is driven by the source of information

they use. The comparison between two forecasts in fact compares the predictive power

of different conditioning information. As a complement, Table.2.b reports the test results

when comparing single-model forecast (g(·)) to the combined forecast using all models (f(·)).

A positive significant AG-test statistic shows that the combined density forecast of all 30

models significantly outperform any single-model forecast in above five classes. Two main

findings are summarized below.

First, the combined forecast using all 30 models does best. The combined density

forecast using various sources of information significantly outperforms combined forecasts

that use a single source of information. When the comparison is set between combined

forecast using all models (Comb.All) and any other forecasts except combined forecast using

realized volatility (Comb.RV ), the AG statistics are all positive and significant at 5%. When

the comparison is set between Comb.All and Comb.RV , the AG statistic remains positive.

The significance depends on the sample period. When the sample ends at December, 2008,

the AG statistic is significant at 10% level. The significance holds when the inference uses

either bootstrap critical values or the asymptotic critical values.

Second, the combined density forecasts that use macro-finance variables ex-

hibit higher forecasting accuracy than the combined forecasts of volatility-based

models. Over the entire 624 out-of-sample periods, combining the quantile density forecasts

of all 11 macro-finance variables outperforms the combined forecast of stochastic volatility

models at the 10% level of significance; and outperforms the combined forecast of EGARCH

models at the 5% level of significance. Using the same set of conditioning information but

without forecasts combination, quantile density forecasts using the principle components ex-

tracted from macro-finance variables, including ATIC−Factor and 1st.PC, exhibit compet-

19



itive predictive accuracy with the combined forecast of EGARCH models (Comb.EGARCH)

and the combined forecast of stochastic volatility models (Comb.SV )10. In contrast, quantile

density forecast that uses the same set of macro-finance variables in predicting all differ-

ent quantiles is significantly worse than Comb.EGARCH and Comb.SV . The success of

Comb.MF and ATIC − Factor implies using quantile-varying information extracted from

the macroeconomic variables is more powerful than using the same set of conditioning vari-

ables for the entire support of the return distribution.

In addition, Figure.2. displays how the optimal pooling weights {w∗t,m}Tt=q+1 are allocated

among different types of forecasts. The horizontal axis represents the sum of the weights as-

signed to the forecasts made by macro-finance variables. The vertical axis represents the sum

of the weights assigned to the forecasts made by volatility information only. Each contour

line centers at the point that shows how the optimal pooling weights are allocated between

the two types of forecasts, and represents an out-of-sample forecasting period. The most

dense region, where the contour lines cluster, locates at (0.4237, 0.5763), which indicates

that the macro-finance variables contribute 40% forecasting accuracy to the optimal pool,

while the volatility models contribute 60% forecasting accuracy to the optimal pool.

2.4 A Comparison with the State Price Density

The state price density (SPD) is the continuous-state counterpart to the price of Arrow-

Debreu securities each paying one dollar in one specific state of nature and nothing in any

other state. The SPD aggregates important information regarding investors’ preferences,

behavior, and expectations of the market, and is widely used for pricing and hedging. In the

Black-Scholes model, SPDs are log-normal distributions with constant volatility. In practice,

the volatility is time-varying and the stock price deviates from log-normal distribution. The

10The AG test statistic is positive but insignificant.
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state price density is the second derivative (normalized to integrate to unity) of a call option

pricing formula with respect to the strike price (see Ross (1976), Banz & Miller (1978) and

Breeden & Litzenberger (1978)).

I considered two methods to obtain the state price density. Method I forms a money

spread with two call options, and assuming the probability that the stock price falls into

the interval between the strike prices of these call options to be zero. Consider the portfolio

obtained by buying one call options struck at Xj and selling another call option with identical

expiration date, but at higher exercise price Xj+1. This portfolio pays 0 if ST ≤ Xj, and

Xj+1 − Xj if ST > Xj+1. Now denote by H(St, X, τ) the market price of a call option at

time t with strike price X, time-to-maturity τ , and the underlying asset price St. The price

of the money spread must be

H(St, Xj, τ)−H(St, Xj+1, τ) = 0 · P (ST ≤ Xj) + (Xj+1 −Xj) · P (ST > Xj+1).

Using a fine grid of strike prices j = 1, . . . , n, P (ST ≤ Xj) = 1 − P (ST > Xj+1) yields the

cumulative distribution function of the future stock price ST . The state price density f ∗ is

obtained by taking the derivative of the cumulative distribution function with respect to the

strike price. Since the S&P 500 index options expire on Saturdays following the third Friday

of the expiration month, one-month ahead forecast is made using the call option prices on

the third Friday of the current month with the days to maturity restricted to be 30.

Following Aıt-Sahalia & Lo (1998), Method II takes the option pricing formula H to

be a nonlinear function of a pre-specified vector of option characteristics or “explanatory”

variables, Z︸︷︷︸
d×1

≡ [Ft,τ , X, τ, rt,τ ]
′, and uses kernel regression to construct a nonparametric

estimate of the function H. The estimator Ĥ can then be differentiated twice to produce an

estimator of the SPD, according to f ∗t (·) = ert,τ τ∂2H(·)/∂X2. In practice, the dimension of

the kernel regression can be reduced by using a semi-parametric approach. The d-dimensional

vector of explanatory variables Z is partitioned into [Z̃′, Ft,τ , rt,τ ]
′ where Z̃ ≡ [X,Ft,τ , τ ]′ con-
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tains d̃ = 3 regressors. Suppose that the call pricing function is given by the parametric

Black-Scholes formula except that the implied volatility parameter for that option is a non-

parametric function σ(Z̃):

H(St, X, τ, rt,τ , δt,τ ) = HBS(Ft,τ , X, τ, rt,τ ;σ(X,Ft,τ , τ))

= e−rt,τ τ (Ft,τΦ(d1)−XΦ(d2)),

with d1 ≡ (log(Ft,τ/X) + (σ2/2)τ)/(σ
√
τ) and d2 ≡ d1−σ

√
τ . σ ≡ σ(X,Ft,τ , τ) is estimated

by the Nadaraya-Watson kernel estimator. The implied futures, Ft,τ is derived from using

the spot-future parity and the put-call parity relation,

H(St, X, τ, rt,τ , δt,τ ) +Xe−rt,τ τ = G(St, X, τ, rt,τ , δt,τ ) + Ft,τe
−rt,τ τ ,

where G denotes the put price at the same strike price X and time-to-expiration τ with

the call. Following Aıt-Sahalia & Lo (1998) and Aıt-Sahalia et al. (2001), the future price

is inferred from the closest to at-the-money pair of calls and puts. All the prices of in-the-

money call options (illiquid) are then replaced using prices of out-of-money puts (liquid)

through the put-call parity relationship. Using the index option data of the entire month,

I do above procedure on every day t for all available maturities τ to estimate the implied

volatility. The state price density is inferred using Black-Scholes formula with τ fixed to be

one month.

