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Abstract

Many public goods that are provided by coalitions have a group-size e¤ect.

Namely, people prefer to consume a public good in a larger coalition. This paper

studies local public goods games with anonymous and separable group-size e¤ect.

The core is nonempty when coalition feasible sets are monotonic and players�prefer-

ences over public goods satisfy a condition called cardinal connectedness. Moreover,

a core allocation consists of connected coalitions.

JEL Classi�cation: C71, D71, H41.

Keywords: Hedonic coalition, group-size e¤ect, public goods, cardinal connected-

ness.

1 Introduction

Many public goods are provided by coalitions. For some of these �local�public goods,

there is a group-size e¤ect, where people prefer to be in a larger coalition given the same

public good consumption. The following are some examples: (i) Consumers choose

among insurance policies in the market. Having more people under the same policy

ensures better risk-sharing. (ii) Political parties promote their policy platforms, and

people prefer to join a larger party for a better probability of wining. (iii) Clubs provide

�I would like to thank two anonymous referees, Marcus Berliant, Mathew Jackson, Biung-Ghi Ju,

Hideo Konishi, Fabien Moizeau, Myrna Wooders, and the participants at the Coalition Theory Network

Workshops, the Midwest Economic Theory Meetings, and the International Meetings of the Association

for Public Economic Theory for comments.
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entertainment to members; people may prefer to socialize with more people sharing

some interest. (iv) Professors join academic departments to obtain research resources,

and a larger faculty provides better interactions.1 In the above examples of coalitions,

their size also enters into preferences besides public goods. We investigate conditions

that guarantee stable formation of coalitions in such games.

Whether stable coalitions can form with nontransferable utility was �rst studied by

Aumann and Drèze (1975). They extend solution concepts which were based on the

formation of the grand coalition to coalition structures. Kaneko and Wooders (1982)

develop conditions, which are independent of the payo¤ function, that guarantee the

nonemptiness of the core based on Scarf�s (1967) balancedness. Le Breton, Owen and

Weber (1992) study communication games on graphs where only connected coalitions are

e¤ective. When players have preferences over coalition members, the coalition is called

a hedonic coalition Drèze and Greenberg (1980) �rst consider the hedonic aspect where

players derive utility from private goods, public goods, as well as coalition members.

The literature, then, addresses two issues, coalition provided public goods and pure

hedonic coalitions, separately.

Guesnerie and Oddou (1981) and Greenberg and Weber (1986) show the nonempti-

ness of the core in local public economies where coalitions decide on levels of public

expenditures that are �nanced by taxes. Greenberg and Weber (1993a) and Demange

(1994) study models with abstract spaces for public goods. A stronger notion of stability,

which looks for core allocations that are also Tiebout equilibria, is obtained. Existence

of such stable allocations are shown in the former when preferences are single-peaked

on a line, and in the latter when preferences are intermediate on a tree graph. Coalition

feasible sets are assumed to be monotonic in both. In these games, additional mem-

bers enlarge the feasible set of a coalition, but players do not prefer a larger coalition

size per se. Pure hedonic coalitions where utility is solely derived from members are

investigated by the following authors in games without public goods. Banerjee, Konishi

and Sönmez (2001) show that the core may be empty unless restrictive conditions are

assumed. Bogomolnaia and Jackson (2002) obtain the existence of individually stable

and Nash stable allocations. Iehlé (2005) develops a pivotal balancedness condition that

guarantees a core partition. The group-size e¤ect is also studied in strategic form games

by Konishi, Le Breton and Weber (1997a). In their game, a coalition is a set of players

choosing the same pure strategy, and there are positive externalities from group size. A

Nash equilibrium exists when preferences over strategies dominate the group-size e¤ect.

Whether stable coalitions can form in games with both public goods and group-

1The group-size e¤ect, in private or public goods, is called the network e¤ect in the literature of

industrial organization (see, for example, Katz and Shapiro 1985).
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size e¤ect is still an open question. We study such a game where the group-size e¤ect

can be dominant. We focus on a type of group-size e¤ect that is anonymous and

separable; these preferences over coalition size are represented by a common increasing

function.2 Preference structures such as single-peakedness and intermediate preferences

are imposed in the public goods literature. These structures link players on a graph (a

line or a tree), and require their ordinal preferences to change gradually over this graph.

