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Wind Turbines and Coastal Recreation Demand 

 

Abstract 

We examine the impact of coastal wind turbines on coastal tourism and recreation for 

residents of the northern CAMA counties in North Carolina.   A combination of 

telephone and web survey data are used to assess the impact of coastal wind farms on trip 

behavior and site choice.  Most of the respondents to our telephone survey claim to 

support offshore wind energy development, and independent survey data suggest that the 

observed levels of support may be indicative of the broader population in this region.  

Overall, we find very little impact of coastal wind turbines on aggregate recreational 

visitation; loss in consumer surplus associated with wide spread wind development in the 

coastal zone is insignificant at $17 (or about 1.5%).  Results suggest that NC coastal 

residents are averse to wind farms in the near-shore zone; average compensating variation 

for wind farms one mile from the shore is estimated at $55 per household.  On average, 

we find no evidence of aversion to wind farms 4 miles out in the ocean, or for wind farms 

located in coastal estuaries.  For all wind farm scenarios, we find evidence of preference 

heterogeneity– some respondents find this appealing while others find it aversive.   
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Wind Turbines and Coastal Recreation Demand 

 

Dependence on fossil fuels has induced significant and diverse risks associated with 

climate change, while potentially compromising U.S. national security through reliance 

on foreign providers.  As global energy demand rises and fossil fuel sources decline, 

energy price levels and volatility have been on the rise.  These forces have created a 

groundswell of pressure for further consideration and exploration of options for 

renewable energy sources.  In 2007, North Carolina became the first state in the 

Southeast to adopt a Renewable Energy Portfolio Standard 

(http://www.ncuc.commerce.state.nc.us/reps/reps.htm). Under this new law, electric 

utilities in North Carolina will be required to produce up to 12.5% of their energy supply 

through renewable energy resources such as wind, solar, and geothermal.  Wind energy 

potential is great in North Carolina, and while the upfront capital costs can be quite high, 

variable costs associated with maintenance and distribution are relatively small and fairly 

stable.  As prices for oil, coal, and gas rise, wind energy becomes economically viable.  

Wind power is also attractive due to its ability to provide long-term price stability for 

electric power.
1
   

Wind power installations typically consist of a grouping of turbines mounted on 

towers and accompanying transmission infrastructure.  These so-called “wind farms” can 

include anywhere from around a dozen to as many as one hundred (or more) turbines 

placed on large contiguous tracts within the landscape.  The harvesting of wind energy, 

however, is not without potential drawbacks.  Wind farms, with their imposing towers 

and whirling turbines, can create a visual dis-amenity (Álvarez-Farizo and Hanley 2002; 

Ladenburg and Dubgaard 2007), can engender negative environmental and avian impacts 

(Blaszquez, de Hoces, and Lehtine 2003; Pasqualetti 2004; Bergmann, Colombo, and 

Hanley 2008), and may entail social justice and equity issues if local citizens‟ concerns 

are not integrated into planning, placement, design, or operation (Dimitropoulos and 

Kontoleon 2008).  Numerous studies have employed stated preference (SP) nonmarket 

valuation methods to estimate stakeholder‟s economic value for wind farms (Álvarez-

Farizo and Hanley 2002; Ladenburg and Dubgaard 2007; Bergmann, Colombo, and 

Hanley 2008; Koundouri, Kountouris, and Remoundou 2009; Meyerhoff, Ohl, and Hartje 

2010; Krueger, Parsons, and Firestone 2011).  In this context, economic value is typically 

defined as individuals‟ willingness to pay (WTP) to convert electricity generation to 

renewable wind energy facilities or individuals‟ willingness to accept (WTA) 

compensation for negative impacts associated with wind turbines.  The existing literature 

has considered many important issues in wind farm development, including negative 

impacts on flora and fauna, landscape and placement effects, impacts on environmental 

quality, local economic effects, and heterogeneity in individual preferences for wind 

energy development.   

In a comprehensive analysis of 7,500 single-family home sales across nine U.S. 

states, Hoen, et al. (2009) use revealed preference (RP) nonmarket valuation methods to 

assess the impact that wind power facilities have on property values.  Their analysis 

focuses on properties within 10 miles of 24 wind energy facilities.  Whether examining 

view of or distance from wind energy facilities, their findings strongly suggest that wind 

                                                 
1
 The Wall Street Journal reports that the city of Houston is saving money on municipal power after 

switching one quarter of its generation to fixed-price wind-power contracts (Johnson 2008). 
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turbines have no statistically significant impact on the value of surrounding residential 

properties.  Nonetheless, opposition to wind energy facilities often reflects a concern over 

visual disamenities.  The recent controversy over the Cape Wind project in Massachusetts 

provides a microcosm of the issues.  Proponents of the project tout the positive 

environmental impacts (less carbon emissions and improved fishery habitat) and 

economic benefits of wind power for Cape Cod (CPN 2010), while opponents cite 

concern over impacts on birds, potential navigation problems, and negative effects on 

view amenities (Save Our Sound 2010). 

In North Carolina, Massachusetts, and many other states, the potential for 

negative impacts is exacerbated by the fact that some of the places with the highest wind 

energy potential, such as mountaintops and coastal waters, are distinguished by their 

scenic vistas.  A synthesis conducted by the U.S. Minerals Management Service (2007) 

indicates that the primary concern of the general public relates to visual impacts of wind 

turbines on the aesthetics of the coastal environment.  Diminution of scenic vistas could 

affect the everyday welfare of local people and inhibit tourism and recreation. 

In this paper, we examine the impact of coastal wind turbines on coastal tourism 

and recreation.   A combination of telephone and web survey data are used to assess the 

impact of coastal wind farms on trip behavior and site choice for a sample of North 

Carolina coastal tourists.  Overall, we find very little impact of coastal wind turbines on 

aggregate recreational visitation of residents in the northern coastal counties of North 

Carolina (focusing exclusively on the northern CAMA (Coastal Area Management Act) 

counties).  Most of the respondents to our telephone survey claim to support offshore 

wind energy development; about half indicate that wind farms could enhance coastal 

views, and we see little evidence that wind farms influence visitation intensity.  We 

estimate that under a scenario of widespread coastal wind energy development, consumer 

surplus of NC coastal residents remains virtually the same.  Using an internet survey with 

visual representations of coastal wind turbines, we explore the impact of wind turbine 

placement on beach site selection.  Results suggest that NC coastal residents are averse to 

wind farms in the near-shore zone; average compensating variation for wind farms one 

mile from the shore is estimated at $55 per household.  We find evidence of preference 

heterogeneity for other wind farm placement scenarios, but the mean effects are 

statistically insignificant.  
 

Background and Previous Literature 
Given current technology, offshore wind turbines are feasible to a water depth of 30 

meters. New technology exists to site wind turbines to a depth of 50 meters, while 100 

meter technology is on the horizon. Considering this, offshore wind turbines are feasible 

from Cape Cod, Massachusetts to Cape Hatteras, North Carolina.  Kempton et al. (2007) 

find that much of the energy needed in New England and the Mid-Atlantic could be 

supplied with wind turbines once the 100 meter technology is developed.  Offshore plants 

in the east have capacity factors on par with Great Plains resources, but the cost of energy 

is greater because capital costs are higher (EnerNex Corp. 2010).   

The benefits and costs of wind farms in coastal North Carolina should be 

considered as part of the North Carolina energy policy-making process.  Wind farm 

benefits include reductions in carbon emissions and improved fishery habitat.  Wind farm 

costs include a potential diminution in visual amenities, bird and bat mortality, possible 

decreases in coastal property values, and impacts on coastal recreation and tourism.  The 
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magnitudes of these benefits and costs for coastal North Carolina are currently unknown.  

In this paper, we focus on the projected impacts of widespread coastal wind energy 

development on tourist trips and tourists‟ preferences for wind turbine placement in the 

coastal zone, because the literature is largely lacking analysis of these aspects of offshore 

wind development. 

 

Assessing Visual Impact 

The potential for wind energy development in coastal locations has been assessed 

in studies by the National Renewable Energies Laboratory (NREL), and other state, 

regional, and local commercial feasibility studies.  One study commissioned by the North 

Carolina General Assembly concluded there is potential for utility-scale wind energy 

production in North Carolina, particularly the eastern Pamlico Sound (UNC 2009.)  