Figure.4.a− b compares the state-price density with the combined density forecast using

all 30 models (Comb.All). The blue real-line represents the state-price density estimated

by the semi-parametric approach (Method II). The blue dash-line is the state-price density

recovered from the call prices directly (Method I). The red real-line represents the physical

density predicted by the density forecast. Due to the difference between physical measure and

risk-neutral measure, the state price density exhibits fatter tails than the proposed density
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forecast. Figure.4.a shows the forecast made at the end of November, 2007 for December,

2007, when the US stock market just entered a pronounced decline after the peak in October.

Figure.4.b shows the forecast made at the end of December, 2008 for January, 2009, right

after the financial institution crisis hits its peak11.

3 A Portfolio Study

In general, investors require an estimate of the entire distribution of future returns to

make their portfolio decisions. In classical asset pricing models, the return distribution is

often assumed to be lognormal and time-invariant. In reality, there is strong evidence that

the stock returns are fat-tailed and exhibit left-skewness. As an alternative, a portfolio

manager may use the empirical return distribution formed by combining various density

forecasts to make the optimal portfolio decision. Such empirical return distributions have no

closed functional form, and will vary from period to period as the forecast updates according

to new information.

This section explores the impact of combined density forecasts on portfolio choice. The

purpose of this study is to find a density forecasting method that not only does a better

job of modeling return distribution, but also allows the manager to capture portfolio returns

that are unrecognized when using the normal assumption.

3.1 An Asset Pricing Model with Empirical Return Distribution

The portfolio study considers both the no-short-sale case and the short-sale-allowed case.

If the short sale is not permitted, an investor allocates at fraction of total wealth to stocks

and the remainder, (1 − at) fraction to a risk-free asset, in which case, 0 < at ≤ 1. If the

11Several major institutions either failed, were acquired under stress, or were subject to government
takeover, including Lehman Brothers, Merrill Lynch, Fannie Mae, Freddie Mac, Washington Mutual, Wa-
chovia, Citigroup, and AIG during October and November in 2008.
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short sale is allowed, the investor may borrow the risky asset and sell it immediately when

the investor anticipates the price of the risky asset will fall; in which case, at < 0, and the

investor invests (1 − at) fraction of wealth in the risk-free asset. Let Wt denote the wealth

level in period t. The initial wealth W0 is set to be 1. The budget constraint is given by

Wt+1 = Wt

[
1 + atRt+1 + (1− at)Rf,t

]
≡ Wt

(
1 + atR

e
t+1 +Rf,t

)
.

Rt+1 is the S&P500 monthly gross return12. Rf,t is the risk-free rate, for which I use the

1-month Treasury bill rate. Re
t+1 is the excess return. The investor is assumed to have the

power utility (CRRA) defined over next period’s wealth.

U(Wt+1) =
W 1−γ
t+1

1− γ
,

where γ is the investor’s coefficient of relative risk aversion 13. Portfolio weights for period

t can be obtained as the solution to the following optimization problem:

a∗t = arg max
at

∫ +∞

−∞

[Wt(1 + atR
e
t+1 +Rf,t)]

1−γ

1− γ
f(Re

t+1|Ft)dRe
t+1. (15)

f(Re
t+1|Ft) can be estimated by the density combination method as in:

f(Re
t+1|Ft) = | 100

Rt+1 + 1
| · f(yt+1|xt,yt,w∗t ) =

M∑
m=1

w∗t,mf(yt+1|xt,yt, Am) · | 100

Rt+1 + 1
|.

For each possible realization range of the next period’s regular stock return, its predictive

density is the weighted sum of the densities over its counterpart of the continuously com-

pounded return predicted by various models, scaled by the density transformation term.

12Rt is the regular return, which equals (Pt − Pt−1)/Pt. yt is the continuously compounded return,
yt = 100 log(Pt/Pt−1). The two forms of return are connected by yt = 100 · log (Rt + 1).

13For γ = 1, logarithmic utility is used: U(Wt+1) = logWt+1.
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When jointly considering the predictive densities obtained in the same way for all possible

realizations, one can obtain an empirical return distribution - and hence a density forecast

of the future return in ex-ante. In particular, let r = [r0, . . . , rS] be a sequence of possible

realizations of Re
t+1. The integration in (15) can be approximated by:

a∗t = arg max
at

S∑
i=1

[Wt(1 + atR
e
t+1 +Rf,t)]

1−γ

1− γ
P (ri−1 < Re

t+1 ≤ ri|Ft).

As different distributions lead to different estimations of expected return, different density

forecasts lead to different portfolio choice, {a∗t}Tt=q+1. In solving the optimization, different

constrains are imposed depending on whether the short-sale is permitted or if there is margin

restriction.

If the short-sale is forbidden, a∗t must be on the unit interval. The investor can neither

borrow shares nor cash but invest using only her own wealth. If the short-sale is permitted,

a∗t is set between −1 ≤ a∗t ≤ 1. a∗t < 0 means that the investor short sells shares at t to invest

in risk-free asset. a∗t > −1 implies that the value of shares borrowed at t cannot exceed the

the investor’s wealth. To impose a maintenance margin of δ% on the short-sale, the equity

in the investor’s account must be at least δ% of the value of her short-position. The account

portfolio choice in each period must satisfy

(1− at)Wt(1 +Rf,t)− (−atWt

Pt
) · Et(Pt+1)

(−atWt

Pt
) · Et(Pt+1)

≥ δ%,

in which, the short-sale cash proceeds, (1 − at)Wt, are invested in the risk-free asset and

grow by (1 + Rf,t) by the end of t + 1; the expected value of the shares the investor must

pay back at the end of t + 1 is (−atWt

Pt
) · Et(Pt+1). The constraint can be simplified to[

(Rf,t − δ%)− (1 + δ)Et(Rt+1)
]
· at ≤ (1 +Rf,t).
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The resulting portfolio weights, a∗t , give rise to a realized utility next period

U(W ∗
t+1) =

[Wt(1 + a∗t+1R
e
t+1 +Rf,t)]

1−γ

1− γ
.

The economic value of the density forecasts can be measured by the certainty equivalent rate

of return (CER), which is the utility score of the risky portfolio:

CER =
[
(1− γ)

1

T − q

T∑
t=q+1

U(W ∗
t )
]1/(1−γ) − 1.

The certainty equivalent rate is the return rate that risk-free investments would need to

offer to provide the same utility score as the risky portfolio. In other words, it is the

rate that, if earned with certainty, would provide a utility score equivalent to that of the

portfolio in question. CER here compares the utility values of competing density forecasts.