The group-size e¤ect in our model, however, can disrupt these preference structures.

When a player�s desire for a larger coalition dominates his preferences over public goods,

previous results do not hold. Consequently, a stronger structure is required. We use

cardinal connectedness, which is a preference restriction over public goods only. It

stipulates gradual changes in the relative strength of preferences over public goods.

Speci�cally, it imposes a tree graph linking players together such that, for any pair

of public goods and for any real number, those players whose utility di¤erences from

the two public goods are strictly bigger than the given number form a connected set

on the tree. When coalition feasible sets are monotonic and preferences over public

goods satisfy cardinal connectedness, the core is nonempty. Moreover, a core allocation

consists of connected coalitions.

Section 2 presents the model and results. Section 3 concludes.

2 The model and results

The set of players is denoted by N and the set of public goods by X. Each player

i 2 N has preferences over X that are represented by a continuous function ui : X ! R.
A coalition is a subset S � N . For each coalition S, there is a set of feasible public

goods � (S). We call � : 2N ! 2X a feasibility correspondence. A coalition may have

an empty feasible set. To eliminate triviality, we assume that there exists S � N such

that � (S) 6= ?. The group-size e¤ect is anonymous, separable, and represented by
a common function for all players. Utility function vi : X � 2N represents player i�s

preferences over pairs of a coalition and a public good. If player i consumes public good

x 2 X in coalition S, his utility is

vi (S; x) = ui (x) + f (jSj) ;

where f > 0 and is strictly increasing. The pair (S; x) is called a coalition�public-good

pair. A local public goods game with group-size e¤ect
�
N;X; �; (vi)i2N

�
consists of a

2This is a special case of the Drèze and Greenberg (1980) type utility function. Greenberg and Weber

(1986) have another application where the utility from group size is derived indirectly through a tax

sharing rule.
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set of players, a set of public goods, a feasibility correspondence, and a pro�le of utility

functions, where N is �nite, X is closed (in its associated topological space), and � is

compact-valued.

A coalition structure � � 2N is a partition of N such that � (S) 6= ? for all S 2 �.
An allocation a : N ! 2N �X assigns a coalition�public-good pair a (i) to individual

i. Allocation a is feasible if there is a coalition structure and a list of public goods�
�a; (xS)S2�a

�
with xS 2 � (S) for all S 2 �a such that a (i) = (S; xS) for all i 2 S

and all S 2 �a. To simplify notation, we denote vi (a (i)) = vi (S; xS). The feasibility
correspondence � is monotonic if additional alternatives become feasible to a coalition

when it has more members; � (S) � � (S0) for all S; S0 2 2N , S � S0.
Preference structures for public goods, such as single-peakedness and intermediate

preferences, are used in the literature. These structures link players on a graph (for

example, a line in the former and a tree in the latter), and stipulate ordinal preferences

to change gradually on the graph. With the group-size e¤ect, even if preferences have

one of the above structures over the public goods space X, the nice structure can be

disrupted in the 2N�X space. This is because a player�s desire for a bigger coalition may

be larger than his utility di¤erence from public goods. For example, suppose player i

prefers x to y in any coalition and the group-size e¤ect has f (3)�f (2) > ui (x)�ui (y).
Then, i prefers y in a three-person coalition to x in a two-person coalition. Hence,

previous structures cannot guarantee a nonempty core, when the group-size e¤ect is not

negligible and dominates preferences over public goods in arbitrary ways. Consequently,

a stronger restriction is required. We use the following condition that restricts cardinal

preferences over public goods.

� Let G be a tree on N . Preferences over public goods satisfy cardinal connectedness
on G if for any pair x; y 2 X and any t 2 R, jtj � f (N)� f (0), the following set
is connected on G: fi 2 N j ui (x)� ui (y) > tg.