While this study assessed the relevant meteorological, ecological, statutory, and 

infrastructure requirements, limitations, and synergies, the study did not evaluate the 

potential direct or indirect aesthetic and visual impacts, particularly in the intensive 

tourist economy of the Outer Banks.  The potential for visual impact of wind turbines 

creates possible conflict and debate, including Not in My Back Yard (NIMBY) and Not in 

My Beautiful Ocean (NIMBO) effects.  In the case of the Cape Wind project of 

Massachusetts, visual impacts prompted assessments, including nighttime and field-of-

view of the proposed project, resulting in redesign, such as the number of turbines, 

removal of daytime aviation lighting, and narrowing the field of view visible from shore, 

to reduce visual effects (Rodgers and Olmsted 2008.)  Although major utility-scale wind 

energy projects in nearshore marine locations such as Cape Wind have elicited ardent 

opposition (Phadke 2010), recent surveys in other regions with offshore potential (such as 

the Mid-Atlantic) have shown far lower potential opposition or substantial support 

(Firestone, et al. 2009).   

Delineating technical feasibility zones is often the first step in assessing wind 

farm development.  In this phase, early location selection policy may elicit public 

reaction or participation. Technical feasibility and public acceptability typically reduce 

the potential wind energy development areas to a small set of alternative sites.  In this 

process, multi-criterion evaluation (MCE) techniques have been deployed to objectively 

compare alternatives (Gamboa and Munda 2007).  This method has been illustrated to 

serve as more than a technical refinement procedure, but also as a learning process to 

reveal tradeoffs and comprehensive assessments of impacts.  One quantifiable parameter 

of interest is the viewshed, or the zone of visual impact of the development.  Viewshed 

mapping is a technique that provides for the estimation of the extent of viewshed across a 

landscape.  Viewshed mapping can identify a binary visual basin area and has the 

capability of doing so for numerous alternative sites across a landscape and for measuring 

spatially coincident geographic features and summarizing impacts (e.g., land use, 

population, habitats) using a Geographic Information Systems (GIS) (Möller 2006.)    In 

a published comparison of visual preferences based on landscape simulations, Oh (1994) 

evaluates four alternative visualizations (wireframes, surface models, combined 

wireframe and surface models, and image processing simulations.)  Image processing-

based simulations provided the highest realism among the methods. 

 

Assessing Economic Value 
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Most existing valuation research has focused on Europe and has employed stated 

preference (SP) methods to estimate WTP or WTA compensation for new wind energy 

facilities (Álvarez-Farizo and Hanley 2002; Ladenburg and Dubgaard 2007; Bergmann, 

Colombo, and Hanley 2008; Koundouri, Kountouris, and Remoundou 2009; Meyerhoff, 

Ohl, and Hartje 2010).  Exceptions include Hanley and Nevin (1999) – a comprehensive 

cost benefit analyses of renewable energy alternatives in Scotland; Dimitropoulos and 

Kontoleon (2008) – which employs SP methods to examine political factors which 

influence local acceptance of wind farm investments in Greece; and Krueger, Parsons, 

and Firestone (2011) – which estimates external costs of coastal wind turbines (at varying 

distances) on inland and coastal residents in Delaware.  Our analysis is most similar to 

that of Ladenburg and Dubgaard (2007, 2009) and Krueger, Parsons, and Firestone 

(2011).   

The placement of turbines further offshore can limit their visual impact on coastal 

populations, but moving the turbines into deeper water increases construction, 

maintenance, and transmission costs.  Recognizing these tradeoffs, Ladenburg and 

Dubgaard (2007) use a choice experiment (CE) to examine the preferences of Danish 

residents for locating turbines further offshore.  They find positive willingness to pay 

(WTP) for locating wind farms further from land (distances of 12km, 18km, and 50km, 

relative to an 8km baseline).  Also, they find that residents that are more likely to see 

offshore wind farms – either from their residence or while engaged in recreational 

boating, fishing, or beach visitation – exhibit significantly higher WTP for locating 

turbines further offshore (Ladenburg and Dubgaard 2009).  They express concern over 

the viability of coastal recreation and tourism in the presence of offshore wind turbines.   

Krueger, Parsons, and Firestone (2011) use CE to measure Delaware residents‟ 

WTP for offshore wind farms (relative to a fossil fuel status quo).  They find increasing 

WTP to locate turbines further offshore (up to a distance that is too far to see), but no 

significant value for specific locations along the Delaware coastline.  Krueger, Parsons, 

and Firestone estimate separate choice models for inland residents, those residents with 

close proximity to Delaware Bay, and those residents with close proximity to the ocean.  

Still, they find some evidence of heterogeneity within these groups.  The distance one 

lives from the coast increases the probability of selecting offshore wind farms over fossil 

fuels for the inland and ocean samples, but decreases the probability for the bay sample. 

Annual costs per inland Delaware household of observable offshore wind farms at a 

distance of 0.9 miles, 3.6 miles, 6 miles, and 9 miles are $19, $9, $1, and $0 (all values of 

WTP are relative to a distance too far to see).  Corresponding costs for ocean (bay) 

residents are $80, $69, $35, and $27 ($34, $11, $6, and $2), respectively.  Krueger, 

Parsons, and Firestone allow for royalties stemming from wind power generation to be 

paid to the state of Delaware, and they find a preference for payments to green energy 

and beach replenishment funds (over the general state fund).  Surprisingly, they find 

diminishing utility associated with increased royalty payments.   

Given the lack of attention to the projected impacts of offshore wind farms on 

coastal tourism, we focus on recreational beach visitation in North Carolina.  We use 

travel cost models and combine revealed preference (RP) and stated preference (SP) 

methods in order to measure the impact of widespread coastal wind farms on the 

economic value of beach visitation.  The primary model is estimated with data collected 
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via telephone.  With a sub-sample of internet data, we conduct a CE to examine the 

influence of the location of wind turbines on coastal recreation site choice. 

 

Methods 

We examine the impact of offshore wind turbines on coastal tourism within the 

framework of recreation demand models.  We first consider the aggregate demand for 

trips to the North Carolina coast under current conditions, how this demand would 

change in the future if current conditions persisted, and how demand would change in the 

future under a scenario in which wind turbines are located offshore at all 31 major beach 

destinations in North Carolina.  As such, we combine revealed (RP) and stated (SP) 

preference data to analyze the impact of widespread wind farm development on the 

economic value of coastal visitation.  Our second application considers site choice on a 

single beach trip occasion.  We examine the influence of beach site characteristics, such 

as the presence and location of wind farms, on site choice probabilities.  We discuss the 

econometric methods behind each of these analyses in turn. 

 

Pooled Site-Frequency Demand Model 

For analysis of aggregate NC beach recreation demand, we specify individual 

utility for coastal visitor i during period j as ),,( jijijij qzyuu  , where yij is the number of 

recreation trips to the North Carolina coast in period j, zij represents consumption of a 

numeraire good during period j, and qj is the quality of NC recreation trips during period j 

(assumed to be exogenous to individual choice).   Assume u(•) is quasi-concave, 

bounded, and twice differentiable.  The budget constraint is given by ijijijij zcym  , 

where, mij is income for individual i during period j, cij is individual i‟s travel cost to NC 

coast – a combination of explicit (gas and vehicle wear-and-tear) and implicit 

(opportunity cost of time) costs of travel to a site – during period j, and numeraire price is 

normalized to unity.  Constrained optimization produces the demand function for 

recreation trips: 

  yij = f(cij, qi, mij),        (1) 

for individual i during period j. 

We consider a 3×1-vector of recreation demand counts, yi = [yij], with one 

observation per individual on RP (j = 1) and the remaining observations pertaining to SP 

(j = 2, 3) under current (j = 2) or projected (j = 3) conditions.  Landry and Liu (2011) 

review a number of econometric models available for the analysis of stacked site-

frequency demand models.  All of these approaches make use of count models for panel 

data.  We define E[yij|xij] = exp(β
’
xij + εi) = μijexp(εi), where xij includes travel costs to NC 

beaches (cij), travel costs to substitute beach recreation sites, income(mij), demographic 

factors, and dummy variables for j = 2 and j = 3.  We assume exp(εi) follows a 

Gamma( 1 , ) distribution with a mean of 1 and a variance of  , producing the 

following probability density function: 
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with the likelihood function given as the sum of (2) over all individuals in the sample.  