The higher the CER, the more attractive is the portfolio strategy, and hence the better

is the corresponding density forecast for a risk-averse investor. In the empirical findings,

combined density forecasts that assimilate information from the macro-finance variables

yield the highest certainty equivalent return among all forecasts.

Meanwhile, density forecasts can provide forward-looking measure of portfolio risk14.

At the simplest level, one may use the mean-variance framework (Sharpe Ratio) to measure

risks. However, the standard deviation can be very unsatisfactory risk measure when dealing

with highly non-normal distributions. I hence also examined two alternative risk measures

of each density forecast, using the value at risk (VaR) and the expected shortfall (ES).

Value at risk (VaR) can be interpreted as the cutoff point such that a loss will not

happen with probability greater than p, say, p = 90% . . . 99%. VaR is defined as the deviation

14For a simple portfolio as above, market risk is the main source of risk.
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between the expectation and the (1− p)th quantile,

V aRt+1(p) = Et[R
e
t+1|Ft]−Q1−p(R

e
t+1|Ft).

VaR usually rises when the confidence level increases. The increasing rate is a point that

portfolio managers care to note.

The expected shortfall (ES) is the expected value of the worst (1 − p)% of returns,

or to say, the p-th highest losses beyond VaR:

ESt+1(p) = Et[−Re
t+1|Re

t+1 < −V aRt+1(p);Ft].

Specifically,

ESt+1(p) =
1

1− p

∫ Q1−p(Ret+1|Ft)

−∞
Re
t+1f [Re

t+1|Ft]dRe
t+1

=
1

1− p

99%∑
p=90%

[p-th highest loss]× [probability of p-th highest loss].

The ES tells us what to expect in bad states. It gives an idea of how bad the bad might be,

while VaR tells us nothing other than to expect a loss higher than VaR itself.

Besides, density forecasts may perform differently in forecasting the different regions of

the return distribution. Although portfolio choice is made based on the expected return,

a high-quality density forecast should model the tails precisely to allow investors to take

risk smartly as well as to prevent loss in ex-ante. If a density forecast is more precise in

predicting the right tail, it can capture the market surge and hence encourage the investor

to long more of the risky asset to obtain the gain. If a density forecast shows more precision

on the left tail, it can capture the downward movement of the market, and hence remind the

investor to short sell the risky asset to avoid loss. A brief look at the Table 2.c shows that

combined forecast using macro-finance variables significantly outperforms other forecasts on
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the upper-right tail. Combined forecast using all 30 models significantly outperforms other

forecasts on the lower-left tail.

3.2 Empirical Findings

The data and the forecasting specification follow that in Section 2.3 and 3.1. Table.3.a

compares the CERs obtained by portfolios that constructed using different density forecasts,

with respect to the increase of relative risk aversion γ. The reported values are the difference

in CER between the forecast of interest and the benchmark forecast, EGARCH Student-

t(i = 1, j = 1). Density forecasts that use macro-finance variables can help investors to

obtain a high level of certainty equivalent return (CER), especially when the investors are

less risk-averse. Except for that the combined forecast of macro-finance variables alone

(Comb.MF ) is of interest, two other representative forecasts are used as analogues: first, the

combined forecast of all 30 models (Comb.All) combines multiple data generating processes

as well as various sources of information. It reflects the premise of forecast combination and

hence serves as one analogue. Second, the combined forecast of realized volatility models

(Comb.RV ) has the best performance among all volatility-based models. It uses return

information alone but combines multiple data generating processes. It serves as another

analogue. The questions of interest are: do density forecasts that use macro-finance variables

bring real economic gain, and why?

First, as investors become more risk averse, the difference in gains brought

by different density forecasts narrows, and the portfolio choices made by users

of different forecasts converge. As indicated by Table.3.a, for example, when the risk

aversion level is low (γ = 1) and the short-sale is not allowed, the portfolio that uses the

combined forecast of all 30 models yields a CER that is up to 0.35% per month higher than

that yielded by portfolio that uses the benchmark forecast. As the risk aversion increases

from 2 to 100, the difference decreases from 0.35% to 0.00% per month. When the investors
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are extremely risk averse, say γ = 100 or 200, the CERs of all forecasts converge to 0.37%

per month, regardless of whether short-sales are allowed or not. This is also the CER

provided by always investing in risk-free asset. Meanwhile, portfolio management strategies

can be identified by the fraction of wealth invested in the risky assets. The difference

between portfolio choices is defined by taking the difference of a∗,Any Forecast
t with a∗,Comb.MF

t .

Figure.3.1 shows that as the investors become more risk averse, the variance of the difference

in portfolio choices declines, and the ratio allocated to risky assets converges, regardless of

whether short-sales are allowed or not.

Second, combined forecasts that use macro-finance variables can yield a cer-

tainty equivalent return that is up to 0.09% per month higher than can be ob-

tained with the combined forecast of realized-volatility models. The advantage

of Macro-finance variables is tested through a few turmoil periods of the stock

market. As reported in Table.3.a, when the investor is less risk averse (γ ≤ 2), the combined

forecasts that use macro-finance variables, including Comb.MF and Comb.All, outperform

the combined forecast of models that use return information alone, including the combined

forecast of realized volatility models (Comb.RV ), the combined forecast of stochastic volatil-

ity models (Comb.SV ) and the combined forecasts of EGARCH models (Comb.EGARCH).

The blue shading regions in Figure.3.2 show that density forecasts that assimilate macro-

finance variables outperform Comb.RV mainly during the period after January, 1984, which

is usually referred as ”the Great Moderation”. The advantage of using density forecasts that

incorporate macro-finance variables is tested through the oil crisis in 1970s, the market crash

in 1987, the LTCM collapse in 1998, and the recent financial crisis in 2008. Meanwhile, as

in Table.3.a, the combined forecasts of all 30 models (Comb.All) yield a certainty equivalent

return that is 0.09% per month higher than can be obtained with the combined forecast

of realized volatility models (Comb.RV ) when γ = 1 and the short sale is permitted. The

combined forecast that use macro-finance variables alone(Comb.MF ) can yield a certainty

equivalent return that is from 0.04% to 0.08% per month higher than can be obtained with
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Comb.RV , regardless of whether short-sales are allowed or not. As Comb.RV yields the

highest certainty equivalent return among all forecasts that use return information alone,

Table.3.b counts the time frequency when other forecasts surpass Comb.RV . Given γ ≤ 2,

Comb.All outperforms Comb.RV over 60% of the time over the period from January, 1960,

to December, 2011; Comb.MF outperforms Comb.RV over 70% of the time. Such advantage

is larger when the short-sale is not allowed.