Cardinal connectedness requires that players can be linked on a tree in such a

way that, for any pair of public goods and for any real number t, the set of players

whose utility di¤erences from the pair of public goods are bigger than t is connected

on the tree. It says that players can be linked on a tree according to their preferences:

players with similar preferences are connected on the tree, and the strength of pref-

erences changes monotonically when moving along the tree. The number t helps sep-

arate players into three sets fi 2 N j ui (x)� ui (y) > tg, fi 2 N j ui (x)� ui (y) = tg,
and fi 2 N j ui (x)� ui (y) < tg. For example, suppose t = 5. Then the �rst set, play-
ers whose payo¤s at x are greater than their payo¤s at y plus 5, is a connected set.

Notice that the last set is equal to fi 2 N j ui (y)� ui (x) > �tg. It contains players
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whose payo¤s at y are greater than their payo¤s at x minus 5. According to every

pair of public goods and every t, there are two mutually exclusive connected sets; each

containing players with similar preferences. With t varying, cardinal connectedness

stipulates a gradual change of payo¤s on the tree G. Due to the common and separable

group size e¤ect, the cardinal comparisons among public goods embedded in cardinal

connectedness enable comparisons of preferences over public goods and the desirability

of a larger coalition.

The Euclidean utility function represents a simple example of this type of prefer-

ences: Let ui (x) = kx� aik where x; ai 2 R and constant ai is player i�s ideal point.
For x; y 2 X and a real number t, the set fi 2 N j ui (x)� ui (y) > tg is equivalent to
fi 2 N j ai > (x� y + t) =2g and it is connected on the real line.3

A related preference structure is �intermediate preferences�(Grandmont 1978, De-

mange 1994). It requires that players can be linked on a tree, and for any pair of public

goods, the following are two connected sets on the tree: players with the same strict

preference and players with the same weak preference. In other words, strict and weak

ordinal preferences change gradually over the tree. In contrast, cardinal connectedness

requires that the strength of strict cardinal preferences changes gradually over a tree.

Connected support (Kung 2006) is a weaker version of intermediate preferences. It re-

quires that for any pair of public goods, the set of players with the same strict preference

are a connected set on the tree. These tree structures may represent hierarchical orga-

nizations or communication networks in the real world, where players can interact, and

which facilitate coalition formation. Cardinal connectedness is based on the same idea

that players with similar preferences are connected, but requires a stronger similarity

in cardinal preferences.

A feasible allocation a is in the core if there is no coalition�public-good pair (S; x)

such that x 2 � (S) and vi (S; x) > vi (a (i)) for all i 2 S.

The next example shows the necessity for cardinal connectedness. We present a

preference pro�le that is single-peaked and also satis�es intermediate preferences on

public goods. Yet, the core is empty due to the group-size e¤ect. The example is

adapted from Example 4.6 in Konishi, Le Breton and Weber 1997a.

Example 1. Let N = f1; 2; 3; 4; 5; 6; 7g, and X = fx; y; zg. The feasibility correspon-
dence is constant; � (S) = fx; y; zg for all S. Players 4 and 5 have the same preferences,

3Utility functions used in Demange (1994, p. 50) as examples of intermediate preferences also satisfy

cardinal connectedness.
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and so do players 6 and 7; u4 = u5, u6 = u7. Their utility functions are as follows:

u1 (x) = 2:5; u1 (y) = 4; u1 (z) = 0;

u2 (x) = 0; u2 (y) = 4:5; u2 (z) = 1:7;

u3 (x) = 0; u3 (y) = 0:3; u3 (z) = 0:5;

u4 (x) = 8; u4 (y) = 0:1; u4 (z) = 0;

u6 (x) = 0; u6 (y) = 0:1; u6 (z) = 8;

with the group-size e¤ect f (jSj) = jSj. These preferences are single-peaked when public
goods are ordered as x� y � z, and they are intermediate preferences when players are
linked as 4� 5� 1� 2� 3� 6� 7.

Players 4 and 5 have strong preferences for x that are not outweighed by the group-

size e¤ect. In any core allocation, they belong to the same coalition and consume x.

This also means that if any of the remaining players consumes x in a core allocation,

they belong to the same coalition as players 4 and 5 because of the group-size e¤ect.

For the same reason, players 6 and 7 are in the same coalition and consume z.