The model is commonly known as the multivariate Poisson-Gamma or random effects 

Poisson model.2
  The conditional mean and variance are given by E(yij|xij) = ij  and 

Var(yij|xij) = 1 2( )ij ij   , respectively.  This model allows for positive correlation 

among recreation demand across the j periods.  The model has a closed-form solution and 

is estimated by maximum likelihood. 

With yij measuring trips per year, annual consumer surplus (CS) for individual i 

under conditions qj is the integral of expected recreation demand over travel cost, from 

the current level of cost (c
0
) to infinity: 

 

c

ijij

c
cijij

xyE

dccxCS





)|(

)~~
exp(

0

'



 


       (3) 

where βc is the NC travel cost parameter, and ijx~
~ '  represents the inner produce of 

covariates and parameters other than NC travel cost.  CS under conditions j is a measure 

of the economic value of access to NC beaches.  For j = 1, we have an RP measure of 

economic value under current conditions.  Assuming income, travel costs, the overall 

price level, and beach conditions remain constant over time, CS under j = 2 is an SP 

measure of economic value associated with projected future demand under current 

conditions.  On the other hand, if individuals expect changes in income, travel costs, 

prices, or beach conditions relative to j = 1, CS under j = 2 is an SP measure of economic 

value associated with projected future demand and expected future conditions.  The j = 2 

treatment provides a baseline for which to compare economic value under the scenario of 

interest, j = 3.  Our j = 3 scenario entails widespread installation of wind farms at all 31 

major beach destinations along the NC coast.  As both involve projected demand under 

common conditions, the only induced difference between economic welfare associated 

with j = 2 and j = 3 is the presence of wind farms along the NC coast (Whitehead, Haab, 

and Huang 2000).  Thus, CSi2 – CSi3 provides a measure of the annual loss in economic 

value attributable to coastal wind farms in NC.  Confidence intervals for consumer 

surplus are estimated with the Krinsky-Robb Procedure (1986). 

 

Site Choice Model 

For analysis of NC beach site choices, we employ the random utility model 

(RUM).  We assume that individuals choose beach sites that yield the highest level of 

utility.  Individual i‟s utility associated with a choice j among a set of choices t, denoted 

ijtU , is a function of site characteristics, xijt, and travel costs, cijt.  Our application of 

RUM uses the method of choice experiments (CE), an SP method that allows the 

researcher to select elements and levels of site characteristics xijt and to define levels of 

cijt in order to learn about preferences for beach site characteristics.  (More on this 

method below.)  Individual utility can be decomposed into an observable portion, 

)
~

,~;,( ijtijtijt cxV , and an unobservable portion known only by the subject, ijt :  

                                                 
2
 We also attempted to estimate the Discrete Factor Method model (Landry and Liu 2011), but the factor 

loading parameters were not statistically significant. 
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ijtijtijtijtijt cxVU   )
~

,~;,( , if site j is selected     

titiU 00   ,    if no trip is taken    (4) 

where  ~  and 
~

are unknown parameters, associated with site characteristics and travel 

costs, respectively, to be estimated.  The probability of individual i choosing a site j over 

other choices h in set t, is thus: 

],)
~

,~;,()
~

,~;,(Pr[ jhcxVcxVP ihtihtihtihtijtijtijtijtijt      

]),
~

,~;,()
~

,~;,(Pr[ jhcxVcxVP ihtihtihtijtijtijtijtihtijt   .  (5) 

Expression (5) is a cumulative probability distribution, indicating the likelihood that the 

difference in the error terms (εi) is below the differences in the observable portions of 

utility (Train 2003).  Given an assumption about the distribution of the difference in 

errors g(εi), the choice probability can be obtained as: 

iiihtijtijt

e

ihtijt dgjhVVIP  )(],[   ,    (6) 

where I(•) equals one when the expression in brackets is true, zero otherwise.   

Various choice models can be developed by making different assumptions about 

the distribution g(εi) (and possibly introducing other elements of random variation).  We 

assume the observable portion of utility is additive: ijtijtijt cxV 
~~ '  .  We choose to 

employ the repeated mixed logit (RXL) model (Herriges and Phaneuf 2002; Train 1999). 

We assume the ijt  are i.i.d. extreme value variates for all i, j, and t, and the choice 

probabilities for any set t are conditional on an individual-specific vector βi.  Including 

alternative specific constants for J - 1 alternatives in the choice set, the conditional choice 

probabilities are given by: 

 




h

ihtihtiiht

ijtijtiijt

ijt
cxd

cxd
P

)exp(

)exp(
),,(







,    (7) 

where dijt = 1 for choice alternative j = 1, … J - 1,  zero otherwise, and  /~  and 

 /
~

  (where σ is the scale parameter of the extreme value distribution).  We assume 

),|(~  i , where  is a multivariate normal probability density with mean µ and 

diagonal covariance matrix Ω.  Since ijt  are i.i.d. for all t, the conditional probabilities 

for a series of choices j = {j1,…jT } is given by the product of (7) across the T choice 

occasions: 


 




T

t

h

tihtihitih

tijtijitij

i

ttt

ttt

cxd

cxd
P

1 )exp(

)exp(
),,(




j


    (8) 

The unconditional choice probabilities are: 

 dPP ii ),|(),,(   jj


       (9) 

The likelihood function is the product of (9) over all individuals in the sample.  The 

means of the ψ and β parameters, as well as the means and variance terms for α are 

recovered from Simulated Maximum Likelihood estimates.   
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Compensating variation (CV) provides a measure of the incremental change in 

economic value associated with changes in beach site characteristics (e.g., the presence of 

wind turbines).  Conditional on αik, CV for a small change in site characteristic k is 

defined as: 

 







 ikk

ik

x
CV ,        (10) 

for each k element of the vector x.  The distribution of CV is simulated by repeatedly 

drawing from the posterior distribution of α.  Mean, median, standard deviation, and 

confidence intervals can be calculated from the simulated distribution.  Details on the CE 

are provided in the next section. 

 

Visualization Techniques 

 Terrestrial photographs were used as the image background for daylight-hours, 

summertime landscape visualization.  Photos were taken using a 10megapixel digital 

camera and converted to Tagged Image File Format (TIFF) on a personal computer.  

Next, various object models of wind turbines were evaluated for overlaying on a 

superimposed image plane onto the background photograph, with inclusion of associated 

haze, illumination, reflectance, and shadowing for the relevant solar geometry.  The 

CanVIS software program and turbine models from the NOAA Coastal Services Center 

(NOAA 2010) were used to develop the prototype images.  To estimate the height of the 

turbine in each image, a calibration photo of the feature (reference) at a known distance 

and height is needed.  Equation (11) was used to calculate the appropriately scaled height 

for visualizing a large utility scale 3+ MW, 80m tall turbine with 50m blade diameter: 

Ir
Df

Dr

Ar

Af
If          (11) 

where the desired image height of feature, If, is determined from estimating Dr = 

Distance from reference feature, Df = distance from feature, Ar =  actual height of 

reference feature, Af = actual height of feature, Ir = image height of reference feature.  At 

distances greater than 4-5 kilometers, the curvature of the earth is factored by estimating 

the height of the feature that is obscured by the horizon and cropping the image height of 

the feature.   

 

Data 

Given budget limitations, we chose to focus our study on households in the designated 

“CAMA” (Coastal Area Management Act) counties of North Carolina‟s Outer Banks 

(OBX) region.  This includes 16 counties in all – four coastal (Carteret, Hyde, Dare, and 

Currituck) and twelve adjacent to the coast (Beaufort, Bertie, Camden, Chowan, Craven, 

Gates, Hertford, Pamlico, Pasquotank, Perquimans, Tyrell, and Washington) as shown in 

Figure 1.  Our rationale for this approach is practical; we have a limited budget and want 

to focus on a limited geographic region.  We expect that single-day trips (with no 

overnight stay) are the most common type of trip to NC beaches for households in this 

region.  Thus, we are more comfortable producing models of economic behavior with a 

common preference structure. 