Third, combined forecasts that use macro-finance variables are helpful to port-

folio management because they can better capture the market surge. Table.2.c

compares the predictive accuracy on a particular region of interest of the three representa-

tive combined density forecasts: Comb.All, Comb.RV and Comb.MF . Combined density

forecast of macro-finance variables (Comb.MF ) significantly outperforms all other forecasts

on the right tail (τ ≥ 90%) of the distribution. Combined density forecast of all 30 models

(Comb.All) significantly outperforms most forecasts on the left tail (τ ≤ 10%) of the dis-

tribution. Combined density forecast of realized volatility models (Comb.RV ) significantly

outperforms most forecasts on the shoulder (20% ≥ τ ≥ 80%) of the distribution. Com-

bined forecast of all 30 models (Comb.All) assimilates the advantage of both Comb.MF and

Comb.RV . It performs the second-best to Comb.MF on the right tail and the second-best

to Comb.RV on the shoulder, with a slightly better performance than Comb.RV on the left

tail. Using forecasts that assimilate information extracted from macro-finance variables en-

courages investors to invest more wealth in risky asset whenever there is predictable market

surge.

In addition, a simple comparison of the risk measures lead by different density forecasts

reveals more facts on the left tail (See Figure.3.3.a−b and Figure.3.4.a−b). First, I compare

the value-at-risk (VaR) formed by combined forecast of realized volatility models (Comb.RV )

and combined forecast of all 30 models (Comb.All) to that formed by the combined forecast

using macro-finance variables (Comb.MF ). I consider ten confidence levels (90% − 99%)

and test the hypothesis: V aRAny Forecasts,t − V aRComb.MF,t = 0. A negative significant test
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statistic at lower confidence levels (< 97%) and a positive significant test statistic at higher

confidence levels (> 98%) together indicate that the predictive distributions constructed

using volatility-based density forecasts have longer left tails than those constructed using

Comb.MF . Second, I compare the expected shortfall yield by Comb.All and Comb.RV to

Comb.MF in real time. The positive significant t-test statistics over ten confidence levels

(90% − 99%) show that the Expected Shortfall estimated by forecasts that assimilate the

market volatility is significantly larger than forecasts that assimilate macro-finance variables

alone. In this sense, volatility-based models contribute to model the left-tail, whereas macro-

finance models contribute to model the right tail15. A combination of them captures the

left-skewness as well as the potential market surge.

4 Conclusion

This paper finds that the combined density forecast that uses various sources of infor-

mation is significantly more accurate than the combined density forecast that uses a single

source of information, in forecasting the U.S. S&P 500 index monthly returns from 1950 to

2011 in real-time. This paper contributes to the empirical work on density forecast combi-

nation, especially that of Durham & Geweke (2011), by providing empirical evidence that

combining quantile density forecasts in way that maximizes the log predictive likelihood ex-

hibits better forecasting performance than SVOL models and EGARCH models. This paper

also contributes to the stock return forecasting literature, such as Welch & Goyal (2008), by

finding that macro-finance variables exhibit substantial predictive power in forecasting the

stock return distribution. Furthermore, the portfolio study shows that a better density fore-

cast that incorporates information carried by macro-finance variables encourages the investor

to take moderate risk and can obtain substantial economic gains in real-time.

15Unless when extremely risk averse, portfolio managers who use density forecasts with macro-finance
variables alone may invest significantly heavily in the risky asset. Figure.3.3.c and Figure.3.4.c use a simple
t-test to compare whether a∗Comb.MF,t is significantly larger than a∗Comb.All,t and a∗Comb.RV,t.
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A Estimation of Stochastic Volatility Model

This section illustrates the estimation procedure of the stochastic volatility models.

Following Kim et al. (1998) and Omori et al. (2007), the conditional mean equation was first

transformed into a linear model by taking logarithm of the squares of observations:

y∗t ≡ log y2
t − log(λt) = ht + log ε2

t

dt = sign(yt) = I(εt > 0)− I(εt ≤ 0).

Let ξt = log ε2
t . The first equation can be rewritten as

y∗t = ht + ξt.

In the basic SVOL model, ξt follows a logχ2 distribution. Kim et al. (1998) approximate this

distribution by a mixture of seven Gaussian distributions to match its first four moments.

In particular,

g(ξt) =
K∑
i=1

pifN(ξt|mi, v
2
i ), (16)

where K = 7 and fN(ξt|mi, v
2
i ) denotes the density function of a normal distribution with

mean mi and variance v2
i .

In the SVOL model with leverage effect, Omori et al. (2007) approximate the bivariate

conditional density of (ξt, ηt|dt) by a ten components mixture of bivariate Gaussian densities.

g(ξt, ηt) =
K∑
i=1

pifN(ξt|mi, v
2
i )fN [dtρσ exp (mi/2)ai + bi(ξt −mi), σ

2(1− ρ2)]. (17)

The constants mi and v2
i are determined on the basis of K = 10 components. The selection

of (pi,mi, v
2
i , ai, bi) is listed in the following table.
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Selection of (pi, mi, v
2
i , ai, bi)

N = 10 pi mi v2
i ai bi

i = 1 0.00609 1.92677 0.11265 1.01418 0.50710

i = 2 0.04775 1.34744 0.17788 1.02248 0.51124

i = 3 0.13057 0.73504 0.26768 1.03403 0.51701

i = 4 0.20674 0.02266 0.40611 1.05207 0.52604

i = 5 0.22715 −0.85173 0.62699 1.08153 0.54076

i = 6 0.18842 −1.97278 0.98583 1.13114 0.56557

i = 7 0.12047 −3.46788 1.57469 1.21754 0.60877

i = 8 0.05591 −5.55246 2.54498 1.37454 0.68728

i = 9 0.01575 −8.68384 4.16591 1.68327 0.84163

i = 10 0.00115 −14.65000 7.33342 2.50097 1.25049

Through above steps, the stochastic volatility model is approximated by a linear Gaussian

state space model conditioned on the mixture component indicators st ∈ {1, 2, . . . , K}. It

then becomes possible to efficiently sample the posterior distribution of s = {st}Tt=1, the

volatility component h = {ht}Tt=1 and the parameters θ = {µ, φ, σ, ρ} by MCMC methods.

1. Sampling volatility parameters (θ, µ,h)

• The conditional posterior probability density function of (θ, µ,h) is

π(θ, µ,h|s,y∗,d) ∝ π(θ|s,y∗,d)π(µ,h|s,y∗,d)

where

π(θ|s,y∗,d) ∝ f(y∗|θ, s,d)π(θ)

π(µ,h|s,y∗,d) ∝ π(µ|θ, s,y∗,d)π(h|µ, θ, s,y∗,d)
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The conditional likelihood f(y∗|θ, s,d) is evaluated through the augmented Kalman

filter (see Appendix B). π(θ) uses the prior distribution:

φ+ 1

2
∼ Beta(20, 1.5), σ2 ∼ IG(5/2, 0.05/2),

ρ+ 1

2
∼ Beta(1, 1).