We can thus reduce the game for the remaining players 1, 2, and 3, by de�ning x̂ as

�consuming x with players 4 and 5 �and ẑ as �consuming z with players 6 and 7.�The

reduced utility functions are

û1 (x̂) = 4:5; û1 (y) = 4; û1 (ẑ) = 2;

û2 (x̂) = 2; û2 (y) = 4:5; û2 (ẑ) = 3:7;

û3 (x̂) = 2; û3 (y) = 0:3; û3 (ẑ) = 2:5;

with f (jSj) stays the same. The core in the reduced 3-person game with f1; 2; 3g and
fx̂; y; ẑg is identical to the core in the original game (after adding back players 4 to 7).
Next, we show that the core is empty.

First, if each player stays alone, each chooses his favorite public good. Yet, they

cannot all stay alone since ((1; x̂) ; (2; y) ; (3; ẑ)) is blocked by (1 2; y). The coalition

(1 2 3) cannot form since then, any choice of public good is blocked by one player

due to the cyclic preferences. The remaining candidate allocations are ((1; x̂) ; (2 3; y)),

blocked by (1 2 3; y), ((1; x̂) ; (2 3; ẑ)), blocked by (1 2; y), ((2; y) ; (1 3; ẑ)), blocked by

(1 2 3; ẑ), ((2; y) ; (1 3; x̂)), blocked by (2 3; ẑ), ((3; ẑ) ; (1 2; x̂)), blocked by (1 2 3; x̂),

and ((3; ẑ) ; (1 2; y)), blocked by (1 3; x̂). There is no core allocation.

The power of cardinal connectedness requires the assumed common group-size ef-

fect. The above example can be modi�ed to show that cardinal connectedness may not

guarantee a nonempty core when players do not have a common group-size function.
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We adjust utility functions to satisfy cardinal connectedness while keeping preferences

over the coalition�public-goods space 2N �X the same, by varying the group-size e¤ect

function individually. Example 2 illustrates that the common group-size e¤ect serves

as a normalizing measure that facilitates cardinal comparison across public goods and

coalition sizes.

Example 2. The utility functions are modi�ed from Example 1 as follows: �fi = f for

i = 1; 2 and �fi (k) = 6k for i = 3; 4; 5; 6; 7,

�u1 = u1; �u2 = u2;

�u3 (x) = 0; �u3 (y) = 5; �u3 (z) = 5:5;

�u4 (x) = 50; �u6 (y) = 5:5; �u6 (z) = 0;

�u6 (x) = 0; �u6 (y) = 5:5; �u6 (z) = 50;

�u5 = �u4, and �u7 = �u6. Thus, all �ui satisfy cardinal connectedness if players are linked

as 4 � 5 � 1 � 2 � 3 � 6 � 7.4 Notice that �ui + �fi de�nes the same preferences over

2N �X space as in Example 1. See player 3 for example, the payo¤ increase from one

additional player in the coalition outweighs any payo¤ di¤erence in public goods. Thus,

there is no core allocation.

Theorem 1. When preferences satisfy cardinal connectedness on G and feasible sets

are monotonic, a local public goods game with group-size e¤ect has a nonempty core.

Proof. An algorithm that constructs a core allocation is de�ned as follows.5 For

convenience, we temporarily assign a null public good � to coalitions that have empty

feasible sets, and ui (x) > ui (�) + f (jN j) for all x 2 X and all i 2 N . Thus, � is the
least preferred public good for all players. Let X 0 = X [ f�g. We will show later that
the �nal construction does not involve �.

Take r 2 N to be the root of tree G. Rooted tree Gr assigns priorities to players

as follows. The distance between player i and r is � (r; i) = k if r and i are linked by

a path of length k. We say that i has priority (k + 1). Let �k = maxi2N � (r; i) be the

4This is easily checked with the following table of utility di¤erences.
players 4,5 1 2 3 6,7

�ui (x)� �ui (y) 44:5 �1:5 �4:5 �5 �5:5
�ui (y)� �ui (z) 5:5 4 2:8 �0:5 �44:5
�ui (x)� �ui (z) 50 2:5 �1:7 �5:5 �50
5Similar versions of algorithms that utilize an ordering of agents can be found in Greenberg and

Weber (1993b), Demange (2004) and Kung (2006).
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maximal length on Gr. Let N i denote the subtree originating from i that contains i

and players with lower priorities. Note that N i \N j = ? if i; j have the same priority.
Let