 The East Carolina University Center for Survey Research implemented a 

telephone survey in the summer of 2009.  Twenty dollar gift cards to local merchants 

were used as an incentive for respondents.  Contact was made with 1,162 households, of 
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which 361 completed the telephone survey (for an overall response rate of 31%).  Those 

that completed the telephone interview were invited to participate in an internet survey 

that included wind turbine visualizations.  Of the 361 telephone respondents, 118 

households participated in the internet survey (33% of the telephone respondents; 10% of 

the households contacted).  Given the differences in sample sizes, we treat the telephone 

and internet surveys separately in this paper.  We discuss each dataset in turn. 

 

Telephone Data 

 The telephone survey collected information on respondents‟ knowledge & 

perceptions of climate change and opinions about and support for wind energy projects.  

Data was collected on number of trips to NC beaches in the previous 12 months and how 

many of these trips were single-day and overnight visits (RP data).  The survey inquired 

about intentions to visit NC beaches in the next 12-months, specifically eliciting the 

beach the respondent would likely visit on their next trip and the overall planned number 

of trips (SP data).  The contingent scenarios were then described as follows: 

 

 “Now we are interested in how your beach trips might change if there are wind 

farms in North Carolina. 

 

Scenario 1: Suppose that a wind farm is built at _____ [insert beach respondent 

is most likely to visit].  The wind farm has 100 windmills, standing about 400 feet 

high and 1 mile from the shore. The next time you go to the beach would you still 

go to this beach, a different beach without a view of a wind farm, or would you 

take no beach trip at all? 

 

Scenario 2: Now suppose that similar wind farms are built at each of the 31 

major beach towns in North Carolina. How many total beach trips would you 

expect to take to North Carolina beaches in the next 12 months?”  

 

The survey included a question to identify those that live at a NC beach and those that 

own property at a NC beach.  Lastly, demographic factors, such as education, income, 

age, household size, marital status, and political ideology, were collected. 

 The first column of table 1 includes raw descriptive statistics for the 313 

respondents that did not live at the beach or own beach property and made no more than 

150 trips in the previous 12 months.  (As we are interested in estimating models of 

recreation demand within the travel cost framework, we focus on beach tourists.)  The 

average respondent took almost 12 trips to NC beaches in the previous 12 months, 9 of 

which were day trips and 3 of which involved overnight stay.  The average respondent 

planned almost 15 trips for the next 12 months.  Eighty-nine percent of respondents 

indicated that they would maintain their planned beach visit on their next trip, with 100 

wind turbines present 1 mile offshore (scenario 1, above).  Over 6% indicated they 

would visit a different beach (without wind turbines) under this scenario, while almost 

5% indicated they would not make a beach trip.  Overall trips under the contingent 

scenario of widespread wind farms at all major 31 beach destinations (scenario 2, above) 

is slightly over 14.   
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The most common RP site visited was Nags Head (26.7%), followed by Atlantic 

Beach (26.3%), Kill Devil Hills (8.4%), and Emerald Isle (7.8%).  As such, travel cost for 

aggregate trips to the NC coast is measured using distance to Nags Head or Atlantic 

Beach, whichever is smaller.  Travel costs to substitute sites are measured using distance 

to Myrtle Beach, SC and Virginia Beach, VA.  All travel costs are calculated using 

monetary costs of $0.54 per mile (AAA 2009).  Travel time costs are calculated assuming 

average speed of 50 miles per hour and using 1/3 of the implicit hourly wage as a 

measure of the opportunity cost of time.   

Seventy-two percent of respondents expressed concern over potential climate 

change (either “very concerned” or “somewhat concerned”), and 82% “strongly agreed” 

or “somewhat agreed” with the statement, “most of the increase in temperature during the 

past 50 years has been caused by manmade pollution”.  Ninety-one percent claim to 

support wind energy development, in general, and, somewhat surprisingly, about half of 

respondents thought that offshore wind farms could have a positive impact on the overall 

view at the beach.  About 87% (84%) expressed support for wind energy development at 

the nearest beach to their house (all NC beaches).   

An independent survey of property owners in Kitty Hawk, NC supports the notion 

of widespread support for wind energy development on the coast (91% affirmative 

response) (Town of Kitty Hawk 2010).  Only 9% of Kitty Hawk survey respondents 

expressed concern over the unattractive appearance of wind turbines, while 7% were 

concerned about obstructed scenic views.  The majority of Kitty Hawk survey 

respondents considered wind turbines attractive (20%) or „neither attractive nor 

unattractive‟ (65%). 

      Nonetheless, the demographic statistics in table 1 suggest that our sample is not 

representative of the overall population in the 16 northern CAMA counties of NC.  In 

particular, our sample appears to be older, more educated, have greater income, and more 

heavily weighted towards females than the overall population when compared to U.S. 

Census data for these counties (third column of table 1.)  We correct for these factors 

using normalized inverse probability weights, composed of the population proportions 

divided by sample proportions (where the proportion is above or below the median for 

age and income level).  The corrected descriptive statistics can be found in column 2 of 

table 1.  The weighted means exhibit lower past trips (9) and planned trips (around 9.75 

under current and wind scenario conditions).  The effect of wind turbines on intended 

visitation for the next beach visit diminishes somewhat in the weighted sample, as 92% 

indicate they would visit the same beach (with 4% visiting a different beach and 4% 

engaging in some other activity).  Weighted descriptive statistics indicate slightly more 

concern over climate change (78%) and greater support for wind energy (92%).  It is 

noteworthy that the majority of respondents (44%) consider themselves politically 

conservative; if our sample were biased towards supporters of wind energy, we might 

expect a higher proportion of respondents that self identify as liberal or moderate.  

Overall, while perspectives on wind energy appear in line with the Kitty Hawk survey 

data (Town of Kitty Hawk 2010), the potential for unobserved differences between the 

sample and population, in terms of climate change concern and support for wind energy 

projects, remain in the data. 

 

Internet Data 
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We turn next to the internet survey data.  Telephone respondents that agreed to 

participate in the internet portion of the study were given a URL (via telephone and e-

mail) to access the survey, which was programmed using Perseus software.  Each 

respondent had a unique identification number so that data could be linked across the 

survey instruments.  The $20 incentive (gift card) was only provided to those that 

completed both surveys, and this was made clear at the initiation of the telephone survey. 

 The primary component of the internet survey was a choice experiment (CE) that 

included visualizations to depict conditions at NC beaches with and without wind farms 

in the sounds or offshore waters.  The CE examines tradeoffs that tourists make when 

selecting a destination for coastal recreation, using generic beach destinations that vary 

only along dimensions specified by the researcher.  The dimensions of site characteristics 

(the xijt matrix, above) that we chose to analyze are: i) presence/absence of wind farms in 

offshore waters and distance from the shore (when present); ii) presence/absence of wind 

farms in sound waters and distance from the shore (when present); iii) number of people 

on the beach (beach congestion); and iv) onsite fees for parking.  Travel distance, which 

determines travel cost, was also included as a site attribute.  The initial instructions for 

the CE were as follows: 

 

“Imagine you are deciding on a destination for a single-day beach trip (i.e. no 

overnight stay).  In what follows we have laid out a set of alternatives for this 

decision.  Each alternative is described by characteristics of the available sites.  

The characteristics have a number of levels.  The characteristics and possible 

levels are below:” 

 

 The attributes and levels for the CE are depicted in table 2.  The levels of travel 

distance (“Distance from Home”) varied by proximity to the coast.  For those respondents 

in the four coastal counties (Carteret, Hyde, Dare, and Currituck), the possible distances 

were 20, 40, and 60 miles, while for those in the twelve adjacent counties (Beaufort, 

Bertie, Camden, Chowan, Craven, Gates, Hertford, Pamlico, Pasquotank, Perquimans, 

Tyrell, and Washington), the possible distances were 60, 90, and 120 miles.  Parking fees 

varied at $0, $4, and $8 per day.  Ocean and sound view, the last two site attributes, took 

three levels each: unobstructed by wind turbines, turbines one mile from the shore, or 

turbines 4 miles from the shore.  Visualizations were developed to provide a sense of 

what the ocean and sound would look like under each condition.  An example of a choice 

set is included in Figure 2; this figure depicts conditions for each level of visual 

obstruction in the sound and on the ocean.  Each visualization presents an array of wind 

turbines (if applicable) along the horizon and includes a pier to provide a scale of 

reference.
3
 The instructions continued: 

 

“We would like to know how these characteristics affect your choice of 

destination for a single-day beach trip.  For each choice that you make, you will 

be shown three alternative sites.  Pick the site that you would most like to visit.  