The next step is to find θ̂ = (φ̂, σ̂, ρ̂) that maximizes (or approximately maximizes) the

posterior probability density π(θ|s, y∗,d) and generate a candidate θ∗ from a normal

distribution N(θ∗,Σ∗), truncated over R = {θ : |φ| < 1, σ > 0, |ρ| < 1}, where

θ∗ = θ̂ + Σ∗
∂ log π(θ|s,y∗,d)

∂θ

∣∣
θ=θ̂

, Σ−1
∗ = −∂ log π(θ|s,y∗,d)

∂θ∂θ′
∣∣
θ=θ̂

.

Let θ0 denote the last draw of θ. We accept the candidate θ∗ with probability.

a(θ0, θ
∗|s,y∗,d) = min

{π(θ∗|s,y∗,d)fN(θ0|θ∗,Σ∗)
π(θ0|s,y∗,d)fN(θ∗|θ∗,Σ∗)

, 1
}
,

where fN denotes the density of the truncated normal distribution for the proposal

above. If the candidate θ∗ is rejected, the current value θ0 is taken as the next draw.

• To sample (µ,h)|θ, s,y∗,d, I first generate µ|θ, s,y∗,d ∼ N(Q−1
n+1qn+1, Q

−1
n+1), where

qn+1 and Qn+1 are the byproducts of the augmented Kalman Filter (see Appendix B).

I then sample h|µ, θ, s,y∗,d in one block using the simulation smoother. Given st = i,

the approximating linear Gaussian state space model is formed by

y∗t = mi + ht +Gtut,

ht+1 = dtρσai exp(mi/2) + (1− φ)µ+ φht +Htut,

where ut ∼ N(0, I2), Gt = (vi, 0), and Ht = (dtρσbivi exp(mi/2), σ
√

1− ρ2). The prior

of µ uses µ ∼ N(−10, 1).
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2. Sampling heavy-tailed parameters (λ, ν)|θ, µ, s,h,y

• In the basic SVOL model, λt is set to be 1 for all time periods and the algorithm directly

enters sampling the mixture state without sampling ν. In the fat-tailed SVOL model,

the heavy-tailed parameters are sampled from the conditional posterior distribution of

(λ, ν), where the joint probability density is

π(λ, ν|θ, µ, s,h,y) ∝ f(y|θ, µ, s,h)g(λ|ν)π(ν)

∝ π(ν)ΠT
t=1

(ν/2)ν/2

Γ(ν/2)
λ
−( ν

2
+1)

t exp
{
− ν

2λt
− (log λt − µλt)2

2σ2
λt

}
,

where

µλt = log y2
t −mi − ht −

dtρbivi exp (mi/2){ht+1 − φht − (1− φ)µ− dtρσai exp(mi/2)}
σ{(1− ρ2) + ρ2b2

i v
2
i exp(mi)}

,

σ2
λt =

v2
i (1− ρ2)

1− ρ2 + ρ2b2
i v

2
i exp(mi)

,

given st = i, for t = 1, . . . , T −1 and µλT = log y2
T −mi−hT , σ2

λT
= v2

i . The conditional

posterior distribution for λt is given by

π(λ|θ, µ, ν, s,h,y) ∝ λ
−( ν

2
+1)

t exp
{
− ν

2λt
− (logλt − µλt)2

2σ2
λt

}
,

Then λt is sampled using the M-H algorithm with the candidate drawn by (λt)
−1 ∼

Gamma(ν/2, ν/2).

• The conditional posterior distribution for ν is given by

π(ν|λ) ∝ π(ν)
(ν

2
)
Tν
2

Γ(ν
2
)T

ΠT
t=1λ

− ν
2

t exp
(
− ν

2

T∑
t=1

λ−1
t

)
.

The conditional prior of π(ν) uses ν ∼ Gamma(16, 0.8). Let ν denote the mode

(or approximate mode) of the conditional posterior density π(ν|λ), and let l(ν) =
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log π(ν|λ). Applying Taylor expansion to l(ν) around ν̂ as

l(ν) ≈ l(ν̂) + l′(ν̂)(ν − ν̂) +
1

2
l′′(ν̂)(ν − ν̂)2 ≡ h(ν),

where l′(ν) and l′′(ν) are the first and second derivative of l(ν) evaluated at ν = ν̂. The

approximating density N(µν , σ
2
ν)is truncated over (0,∞), where µν = ν̂ − l′(ν)/l′′(ν)

and σ2
ν = −1/l′′(ν). Finally, ν is sampled by the following two steps.

i. A-R step: Generate a candidate ν∗ ∼ N(µν , σ
2
ν) truncated over (0,∞) and accept

ν∗ with probability min(1, exp{l(ν∗)−h(ν∗)}). If it is rejected, generate ν∗ again until

the candidate is accepted.

ii M-H step: Let ν0 denote the current point of ν. Accept ν∗ with probability

min
{exp[l(ν∗)] min{exp[(l(ν0)], exp[h(ν0)]}

exp[l(ν0)] min{exp[l(ν∗)], exp[h(ν∗)]}
, 1
}
.

If ν∗ is rejected, ν0 is retained as the new draw.

3. Sampling mixture state s To sample st, one simply computes

π(st = i|θ, µ,h,y∗,d) ∝ qi
1

vi
exp

{
− (y∗t − ht −mi)

2

2v2
i

}
exp

[
− {(ht+1 − µ)− φ(ht − µ)−Di(y

∗
t )}2

2σ2(1− ρ2)

]
,

for i = 1, . . . , K, in which y∗t = log y2
t − log λt and

Di(y
∗
t ) = dtρσ{ai + bi(y

∗
t − ht −mi)} exp(

mi

2
).

st is sampled from the K-point discrete distribution independently for t = 1, . . . , T . In the

case of t = T , the second exp [·] is omitted. In the MCMC sampling of the posterior distri-

bution, the initial 1000 sweeps are discarded and the subsequent 1500 sweeps are retained

for analysis.
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B Augmented Kalman filter

To find θ that maximizes π(θ|s,y∗,d), one needs to evaluate a likelihood f(y∗|θ, s,d).

Assuming θ = (φ, σ, ρ) is fixed, one may conduct an augmented Kalman filter and calculate

the likelihood function.

The approximating state space model after the log-quadratic transformation of the SVOL

model is,

y∗t = mi + ht +Gtut, t = 1, . . . , T,

ht+1 = dtρσai exp (mi/2) + µ(1− φ) + φht +Htut, t = 1, . . . , T,

where µ ∼ N(−10, 1), and ut ∼ N(0, 1). Let ht+1|t and Pt+1|t denote the predictive mean

and variance of ht. h1|0 = 0 and A∗1|0 = 1. When µ is fixed, the Kalman filter is the recursion.

ht+1|t = bt + φht|t−1 + ftKt,

Pt+1|t = φPt|t−1φ
′ − φPt|t−1K

′
t +Ht(Ht −KtGt)

′.