~N i =
n
(S; x) 2 2N i �X j x 2 � (S) ; i 2 S; S is connected

o
:

It is the set of coalition�public-good pairs (S; x) that are feasible, and whose coalitions

S are connected and composed of i and only other players on i�s subtree. Let �vi =

vi (S
�; x�), where (S�; x�) 2 Ci, denote the maximized utility for i in Ci.
Next, we de�ne the top choice set Ci for player i recursively. Suppose Cj are de�ned

for all j on i�s subtree N i. Then

Ci = argmax
n
vi (S; x) s:t: (S; x) 2 ~N i and vj (S; x) � �vj ;8j 2 Sni

o
:

It is the set of utility maximizing coalition�public-good pairs (S; x) for i among those

that are in ~N i and give each other coalition member j 2 Sni his maximal utility �vj in
Cj .

To sum up, Ci consists of player i�s most preferred coalition�public-good pairs among

all such feasible pairs that consist of connected coalitions (containing i) on i�s subtree

N i, and keep coalition members no worse o¤ than at their top choice sets. The next

lemma shows that the top choice set is well-de�ned.

Lemma 1. Ci 6= ? for all i 2 N .

Proof. First, let Ri (S; �vi) = f(T; x) 2 fSg �X j x 2 � (T ) ; vi (T; x) � �vig denote i�s
upper contour set composed of coalition S and supporting utility no less than �vi. Let

Di =
[
fSj(S;x)2 ~N ig

�
\j2SniRj (S; �vj) \ f(S; x) j x 2 � (S)g

�
:

Thus, Di is the set of all feasible coalition�public-good pairs that consist of connected

coalitions on i�s subtree N i containing i, and keep coalition members no worse o¤ than

at their top choice sets. The set Ci consists of i�s most preferred pairs in Di. Since

player i can always remain by himself, Di 6= ;. All Ri (S; :) and � (S) are compact, and
the set

n
S j (S; x) 2 ~N i

o
is �nite. Thus, Di is the union of �nitely many compact sets.

Since vi is continuous, Ci 6= ?.

In the following, we construct an allocation â recursively using top choice sets.

Given a collection of pairs
��
Si; xi

�	
i2N such that

�
Si; xi

�
2 Ci for all i 2 N , we assign

coalition�public-good pairs sequentially, starting from r. Let L0 = frg.
â (i) = (Sr; xr) for all i 2 Sr. Let L1 = fj 2 NnSr j /9h 2 NnSr s:t: � (r; h) < � (r; j)g.
â (i) =

�
Sj ; xj

�
for all i 2 Sj and all j 2 L1.
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.........................

Suppose â (i) is assigned for all i 2 Sj and all j 2 Lm�1.
Let Ŝ (m� 1) =

S
i2[m�1k=0 L

kSi and

Lm =
n
j 2 NnŜ (m� 1) j /9h 2 NnŜ (m� 1) s:t:� (r; h) < � (r; j)

o
:

â (i) =
�
Sj ; xj

�
for all i 2 Sj and all j 2 NnLm.

.........................

Since N is �nite, there is an integer �l � �k � 1 such that L�l+1 (r) = ?.
Note that every coalition that has been assigned is connected on G and adjacent

to another coalition. Let L =
S
k=0;:::;�lL

k (r). Thus,
�
Si
	
i2L is a partition of N . The

collection of pairs
��
Si; xi

�	
i2L constitute allocation â.

Lemma 2. vi (â (i)) � �vi for all i 2 N .

Proof. For all i 2 N , either i 2 L and â (i) =
�
Si; xi

�
2 Ci, or i 62 L, i 2 Sj for some

j 2 L, then, â (i) =
�
Sj ; xj

�
and vi

�
Sj ; xj

�
� �vi.

Next, we show that â does not involve the null public good �.

Lemma 3. For all i 2 N , â (i) 6= (S; �) for any S � N .

Proof. Suppose there is a coalition S that consumes �. Suppose there is a coalition

T that is adjacent to S and T consumes a public good x 6= �. We will show that every
T adjacent to S also consumes �.