Assume that the sites are completely the same except for the differences in 

characteristics that are listed.   

                                                 
3
 We thank Laurynas Gedminas and the Renaissance Computing Institute at ECU for producing the 

visualizations. 
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You can also choose to make no trip (or stay home).  For each choice, please 

indicate which trip you would take or whether you would rather stay home than 

visit one of the sites offered.   

 

You will make six choices overall.  Please treat each choice as if it is independent 

of the other choices that you‟ve made.  That is, when making your second choice, 

treat it as if it is the only choice you are making.” 

 

Our experimental design implies 3
5
 possible choice profiles.  We choose a fractional 

factorial design of 36 profiles, designed with SAS Macros %MktEx and %ChoiceEff, 

which is fully efficient for a linear experimental design and from which main effects can 

be estimated (Huber and Zwerina 1996; Kuhfeld 2005).  The %MktBlock SAS Macro was 

used to efficiently partition our 36 profiles into 2 blocks of 6 choice sets with 3 profiles 

each.  Each choice set also included a no-trip (stay home) option.  (See Figure 2.) 

Table 3 presents descriptive statistics for the internet sample.  Again, we find 

evidence that our sample is skewed towards older females, with greater education and 

income.  Given the relatively small dataset, inverse probability weights that take all of 

these factors into account proved to be somewhat imprecise (leading to higher model 

standard errors), so we only correct for income and education level.  The weighted 

descriptive statistics are presented in the second column of table 3, with U.S. Census data 

in the third column for comparison.  The internet data are more heavily skewed towards 

adjacent (77%) rather than coastal (23%) counties.  The internet sample also appears 

more avid than the telephone sample, with 28 NC beach trips, on average, in the previous 

12 months.  Again, the majority of respondents consider themselves politically 

conservative. 

 

Results 

Table 4 contains regression results for the multivariate Poisson-Gamma mixture model 

(AKA Random Effects Poisson).  Each model includes intercept shifters and own-price 

interaction terms for the SP scenarios (j = 2, 3).4
 The first column presents results for the 

raw data, and the second column presents results for the weighted data.  Results indicate 

statistically significant and negative own-price effects, and responsiveness to price is 

greater under the SP scenarios.  Substitute price coefficients are positive and statistically 

significant in both models, while the income coefficients are negative and significant.  

The negative age coefficient for the weighted model indicates an inverse relationship 

between beach recreation demand and age.  Gender and education coefficients are not 

statistically significant in either model.  The SP intercept shifters are statistically 

significant and indicate an upward shift of the demand function under both SP scenarios.  

The parameter for SP demand under current conditions is greater than the parameter for 

SP demand under the wind scenario for the raw data model, while the opposite pattern 

holds for the weighted data.  The alpha dispersion parameter is statistically significant in 

each model. 

                                                 
4
 Likelihood ratio tests support the inclusion of own-price-SP interaction parameters: χ

2
(df=2) = 44.70 for the 

raw data and χ
2

(df=2) = 24.16 for the weighted data; both p-values are less than 0.0001. 
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Table 5 presents conditional expectations of demand and elasticity & welfare 

estimates.  Measures of expected demand consistently exceed the raw moments (as 

expected given the functional form).  But, following the raw data, demand appears to 

diminish slightly for the SP wind scenario relative to the SP baseline for the raw data 

model, while SP demand is virtually the same for the two SP scenarios for the weighted 

model.  Price elasticity of demand for trips to North Carolina beaches is -1.4 to -1.9, 

indicating somewhat high responsiveness of recreation demand to changes in travel cost.  

Estimates of price elasticity derived from SP data indicate greater responsiveness, -1.6 to 

-2.2.  Cross-price elasticity for trips to Myrtle Beach (Virginia Beach) is around 1.8 (1.07 

to 1.31), and the income elasticity is negative (-0.25 to -0.32) indicating beach recreation 

is an inferior good.  

Annual consumer surplus (CS) is calculated via equation (3) using sample 

enumeration, and confidence intervals are produced by the Krinsky-Robb bootstrapping 

procedure.  CS from the RP data is estimated at $1456 per household, per year for the 

raw data or $1082 for the weighted data; these correspond with welfare estimates of $113 

per trip for the raw data model and $94 per trip for the weighted data model.  CS for the 

projected demand (SP data) under current conditions is $1636 per household, per year for 

the raw data or $1068 for the weighted data.  Notably, the raw data model indicates 

greater stated intensity of expected visitation and higher economic value under current 

resource quality conditions.  The weighted model, however, indicates greater stated 

visitation, but slightly lower overall economic value.  The lower value reflects more price 

responsive (elastic) demand (as the price coefficient is present in the denominator of (3)).  

The change in demand and economic value across RP and SP data associated with current 

resource conditions may indicate expected changes in income or price levels or could 

indicate hypothetical bias – a possible lack of reliability inherent in data on projected 

behavior.  In any event, SP demand under current conditions provides a baseline against 

which we can compare behavior under the wind farm scenario (wind farms at all 31 

major beach destinations in North Carolina).  Annual CS for the wind scenario is $1540 

per household for the raw data or $1051 per household for the weighted data.  The wind 

scenario welfare point estimate for the raw data is $96 (5.8%) below the baseline, but 

only $17 (1.5%) below for the weighted model.   

 We turn next to results for the Choice Experiment (CE).  The parameters of the 

choice model are estimated using Simulated Maximum Likelihood using 1500 Halton 

draws at the individual level.  We „burn‟ the first 20 draws in order to reduce the 

correlation between the Halton sequences for each random parameter.  The parameter 

estimates are displayed in table 6.  The first column presents results for the raw data, 

while the second column presents results for the weighted model. 

For both models, the no-trip option has a large negative coefficient, indicating a 

loss in utility relative to the trip alternatives.  Dummy variables for trip alternatives A and 

B are not statistically significant for the raw data, but are significant in the weighted 

model; the excluded category is trip alternative C.  For the weighted model, findings 

suggest some sort of ordering effect in the data – respondents in the weighted model were 

more likely to choose the first or second alternative over the third.  This could be 

evidence of bias stemming from fatigue due to respondents making repeated choices, as 

profile ordering is orthogonal to site attributes by design.  The travel cost and parking 
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cost parameters are negative and statistically significant in each model.  The parking cost 

parameters are an order of magnitude larger than the travel cost parameters. 

The coefficients for site characteristics (level of beach congestion and the 

presence of wind turbines in the sound or ocean (at varying distances)) were assumed to 

follow a multivariate normal distribution with diagonal covariance matrix.  Dummy 

variables are included for medium and high beach congestion, with low congestion as the 

excluded category.  The mean parameter for medium congestion is not statistically 

significant in either model.  The mean parameter for high congestion, however, is 

negative and statistically significant in the raw data model (negative and not statistically 

significant for the weighted data).  This indicates that high beach congestion can decrease 

the probability of site visitation.  The standard deviation parameters for site congestion 

are generally estimated with precision and tend to be rather large.5  We construe this as 

evidence of heterogeneity of preferences for beach congestion. 

Dummy variables are included for wind turbine scenarios: turbines in the ocean, 1 

mile out; turbines in the ocean, 4 miles out; turbines in the sound, 1 mile out; and turbines 

in the sound, 4 miles out.  The excluded categories are „no wind turbines in the ocean‟ 

and „no wind turbines in the sound‟.  Only the coefficient for „ocean wind turbine, 1 mile 

out‟ is statistically significant.  The mean parameter for one-mile-ocean is negative and 

statistically significant in each model, indicating a reduction in site utility when wind 

turbines are located in close proximity to the beach on the ocean side.  The mean 

parameters for other wind turbine scenarios are positive (with the exception of sound 

placement, 1 mile out, in the weighted model), but not statistically significant.  The 

standard deviation parameters for wind farm location are precisely estimated and indicate 

significant variability in preferences for placement of wind turbines. 

Estimates of compensating variation are presented in table 7.  Compensating 

variation for not taking a trip is $270 ($341) for the weighted (raw) model.  We interpret 

this as average value of a hypothetical beach trip in our choice experiment.  