Ht and Gt are defined at the end of sampling volatility parameters, and

bt = dρσait exp(mit/2), ft = y∗t −mit − ht|t−1

Kt = (φPt|t−1 +HtG
′
t)D

−1
t , Dt = Pt|t−1 +GtG

′
t.

The log-likelihood of y given µ is

log f(y|u) = −1

2

{
T log 2π + log |Σ|+ (y −mi)

′Σ−1(y −mi)− 2q′µ+ µ′Qµ
}
,

where log |Σ| =
∑T

t=1 log |Dt|, (y−mi)
′Σ−1(y−mi) =

∑T
t=1 f

′
tD
−1
t ft, q =

∑T
t=1 F

′
tD
−1
t ft and
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Q =
∑T

t=1 F
′
tD
−1
t Ft. The posterior distribution of µ given y is N(Q−1

T+1qT+1, Q
−1
T+1) where

qt+1 = qt + F ′tD
−1
t ft,

Qt+1 = Qt + F ′tD
−1
t Ft,

in which Ft = −At|t−1, and At+1|t = −(1− φ) + φAt|t−1 +KtFt. Thus the likelihood of y is

log f(y) = log f(y|µ) + log π(µ)− log π(µ|y)

= const.− 1

2

{ T∑
t=1

log |Dt|+ log |QT+1|+
T∑
t=1

f ′tD
−1
t ft − q′T+1Q

−1
T+1qT+1

}
.

C ATIC Quantile-varying Factor Selection Rule

As factor selection is found to improve forecasting the mean of a time series (Bai & Ng

(2008)), Ando & Tsay (2011) proposed a factor selection method for quantile regression.

Each quantile of yt is predicted by

Q̂τ (yt|xt−1) = β̂0(τ) + β̂1(τ)yt−1 + β̂2(τ)ft−1 ≡ β̂(τ)ẑt−1, t = 1, . . . , T.

ft−1 is the first r principal components of xt−1︸︷︷︸
N×1

. The optimal number of factors r∗ for each

quantile is found by minimizing the following information criteria:

ATIC = −2{ητ (Ĝ; β̂, Ẑ)− b̂τ (G)}, τ = 0.01, . . . , 0.99.

38



ητ (Ĝ; β̂, Ẑ) is the sample-based log-likelihood of y. Ẑ is the matrix of ẑt−1 for t = 1, . . . , T .

b̂τ (G) is an estimator of the bias between the sample log likelihood (smaller) and the true

expected log-likelihood (larger), which is generally positive. ητ (Ĝ; β̂, Ẑ) takes the form:

ητ (Ĝ; β̂, Ẑ) =

∫
lτ (y; β̂, Ẑ)dĜ(y) = log [τ(1− τ)]− 1

T

T∑
t=1

ρτ (yt − β̂(τ)ẑt),

in which lτ (y; β̂, Ẑ) to be the log-likelihood function of y. β̂ is estimated by solving ∂ητ (y; β̂, Ẑ)/∂β =

0.

The bias term b̂τ (G) is approximately given by

b̂τ (G) =
1

T
tr[J−1

τ (Ẑ) · Iτ (Ẑ)] +
1

TN

T∑
t=1

g(ξ̂t)tr[Kτ (β̂(τ)) · Σ̂z(t)] +O
( 1

BN,T

),

in which BN,T = min {N, T
√
T}, and

Iτ (Ẑ) =
1

T
τ(1− τ)Ẑ′Ẑ

Jτ (Ẑ) =
1

T
Ẑ′M̂ Ẑ.

Kτ (β̂(τ)) = β̂(τ)β̂(τ)′,

Σ̂z(t) =

 Ṽ −1Q̂tṼ
−1 L̂f,w

L̂′f,w Σ̂w

 .
w refers to the constant and lag values of yt. L̂′f,w is the covariance of the factors and w.

M = diag{g(ξ̂1(τ)), . . . , g(ξ̂T (τ)}) is a T-dimensional diagonal matrix, in which quantile

estimates, ξ̂t(τ) = G−1(τ |ẑt), and g(ξ̂t(τ)) is the corresponding normal density. Assuming

that εit is cross-sectionally uncorrelated, Q̂t = 1
N

∑N
i=1 ε̂

2
itλ̂iλ̂j

′
, and ε̂it = xit − λ̂′if̂t. λ̂i is the

factor loading of variable xi,t−1.

In sum, ητ (Ĝ; β̂, Ẑ) measures the goodness of fit of the model and b̂τ (G) is a penalty that

measures the complexity of the model as more factors are included.
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Table.1. Predictive Likelihood of Density Forecasts in Five Classes

Sample Periods 1959 : 01− 2011 : 12

Class Combined Forecasts Individual Forecasts

I Combined Dividend Earnings SVAR Book to Mkt Ratio

Macro-finance 51.99 54.56 72.73 67.80

Variables Net Equity Exp. Term Spread Default Yield Spread Inflation

76.51 67.60 67.96 75.90 66.61

Unemployment Rate Industrial Production Growth Non-farm Payroll

70.50 77.93 78.13

II Single-model Ando-Tsay Factor 1st. P.C. Multivariate

Multivariate Forecasts 66.20 58.89 −7.65

III Combined Gaussian (i = 1, j = 1) Gaussian (i = 1, j = 2) Gaussian (i = 2, j = 1) Gaussian (i = 2, j = 2)

EGARCHs 39.48 31.53 22.44 37.31

53.28 Student-t (i = 1, j = 1) Student-t (i = 2, j = 1) GED (i = 1, j = 1) GED (i = 2, j = 1)

0.00 2.86 15.74 −13.75

IV Combined SVs Gaussian SV Fat-tail SV Corr SV Fat-tail Corr SV

61.75 59.38 60.00 64.99 55.82

V Combined RVs RV-Gaussian (j = 1) RV-Gaussian (j = 2) RV-t RV-GED

89.99 33.09 32.71 55.68 20.39

Combine all 30 models

90.62

Note: The benchmark forecast is EGARCH Student-t(i = 1, j = 1). A difference of 6.4080 generally corresponds to a 1% increment in

probability. Using the nonparametric kernel density forecast that use historical returns alone (−1850) yields similar result.
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Table.2.a Amisano & Giacomini (2007) Test Results: Combined Density Forecasts

Models Comb.RV Comb.MF ATIC Comb.SV 1st. PC Comb.EGARCH Multivariate

Comb.All 0.11 2.07 2.67 2.84 3.71 4.07 5.48

Asy. p-value (0.46) (0.02∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗)