Suppose ij is the linking edge of S and T , and i 2 S, j 2 T . First, suppose i has a
higher priority than j. Thus, T � N i and for all h 2 T , vh (T [ fig ; x) > vh (â (h)) � �vh.
By monotonicity, x 2 � (T [ fig). Therefore, (T [ fig ; x) 2 Di (as de�ned in Lemma
3). Since (S; �) = â (i), Lemma 3 implies vi (S; �) > �vi > vi (T [ fig ; x). This is a
contradiction.

Second, suppose j has a higher priority than i. Suppose g is the player with

the highest priority in T (this g is unique). Thus, (T; x) = (Sg; xg) 2 Cg. Then

vh (T [ S; x) > vh (T; x) � �vh for all h 2 T and vh (T [ S; x) > vh (S; �) � �vh for all

h 2 S. By monotonicity, x 2 � (T [ S). This means (T [ S; x) 2 Dg and (T; x) 62 Cg; a
contradiction.

Since every coalition is adjacent to another, all coalitions consume �. Note that

there exists S 2 2N such that � (S) 6= ?. So, there is x 2 � (N) and x 6= �. Moreover,
vi (N;x) > vi (â (i)) � �vi for all i 2 Nnr. This means (N;x) 2 Dr; a contradiction.
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So far, we have shown that â is well-de�ned. Next, we introduce some characterizing

properties of the core, which aid the proof.

A feasible allocation a satis�es the separation property on G if for any linking edge

ij of two adjacent coalitions on a tree G,

vh (a (i)) � vh (a (j)) for all h 2M (ij) ;

vh (a (j)) � vh (a (i)) for all h 2M (ji) ;

where M (ij) = fh 2 N j ij 62 p (i; h)g, and p (ij) is the path linking i and j on G.

Lemma 4. In a local public goods game with group-size e¤ect where preferences satisfy

cardinal connectedness on G and feasible sets are monotonic, allocation a is in the core

if (i) a is not blocked by any coalition that is connected on G, and (ii) a satis�es the

separation property on G.

Proof. First, the separation property leads to vi (a (i)) � vi (a (j)) for all i; j 2 N .
In allocation a, any two players i; j 2 N are linked on G by a unique path that passes

through adjacent coalitions. Let i0 = i, ik = j and p (i; j) = fi0i1; i1i2; :::; ik�1ikg. For
allm = 1; :::; k, either im�1 and im belong to the same coalition and a (im�1) = a (im), or

im�1im links two adjacent coalitions and i 2 M (im�1im), which means vi (a (im�1)) �
vi (a (im)). So, vi (a (i0)) � vi (a (ik)).

We will show that no coalition can block. Suppose S blocks with x and S is not

connected. Let T be the minimal connected set containing S. That is, S � T 2 2N and
there is no connected T 0 2 2N , T 0 6= T such that S � T 0 � T . For all h 2 TnS, we
can �nd i; j 2 S such that h is on the path linking i and j. Denote a (h) = (S0; y). We
have vi (S; x) > vi (a (i)) � vi (S0; y) and vj (S; x) > vj (a (j)) � vj (S0; y). Since the set
fk 2 N j uk (x)� uk (y) > f (jS0j)� f (jSj)g is connected, we have vh (S; x) > vh (S0; y)
as well. Also, since T is larger than S, vi (T; x) > vi (S; x) for all i 2 T . Moreover,
by monotonicity, x 2 � (T ). Thus, T is a connected coalition that blocks a. This is a
contradiction.

Finally, we show that â satis�es the above two properties.

Lemma 5. The allocation â is not blocked by any connected coalition on G, and

satis�es the separation property on G.
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Proof. (i) Suppose there is a pair (S; x) such that x 2 � (S), vi (S; x) > vi (â (i)) for
all i 2 S, and S is connected. Then, vi (S; x) > vi (â (i)) � vi

�
Si; xi

�
for all i 2 S.

Suppose g is the player of the highest priority in S; then S 2 Ng, (S; x) 2 Dg, and
vg (S; x) > vg (S

g; xg). This is a contradiction.