Compensating variation for a $1 increase in the onsite parking fee is $10 to $12.  This 

result likely reflects the widespread lack of paid parking on the Outer Banks of North 

Carolina and a strong preference for this status quo.  The result indicates that the average 

beach visitor is willing to drive a significant distance (incurring additional travel cost) to 

avoid beach parking fees.   

Willingness-to-pay to avoid moderate congestion is around $21 for the raw data 

model, but negative for the weighted data model (-$6).  The modest negative value 

indicates a slight preference, on average, for moderate levels of beach congestion.   

Willingness-to-pay to avoid high congestion is $105 for the raw data model and $32 for 

the weighted model.  Confidence intervals for these welfare estimates (and those 

associated with wind turbines, discussed below) are estimated using the standard 

deviation parameters associated with the multivariate normal mixing distribution (rather 

than the standard error of the mean coefficient).  As such, there is much larger variability 

in the confidence intervals.  For willingness-to-pay to avoid congestion, in all cases there 

is significant variability in utility parameters.  The magnitudes of the estimated standard 

deviations are rather large relative to the means, indicating significant heterogeneity of 

congestion preferences among the sampled population. 

                                                 
5
 Standard tests for statistical significance of standard deviation parameters are biased because the null 

hypothesis is on the boundary of the parameter space. 
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Compensating variation for the presence of wind turbines one mile off the beach 

is $55 ($102) for the weighted (raw) data model.  The estimated standard deviations 

imply significant variability in the aversion to this placement scenario.  Point estimates 

for the other wind turbine scenarios tend to be smaller in magnitude and highly variable 

(reflecting low statistical significance of the mean parameters and relatively large 

standard deviations).   

 

Discussion 

Overall, we find little impact of offshore/sound wind turbines on recreational visitation of 

residents in the northern CAMA counties of North Carolina.  Respondents to the 

telephone survey took around 9 trips to North Carolina beaches in the previous 12-

monthsl, plan to take almost 10 trips in the next year, and will take approximately the 

same number of trips if wind turbines were built at each of the 31 major beach towns in 

North Carolina.  Hanley and Nevin (1999) find similar results for the installation of wind 

turbines on a rural estate in Scotland; none of their respondents indicated that they would 

avoid the estate entirely if there was a wind farm, and over 90% indicated that the wind 

farm would have no effect on future trips. 

The average planned trips masks individual level variation in our data, however.  

While some respondents indicated that they would take less trips under the wind farm 

scenario, others indicated that they would increase trips under this scenario.  

Approximately half of the respondents “strongly agreed” or “somewhat agreed” that wind 

turbines could have a positive impact on the overall view at the beach.  The overall 

insensitivity of aggregate recreation demand to our contingent wind farm scenario could 

be evidence of sample selection bias, as the effect persists with inverse probability 

weights to correct for non-response bias.  In particular, we are concerned that our sample 

may be skewed towards individuals that support wind farms.  We note, however, that the 

majority of respondents (44%) self-identify as politically conservative, rather than liberal 

(13%), moderate (19%), or „other‟ (22%).  If our telephone sample were skewed towards 

wind energy supporters, we might expect a higher proportion of liberals and moderates in 

the sample (though our sample still could be skewed relative to population proportions).  

Also, an independent survey of Kitty Hawk residents reveals similar patterns of support 

for wind energy development (Kitty Hawk 2010). 

Regression results for annual aggregate NC beach demand indicate price elasticity 

that increases (becomes more elastic) under the SP scenarios.  The increasing sensitivity 

to travel cost is at odds with standard conjecture regarding hypothetical bias, which 

would suggest less sensitivity to price in SP measures.  This could be construed as 

evidence of the perceived validity of our SP scenarios, and may also reflect poor 

macroeconomic outlook that induces greater price sensitivity among respondents.  NC 

beach demand in the northern CAMA counties is sensitive to travel costs to both Virginia 

Beach, VA and Myrtle Beach, SC, with both substitute site travel costs increasing 

demand for NC beach visitation, ceteris paribus.  Results suggest that demand is 

decreasing in age and that NC beach trips are an inferior good. 

Consumer surplus (CS) estimates for NC beach trips are about $1082 per year for 

our preferred model (weighted for non-response bias), or around $94 per trip.  Most of 

the respondents in our dataset took day trips to the beach, so the per-trip estimate 

primarily applies to a single beach day.  This is similar to previous results in the literature 
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(Bin et al. 2005; Whitehead et al. 2008; Lew and Larson 2008).  Projected future CS 

under current conditions is slightly lower at $1068 per year, which is reduced to $1051 

under the wind scenario.  The $17 loss in CS is slightly more than 1% of the SP baseline.  

This suggests very small (if not inconsequential) costs associated with the installation of 

wind energy facilities at all major North Carolina beach destinations.   

While this result is encouraging for the economic viability of offshore wind in 

North Carolina, we bring attention to the important caveat that our sample only includes 

residents from the coastal region of North Carolina.  Most of these residents make day 

trips to the beach, and thus create less economic impact per trip.  Moreover, this 

population has very limited substitution possibilities relative to those that travel greater 

distances for beach recreation.  Tourists from the Mid-Atlantic, Northeast, and Midwest 

regions of the U.S. often travel significant distances to access warm water beaches.  This 

population is much more likely to spend a week or more onsite, thus creating greater 

economic impact.  Also, this population has a larger set of viable alternatives for beach 

recreation.  If these coastal tourists are averse to wind farms and recognize alternative 

sites that do not have visible turbines, we might expect a greater diminution in tourism in 

coastal North Carolina.  The impact of offshore wind turbines on recreation decisions of 

this group of tourists remains an important topic for future research. 

Having wind turbines at every major beach destination is a somewhat drastic 

scenario given current tentative plans for limited development of offshore wind energy.  

By exploring this scenario, we attain a sense of the impacts of what we might construe as 

a worst-case scenario for coastal recreation and tourism.  Under this characterization, the 

cost estimates derived can be construed as an upper bound on the likely costs.  Our SP 

scenario, however, does not explore the relationship between turbine placement (i.e. 

location, offshore or in the sounds, and distance from the shore) and recreation behavior.  

To this end, we gathered additional internet data that made use of visual depictions of 

offshore wind turbines (a capability that was not possible with the telephone instrument). 

Recent research indicates that visual representations can be effectively integrated within 

choice experiments and that visual attributes perform better, in terms of reducing biases, 

than numerical representations of visual phenomena (Bateman et al. 2006).   

Our choice experiment (CE) examines the impact of wind farms, offshore and 

located in the sound, on beach site choice.  In each trip profile, offshore conditions are 

either free of wind farms, wind farms can be seen 1 mile from the shore, or wind farms 

can be seen 4 miles from the shore.  Conditions in the sound receive a similar treatment: 

either the sound is free of wind farms, wind farms can be seen a mile from the shore, or 4 

miles from the shore.  Offshore and sound conditions are treated independently in the CE.  

The experiment is designed so that these two trip attributes are orthogonal, and thus both 

offshore and sound conditions can be evaluated independently.  Each trip profile also 

includes travel distance to the beach site, beach congestion, and parking fees.  

Participants in the CE evaluated six choice sets which were composed of three trip 

profiles and included a no-trip option. 

Results from the mixed logit model indicate that parking fees and travel costs 

both have a negative impact on site choice, with the parking fee parameter differing from 

the travel cost parameter by an order of magnitude.  Compensating variation for a $1 

increase in parking fee is around $10 to $12, indicating that beach visitors will incur 

greater travel cost in order to avoid parking fees.  This could suggest that there is some 
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utility in travel to the beach that is not being accounted for in our travel cost measure, or 

may be indicative of a strong negative disposition towards beach parking fees in North 

Carolina.  The latter interpretation could reflect a strong preference for the status quo 

conditions on the Outer Banks in which parking fees are rare.   

The coefficients for beach congestion and the presence of wind turbines were 

assumed to follow a multivariate normal distribution with diagonal covariance matrix.   

We find some evidence that high beach congestion reduced the probability of site 

selection, but standard deviations of the congestion parameters were generally large, 

indicating significant heterogeneity in utility associated congestion. Willingness-to-pay to 

avoid high congestion is $105 for the raw data model (but statistically insignificant for 

the weighted model).   