Boot. p-value [0.46] [0.02∗] [0.01∗] [0.01∗] [0.00∗] [0.00∗] [0.00∗]

Comb.RV 1.37 2.23 2.58 3.02 3.22 4.75

Asy. p-value (0.09) (0.01∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗)

Boot. p-value [0.08] [0.02∗] [0.01∗] [0.00∗] [0.00∗] [0.00∗]

Comb.MF 1.41 1.27 2.10 2.14 4.73

Asy. p-value (0.08) (0.10) (0.02∗) (0.02∗) (0.00∗)

Boot. p-value [0.08] [0.11] [0.02∗] [0.02∗] [0.00∗]

ATIC. Factor 0.41 1.15 1.13 3.78

Asy. p-value (0.34) (0.12) (0.13) (0.00∗)

Boot. p-value [0.34] [0.11] [0.12] [0.00∗]

Comb.SV 0.26 0.70 3.33

Asy. p-value (0.40) (0.24) (0.00∗)

Boot. p-value [0.39] [0.22] [0.00∗]

1st. PC 0.56 3.35

Asy. p-value (0.29) (0.00∗)

Boot. p-value [0.27] [0.00∗]

Comb.EGARCH 2.86

Asy. p-value (0.00∗)

Boot. p-value [0.00∗]
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Table.2.b Amisano & Giacomini (2007) Test Results: Combine All v.s. Individual

Sample Periods 1959 : 01− 2011 : 12

Combined Density Forecasts Individual Density Forecasts

RVs RV-Gaussian (j = 1) RV-Gaussian (j = 2) RV-t RV-GED

AG stat 1.66 1.60 3.69 2.22

Asy. p-value (0.05∗) (0.06) (0.00∗) (0.01∗)

Boot. p-value [0.01∗] [0.03∗] [0.00∗] [0.00∗]

SVs Gaussian SV Fat-tail SV Corr SV Fat-tail Corr SV

AG stat 2.88 2.90 2.51 3.06

Asy. p-value (0.00∗) (0.00∗) (0.01∗) (0.00∗)

Boot. p-value [0.02∗] [0.03∗] [0.00∗] [0.00∗]

EGARCHs Gaussian (i = 1, j = 1) Gaussian (i = 1, j = 2) Gaussian (i = 2, j = 1) Gaussian (i = 2, j = 2)

AG stat 3.92 2.82 3.59 4.02

Asy. p-value (0.00∗) (0.00∗) (0.00∗) (0.00∗)

Boot. p-value [0.00∗] [0.00∗] [0.00∗] [0.00∗]

Student-t (i = 1, j = 1) Student-t (i = 2, j = 1) GED (i = 1, j = 1) GED (i = 2, j = 1)

AG stat 6.59 6.44 3.78 3.49

Asy. p-value (0.00∗) (0.00∗) (0.00∗) (0.00∗)

Boot. p-value [0.00∗] [0.00∗] [0.00∗] [0.00∗]

Combined MFs Dividend Earnings SVAR Book to Mkt Ratio

AG stat 3.43 3.57 1.85 2.26

Asy. p-value (0.00∗) (0.00∗) (0.03∗) (0.01∗)

Boot. p-value [0.00∗] [0.00∗] [0.03∗] [0.01∗]

Net Equity Exp. Term Spread Default Yield Spread Inflation

AG stat 2.34 2.27 1.87 2.14

Asy. p-value (0.01∗) (0.01∗) (0.03∗) (0.02∗)

Boot. p-value [0.01∗] [0.01∗] [0.04∗] [0.00∗]

Unemployment Rate Industrial Production Growth Non-farm Payroll

AG stat 1.94 1.32 1.33

Asy. p-value (0.03∗) (0.09) (0.09)

Boot. p-value [0.02∗] [0.09] [0.08]

Note: (·) is the asymptotic p-values. [·] is the bootstrap p-values. ∗ indicates significance at 5% level.
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Table 2.c Diks et al. (2011) Test Results

Sample Periods 1959 : 01− 2011 : 12

Lower 10% (Left Tail) Upper 10% (Right Tail)

Models Comb.RV Comb.SV Comb.EGARCH Comb.MF ATIC Comb.RV Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.All 0.87 2.94 4.33 2.20 2.90 2.13 1.49 1.47 −1.62 0.83

Asy. p-value (0.19) (0.00∗) (0.00∗) (0.01∗) (0.00∗) (0.02∗) (0.07) (0.07) (0.95) (0.20)

Models Comb.All Comb.SV Comb.EGARCH Comb.MF ATIC Comb.All Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.RV −0.87 2.50 3.34 1.26 2.29 −2.13 0.43 0.74 −1.92 0.07

Asy. p-value (0.19) (0.01∗) (0.00∗) (0.10∗) (0.01∗) (0.98) (0.34) (0.23) (0.97) (0.47)

Models Comb.All Comb.RV Comb.SV Comb.EGARCH ATIC Comb.All Comb.RV Comb.SV Comb.EGARCH ATIC

Comb.MF −2.20 −1.26 1.27 1.91 1.89 1.62 1.92 3.47 1.87 1.81

Asy. p-value (0.99) (0.90) (0.10) (0.03) (0.03) (0.05∗) (0.03∗) (0.00∗) (0.03∗) (0.04∗)

Between 20% and 80% (Shoulder)

Models Comb.RV Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.All −0.26 2.69 4.58 2.58 2.77

Asy. p-value (0.60) (0.00∗) (0.00∗) (0.00∗) (0.00∗)

Models Comb.All Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.RV 0.26 2.72 3.94 1.90 2.49

Asy. p-value (0.40) (0.00∗) (0.00∗) (0.03∗) (0.01∗)

Models Comb.All Comb.RV Comb.SV Comb.EGARCH ATIC

Comb.MF −2.58 −1.90 0.83 1.75 0.94

Asy. p-value (1.00) (0.97) (0.20) (0.04∗) (0.17)

Note: (·) is the asymptotic p-values. ∗ indicates significance at 10% level.



Table.3.a The Difference in CER by December, 2011: % per month

Risk Aversion

Models Strategy γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6 γ = 7 γ = 10 γ = 100 γ = 200

Comb.All no short-sale 0.16 0.13 0.13 0.11 0.10 0.08 0.07 0.05 0.00 0.00

short-sale 0.35 0.27 0.27 0.25 0.23 0.20 0.18 0.13 0.00 0.00

(margin = 0.5) 0.33 0.25 0.25 0.23 0.20 0.17 0.12 0.01 0.00 0.00

Comb.RV no short-sale 0.11 0.12 0.11 0.09 0.08 0.06 0.06 0.04 0.00 0.00

short-sale 0.26 0.29 0.27 0.25 0.22 0.19 0.17 0.12 0.01 0.00

(margin = 0.5) 0.25 0.28 0.27 0.25 0.20 0.22 0.29 0.12 0.00 0.00

Comb.MF no short-sale 0.15 0.11 0.07 0.06 0.05 0.05 0.04 0.02 0.00 0.00

short-sale 0.34 0.27 0.23 0.20 0.18 0.16 0.13 0.09 0.00 0.00

(margin = 0.5) 0.33 0.26 0.22 0.19 0.17 0.15 0.13 0.09 0.00 0.00

ATIC. Factor no short-sale 0.12 0.12 0.11 0.06 0.05 0.03 0.02 0.02 0.00 0.00

short-sale 0.20 0.17 0.16 0.14 0.11 0.08 0.06 0.04 0.00 0.00

(margin = 0.5) 0.21 0.17 0.16 0.15 0.11 0.07 0.06 0.01 0.00 0.00

Comb.SV no short-sale 0.05 0.08 0.09 0.08 0.07 0.06 0.06 0.05 0.00 0.00

short-sale 0.13 0.14 0.18 0.19 0.17 0.16 0.14 0.11 0.00 0.00

(margin = 0.5) 0.12 0.14 0.17 0.18 0.15 0.14 0.09 0.02 0.00 0.00

Comb.EGARCH no short-sale 0.10 0.11 0.11 0.09 0.07 0.05 0.04 0.02 0.00 0.00

short-sale 0.24 0.24 0.23 0.20 0.16 0.14 0.12 0.08 0.01 0.00

(margin = 0.5) 0.20 0.20 0.21 0.19 0.15 0.14 0.11 0.07 0.01 0.00

Note: CER =
[
(1 − γ) 1

T−q
∑T
t=q+1 U(W ∗t )

]1/(1−γ) − 1, where T = 744 and q = 120. In no-short sale case, CER of the benchmark model fluctuates between

0.36 and 0.39 and converges to 0.37. In short-sale allowed case, CER of the benchmark model fluctuates between 0.17 and 0.26 and converges to 0.37.
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Table.3.b Comparison of the CER: Frequency Count

Comb.Any Forecast > Comb.RV, Unit: % of time

Sample Periods: 1959 : 01− 2011 : 12,

Risk Aversion

Models Strategy γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 6 γ = 7 γ = 8 γ = 9 γ = 10

Comb.All no short-sale 64.48 81.44 26.72 33.92 87.20 5.44 35.36 79.68 61.76 26.88

short-sale 68.32 70.24 30.24 15.36 80.16 11.68 5.76 7.68 67.36 25.12

(margin = 0.5) 57.60 69.44 2.24 15.36 63.68 11.68 1.12 7.20 57.92 22.40

Comb.SV no short-sale 44.48 71.04 1.28 51.52 72.64 3.52 11.84 83.36 24.80 29.44

short-sale 38.56 69.76 1.60 18.88 60.96 8.32 1.28 8.80 33.28 24.16

(margin = 0.5) 34.24 66.08 1.60 18.88 39.84 8.32 0.96 8.32 14.40 23.20

Comb.EGARCH no short-sale 56.16 89.44 1.28 90.24 75.52 5.60 14.56 93.12 11.20 32.80

short-sale 41.76 78.72 1.92 29.60 55.20 7.20 1.76 11.36 13.60 26.56

(margin = 0.5) 58.08 78.56 1.92 29.60 24.96 7.20 2.08 10.72 10.56 26.40

Comb.MF no short-sale 81.92 99.84 16.00 91.84 47.68 12.64 74.24 95.36 25.12 1.28

short-sale 70.40 99.84 11.84 65.28 20.16 16.48 5.12 12.80 22.40 1.28

(margin = 0.5) 70.72 99.84 11.84 65.28 17.44 16.48 5.12 12.80 19.84 1.28

ATIC. Factor no short-sale 71.68 99.84 5.76 98.56 72.64 12.96 47.04 96.32 20.96 1.28

short-sale 55.88 99.84 4.00 65.28 38.08 19.20 3.20 13.76 16.64 1.28

(margin = 0.5) 66.08 99.84 4.00 65.28 24.16 19.20 4.00 13.76 14.72 1.28

Note: Table.3.b treats each point in time as the entire sample to calculate CERs, and counts the time frequency when CERs yielded by other forecasts surpass

those yielded by Comb.RV .
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Figure.1.An Illustration of Forecasts of Combination
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Note: The blue line represents the predictive distribution made by book-to-market ratio. The red line represents the predictive

distribution made by term-spread. The black line is the combined predictive distribution produced by the optimal predictive

pool using all 11 macro-finance variables.

Figure.2.Weights Allocation of the Optimal Prediction Pool
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Note: The contour lines cluster at (0.41, 0.59), which indicates that the macro-finance variables contribute 40% forecasting

accuracy to the optimal pool, and the volatility models contribute 60% forecasting accuracy to the optimal pool.
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Figure.3.1 The Convergence of the Portfolio Choice
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Note: Figure.3.1 shows that as the investors become more risk averse, the variance of the difference in portfolio choices declines, and the ratio allocated to risky

assets converges, regardless of whether short-sales are allowed or not.
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Figure.3.2. The Comparison of CER
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Note: The blue region refers to the time periods when Comb.MF or Comb.All outperforms Comb.RV , which mainly covers “the Great Moderation”
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Figure.3.3 Risk Measure versus Portfolio Choice: Comb.All vs Comb.MF

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
−2

0

2

4

6

8

Confidence Interval: 90% − 99%

t Δ 
V

aR

a. VaR: Comb.All v.s. Comb.MF

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

2

4

6

8

10

12

Confidence Interval: 90% − 99%

t Δ 
E

S

b. ES: Comb.All v.s. Comb.MF

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

Coefficient of Risk Averse γ

t Δ 
a t

c. tΔ a
t
: Comb.MF v.s. Comb.All

 

 

No Short−sale
Short−sale Allowed

Note: a. and b. plot the test statistics that tests whether the value-at-risk and the expected short-fall formed by Comb.All are equal to those formed by the Comb.MF .

c. plot the test statistics that tests whether the fraction wealth invested in risky asset lead by Comb.MF is significantly larger than Comb.All.
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Figure.3.4 Risk Measure versus Portfolio Choice: Comb.RV vs Comb.MF
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Note: a. and b. plot the test statistics that tests whether the value-at-risk and the expected short-fall formed by Comb.RV are equal to those formed by the Comb.MF .

c. plot the test statistics that tests whether the fraction wealth invested in risky asset lead by Comb.MF is significantly larger than Comb.RV .
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Figure.4.a-b State Price Density v.s. Density Forecast of Comb.All
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