Offshore wind farms one mile from the shore induce a significant and negative 

mean utility effect on beach visitors (relative to the excluded category of no wind 

turbines offshore), while the mean effects of other placement options are not statistically 

significant.  Compensating variation for wind farms one mile from the shore is $55.  

Given the large estimated standard deviation, the 95% confidence interval of 

compensating variation is -$71.97 to $177.17.  If, however, we use the standard error of 

the mean effect to estimate the 95% confidence interval, the range does not include 

negative values.  Thus, the choice experiment data indicate that beach visitors from the 

northern CAMA counties in North Carolina are aversive to ocean wind farms in close 

proximity to the beach, and the compensating variation for the presence of wind farms is 

large relative to the average value of a beach visit (around $94).  For ocean wind farms 

further out (4 miles) and for wind farms located in the sounds, however, we do not find a 

statistically significant effect.  For all scenarios the standard deviation of the wind farm 

utility effect is large, indicating significant heterogeneity within the sample.  Overall, our 

results suggest that the installation of wind farms in the sounds of North Carolina‟s 

coastal region or far out in the ocean will have the no appreciable effect on recreation and 

tourism.  Nonetheless, the caveat that we are focusing on coastal NC residents has 

gravity.  More research on other types of visitors is needed to explore whether the pattern 

of results we find can be interpreted more broadly. 

 

Conclusions 

The push towards renewable energy sources raises many important questions about the 

economic viability of alternative energy sources and the external effects of alternative 

energy development.  Wind energy is a promising prospect for many parts of the U.S.  

Wind turbines, however, can create a visual dis-amenity that may affect property values, 

local residents, tourist behavior, or other factors.  From a practical perspective, this dis-

amenity can create a significant dilemma, as areas with greatest wind energy potential are 

often those with scenic vistas (mountain ridges and coastal landscapes). 

We use a combination of telephone and web survey data to assess the impacts of 

coastal wind farms on trip behavior and site choice, focusing on residents in the northern 

CAMA counties of North Carolina (adjacent to North Carolina‟s Outer Banks).  Overall, 

we find little impact of widespread coastal wind energy development on aggregate 

recreational visitation.  Most telephone survey respondents (92%) claim to support 

offshore wind energy development, and over half (60%) indicate that wind farms could 

have a positive impact on the overall view at the beach.  Further, we see little evidence of 
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impact on trip-taking.  The average household made about 9 trips to North Carolina 

beaches in the previous 12-months, planned to take almost 10 trips in the next year, and 

would take approximately the same number of trips if wind turbines were built at each of 

the 31 major beach towns in North Carolina.  Accordingly, we estimate that lost 

consumer surplus under the wind energy scenario is about $17, or 1.5% per year.   

 Our internet survey employs visual representations of coastal wind turbines to 

examine the effect of wind turbine placement on beach site selection.  We find evidence 

that NC coastal residents are averse to wind farms in the near-shore zone; average 

compensating variation for wind farms one mile from the shore is estimated at $55 per 

household.  For all wind farm scenarios, we find evidence of preference heterogeneity – 

some respondents find the scenario appealing while others find it aversive.  For wind 

farms located further out in the ocean or located in the sounds we find no evidence of 

negative impacts on recreation visitation, on average.  Future research that focuses on 

local residents could explore the extent to which “place theory” influences acceptability 

of what some may considerable undesirable land uses (Devine-Wright 2005). 
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Table 1: Descriptive Statistics for Telephone Survey Data 
Variable Definition Obs Raw Weight Census 

t_trips1 Total trips to NC beaches in previous 12-

months (RP) 

312 11.81    

(18.08) 

9.09 

(14.74) 

 

d_trips1 Single-day trips to NC beaches in 

previous 12-months (RP) 
313 8.57   

(16.36) 

7.28 

(13.06) 

 

on_trips1 Overnight trips to NC beaches in 

previous 12-months (RP) 
313 3.12 

(6.74) 

1.86 

(5.11) 

 

t_trips2 Trips to NC beaches over next12-months 

under current conditions (SP) 
304 14.76 

(40.84) 

9.76 

(23.85) 

 

t_trips3 Trips to NC beaches over next12-months 

w/ wind farms (SP) 
302 14.10 

(41.48) 

9.77 

(25.30) 

 

same_beach Respondent would visit same beach 

under wind farm scenario 

313 0.89 

(0.32) 

0.92 

(0.27) 

 

diff_beach Respondent would visit different beach 

under wind farm scenario 
313 0.06 

(0.24) 

0.04 

(0.19) 

 

no_beach Respondent would visit no beach under 

wind farm scenario 
313 0.05 

(0.21) 

0.04 

(0.19) 

 

concern_cc Very or somewhat concerned over 

climate change 

313 0.72 

(0.45) 

0.79 

(0.41) 

 

anthro_cc Strongly or somewhat agreed that most 

recent climate change is due to manmade 

pollution 

313 0.91 

(0.39) 

0.86 

(0.35) 

 

wind_support Strongly or somewhat support coastal 

wind energy development 

313 0.91 

(0.28) 

0.92 

(0.27) 

 

wind_impact Very positive or positive impact of wind 

farms on view at the beach 

313 0.53 

(0.50) 

0.60 

(0.49) 

 

wind_support

_near 

Strongly or somewhat support wind 

energy development at nearest beach 

313 0.88 

(0.33) 

0.90 

(0.30) 

 

wind_support

_all 

Strongly or somewhat support wind 

energy development at all NC beaches 

313 0.84 

(0.37) 

0.86 

(0.35) 

 

ptr Travel cost to NC beach (closest of Nags 

Head or Atlantic beach) 

313 160.86 

(477.44) 

176.90 

(235.03) 

 

MBsub_ptr Travel cost to Myrtle Beach, SC 313 435.52  

(444.56) 

306.82 

(368.31) 

 

VBsub_ptr Travel cost to Virginia Beach, VA 313 262.77 

(469.08) 

190.76 

(224.88) 

 

inc Household income (in thousands) 258 78.80 

(50.27) 

52.00 

(43.81) 

42.2 

male Male respondent 312 0.38 

(0.48) 

0.49 

(0.50) 

0.48 

age Respondent age 308 54.65 

(15.34) 

44.45 

(19.68) 

39.66 

less_hschool Less than High School education 313 0.03 

(0.16) 

0.30 

(0.46) 

0.21 

hschool High School is highest educational 

attainment 

313 0.24 

(0.43) 

0.29 

(0.46) 

0.32 

some_coll Some college is highest educational 

attainment 

313 0.31 

(0.46) 

0.27 

(0.44) 

0.28 
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college College or graduate school is highest 

educational attainment 

313 0.42 

(0.49) 

0.13 

(0.34) 

0.17 

env_org Member of environmental organization 310 0.11 

(0.31) 

0.51 

(0.22) 
 

liberal Respondent considers themselves 

politically liberal 

313 0.17 

(0.37) 

0.13 

(0.33) 
 

moderate Respondent considers themselves 

politically moderate 
313 0.30 

(0.46) 

0.19 

(0.40) 
 

conservative Respondent considers themselves 

politically conservative 
313 0.37 

(0.48) 

0.44 

(0.50) 
 

other_poly Respondent considers themselves 

something other than liberal, moderate, 

or  conservative 

313 0.15 

(0.36) 

0.22 

(0.42) 
 

  Note: Standard deviations in parentheses    
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Table 2: Attributes and Levels for the Beach Site Choice Experiment 

Attribute Levels 

Distance from Home - number 

of one-way miles travelled to get 

to the beach 

“Coastal” counties: 20 miles; 40 miles; 60 miles 

“Adjacent” counties: 60 miles; 90 miles; 120 miles 

People on the Beach – number 

of people per mile on the 

surrounding beach 

low (1 – 20 people per mile); moderate (20 – 80 

people per mile); high (more than 80 people per mile) 

Parking Fees – the amount you 

have to pay to park your car 

$0 per day, $4 per day, $8 per day 

Ocean View a clear view of the ocean; wind farm 1 mile out; wind 

farm 4 miles out 

Sound View 
 

a clear view of the sound; wind farm 1 mile out; wind 

farm 4 miles out 
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Table 3: Descriptive Statistics for Internet Survey Data 

Variable Definition Obs Raw Weight Census 
adjacent Resident of adjacent county 118 .64 

(.48) 

.77 

(.42) 

 

ocean Resident of ocean county 118 .36 

(.48) 

.23 

(.42) 

 

t_trips1 Total trips to NC beaches in previous 12-

months (RP) 

112 43.16 

(95.77) 

27.77 

(73.57) 

 

inc Household income (in thousands) 97 88.56 

(46.16) 

63.11 

(43.26) 

42.25 

male Male respondent 111 .37 

(.48) 

.33 

(.47) 

0.486 

age Respondent age 109 51.38 

(13.86) 

51.96 

17.73 

39.662 

hschool High School is highest educational 

attainment 

112 .13 

(.34) 

.49 

(.50) 

0.323 

some_coll Some college is highest educational 

attainment 

112 .27 

(.44) 

.29 

(.45) 

0.287 

college College or graduate school is highest 

educational attainment 

112 .58 

(.50) 

.18 

(.38) 

0.170 

env_org Member of environmental organization 108 .14 

(.35) 

.12 

(.32) 

 

liberal Respondent considers themselves 

politically liberal 

112 .19 

(.39) 

.10 

(.30) 

 

moderate Respondent considers themselves 

politically moderate 
112 .29 

(.46) 

.29 

(.46) 

 

conservative Respondent considers themselves 

politically conservative 
112 .35 

(.48) 

.44 

(.50) 

 

other_poly Respondent considers themselves 

something other than liberal, moderate, or  

conservative 

112 .14 

(.35) 

.13 

(.34) 

 

Note: Standard deviations in parentheses. 
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Table 4:  Random Effects Poisson Regression Model Results 
 Raw Data Weighted Data 

Variable Coefficient Standard Error Coefficient Standard Error 

ptr -0.0088*** 0.0010 -0.0107*** 0.0014 

ptr×future -0.0012*** 0.0003 -0.0015*** 0.0004 

ptr×future_wind -0.0013*** 0.0003 -0.0018*** 0.0004 

MBsub_ptr 0.0042*** 0.0006 0.0057*** 0.0009 

VBsub_ptr 0.0050*** 0.0006 0.0056*** 0.0009 

inc -0.0032* 0.0018 -0.0061*** 0.0023 

male 0.1235 0.1471 0.2583 0.1655 

age -0.0016 0.0050 -0.0127*** 0.0043 

hschool 0.0835 0.5246 -0.1870 0.2288 

some_coll 0.5190 0.5215 -0.0056 0.2327 

college 0.4548 0.5208 0.1953 0.2950 

future 0.3251*** 0.0287 0.2135*** 0.0399 

future_wind 0.2819*** 0.0292 0.2403*** 0.0406 

constant 0.4534 0.5540 1.0072*** 0.3284 

alpha 1.1672*** 0.0939 0.9947*** 0.0928 

observations 757 (256 individual responses) 757 (256 individual responses) 

lnL -2901.10 -1911.90 

LRT (df) p-value  1119.14 (13) p<0.0001  1469.36 (13) p<0.0001 

Note: *** - statistically significant for 1% chance of Type I error; ** - statistically 

significant for 5% chance of Type I error; * - statistically significant for 10% chance of 

Type I error. 
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Table 5: Conditional Expected Demands, Elasticities, and Welfare Estimates 

 Raw Data Weighted Data 

E[y1|xij] (RP) 12.88 11.54 

E[y2|xij] (SP) 16.40 12.96 

E[y3|xij] (SP_wind) 15.60 13.07 

εop: own-price elasticity (RP) -1.41 -1.89 

εop_future: own-price elasticity (SP) -1.61 -2.16 

εop_future_wind: own-price elasticity 

(SP_wind) 
-1.62 -2.21 

εcp_MB: cross-price elasticity for 

Myrtle Beach 
1.83 1.75 

εcp_VB: cross-price elasticity for 

Virginia Beach 
1.31 1.07 

εinc: income elasticity -0.25 -0.32 

Consumer Surplus (RP) 

(95% confidence interval) 

$1456.30 

($1227.73 - $1784.90) 

$1082.08 

($890.49 - $1375.25) 

Consumer Surplus (SP) 

(95% confidence interval) 

$1635.86 

($1387.86 - $1988.40) 

$1068.41 

($888.63 - $1336.75) 

Consumer Surplus (SP_wind) 

(95% confidence interval) 

$1539.91 

($1313.48 - $1865.61) 

$1050.70 

($877.86 - $1312.05) 
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Table 6: Mixed Logit Model Results 

 Raw Data Weighted Data 

Variable Coefficient Standard Error Variable Coefficient 

Mean: no_trip -3.7155*** 0.3448 -3.3026*** 0.5350 

Mean: altA -0.1064 0.2747 0.5863*** 0.2415 

Mean: altB 0.2067 0.1630 0.4491*** 0.1605 

Mean: ptr -0.0109*** 0.0020 -0.0122*** 0.0029 

Mean: park_fee -0.1302*** 0.0221 -0.1221*** 0.0285 

Mean: 

med_cong 

-0.2166 0.1851 0.0864 0.2145 

Mean: hi_cong -1.1583*** 0.2245 -0.4124 0.2629 

Mean: oceanw1 -1.0772*** 0.2775 -0.6693* 0.3604 

Mean: oceanw4 0.0412 0.2171 0.1933 0.3067 

Mean: soundw1 0.0177 0.1961 -0.3473 0.2759 

Mean: soundw4 0.4484 0.2810 0.0747 0.2455 

SD: med_cong 1.0398*** 0.2363 0.4439 0.3129 

SD: hi_cong 1.3635*** 0.2946 0.6862*** 0. 2956 

SD: oceanw1 1.6901*** 0.2914 0.9194*** 0.3460 

SD: oceanw4 1.7021*** 0.2601 1.2585*** 0.3853 

SD: soundw1 1.2086*** 0.2445 0.8211*** 0.2648 

SD: soundw4 1.0481*** 0.2359 0.7109* 0.3670 
observations 2768 profiles; 692 choices  

(118 individual responses) 

2768 profiles; 692 choices  

(118 individual responses) 
lnL -744.634 -748.544 
LRT (df) p-value 94.61 (11) < 0.0001 98.92 (11) < 0.0001 

Note: *** - statistically significant for 1% chance of Type I error; ** - statistically 

significant for 5% chance of Type I error; * - statistically significant for 10% chance of 

Type I error. 
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Table 7: Welfare Estimates for Visualization Choice Experiment 

 Raw Data Weighted Data 

No-trip $341.25 

($290.24, $394.22) 

$270.14 

($196.81, $342.89) 

Park_fee $11.99 

($8.59, $15.38) 

$9.95 

($6.16, $13.93) 

Medium Congestion $20.81 

(-$138.13, $175.90) 

-$6.24 

(-$67.70, $52.98) 

High Congestion $104.69 

(-$91.74. $313.73) 

$32.39 

(-$59.40, $127.35) 

Ocean1 $102.48 

(-$160.58, $360.65) 

$54.58 

(-$71.97, $177.17) 

Ocean4 -$2.24 

(-$260.35, $254.34) 

-$18.77 

(-$191.25, $147.16) 

Sound1 -$1.03 

(-$186.17, $180.45) 

$26.25 

(-$82.12, $136.64) 

Sound4 -$42.25 

(-$200.49, $117.75) 

-$6.92 

(-$103.39, $91.60) 

Note: Confidence intervals for „no-trip‟ and „park_fee‟ are estimated using the variability 

in fixed mean parameters to boot strap the mean.  Confidence intervals for the other site 

attributes are estimated using the mean and standard deviation parameters to simulate the 

distribution of willingness-to-pay.  The latter gives rise to larger confidence intervals that 

reflect individual heterogeneity.
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Figure 1: Study area location. 
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Figure 2: Example of Choice Set for Beach Site Choice Experiment 
No 

Trip 

(stay 

home) 

Trip A Trip B Trip C 

People on the Beach: 40 - 200 People on the Beach: more than 200 People on the Beach: less than 40 

Distance from home: 120 miles Distance from home: 90 miles Distance from home: 60 miles 

Parking Fee: $0 Parking Fee: $4 Parking Fee: $8 

Ocean View: 1-mile wind farms 

 

Ocean View: 4-mile wind farms 

 

Ocean View: no wind farms 

 
Sound View: 4-mile wind farms 

 

Sound View: no wind farms 

 

Sound View: 1-mile wind farms 

 
 