(ii) Since â consists of connected coalitions, there is a unique edge ij linking two

adjacent coalitions S and T . Suppose i 2 S, j 2 T , S consumes x, and T consumes y.
Without loss of generality, suppose i has a higher priority than j. First, y 2 � (T [ fig)
and (T [ fig ; y) 2 Di, so vi (â (i)) � vi (T [ fig ; y) > vi (â (j)) because of â (i) 2 Ci

and the group-size e¤ect. Second, suppose vj (â (i)) � vj (â (j)); then, vj (â (i)) � �vj .

By monotonicity, x 2 � (S [ fjg). Let g be the player of the highest priority in S.
Then, (S [ fjg ; x) 2 Dg which means (S; x) 62 Cg; a contradiction. So, vj (â (j)) >
vj (â (i)). Finally, suppose there is h 2 M (ij) such that vh (â (j)) > vh (â (i)). Then

j; h 2 fk 2 N j uk (y)� uk (x) > f (jSj)� f (jT j)g. Since i is on the path linking j; h,
the above set is not connected and this violates cardinal connectedness. So, there is

no h 2 M (ij) such that vh (â (j)) > vh (â (i)). By the same argument, there is no

h 2M (ji) such that vh (â (i)) > vh (â (j)).

And this concludes that â is in the core.

Proposition 1. When preferences satisfy cardinal connectedness on G and feasible

sets are monotonic, all core allocations in a local public goods game with group-size

e¤ect consist of connected coalitions.

Proof. First, we show that a core allocation a satis�es the separation property. Take

a linking edge ij of two coalitions. Suppose a (i) = (S; x) and a (j) = (T; y). Sup-

pose vj (S; x) � vj (T; y). Then, by group-size e¤ect, vj (S [ fjg ; x) > vj (T; y) and

vi (S [ fjg ; x) > vi (T; y). Moreover, by monotonicity, x 2 � (S [ fjg). This means that
a is not in the core. This is a contradiction. So, vj (T; y) > vj (S; x). By the same argu-

ment, vi (S; x) > vi (T; y). Suppose there is h 2 M (ij) such that vh (T; y) > vh (S; x),

then j; h 2 fk 2 N j uk (y)� uk (x) > f (jSj)� f (jT j)g. Since i is on the path link-
ing j; h, the above set is not connected, and this violates cardinal connectedness. So,

there is no h 2 M (ij) with vh (a (j)) > vh (a (i)). By the same argument, there is

no h 2 M (ji) with vh (a (i)) > vh (a (j)). Note that the separation property implies

vi (a (i)) � vi (a (j)) for all i; j 2 N as in the proof of Lemma 4.

Suppose there is a coalition S 2 �a which is not connected. Let T be the minimal
connected coalition containing S. Let i 2 TnS. Note that all i 2 TnS is on a path linking
two players in S. Then, by group-size e¤ect and the separation property, vj (T; xS) >
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vj (S; xS) � vj (a (i)) for all j 2 S and all i 2 TnS. Denote a (i) = (S0; y). Since the set
fk 2 N j uk (xS)� uk (y) > f (jS0j)� f (jSj)g is connected, vi (S; xS) > vi (a (i)) for all
i 2 TnS. Moreover, by group-size e¤ect, vi (T; xS) > vi (a (i)) for all i 2 TnS. Finally,
by monotonicity, xS 2 � (T ). So, T blocks with xS , in contradiction with a being in the
core.

3 Concluding Remarks

Drèze and Greenberg (1980) proposed a general form of utility functions that contains

public and private goods and coalition members. Subsequent works investigate public

good models and pure hedonic models separately. We bring these two features together

in a simple hedonic utility function and focus on the group-size e¤ect of public goods.

Players have preferences over coalition size as well. We derive characterizing proper-

ties for the core and obtain its nonemptiness. With group-size e¤ect, each coalition

is composed of players with similar preferences; they are connected on a tree graph.

Moreover, in a core allocation, every player prefers his own coalition to any other. Our

model incorporates positive group-size e¤ect with public goods in coalition formation.

The preference structure we use is based on cardinal preferences and has not been used

in earlier literature. We obtain stronger results than Demange (1994) and Kung (2006),

which consider a version of the game that exhibits no group-size e¤ect.

While positive group-size e¤ects have been studied in the coalition formation lit-

erature, the case of negative group-size e¤ects, namely, congestion, has attracted lit-

tle attention. Jackson and Nicolò (2004) and Bogomolnaia and Nicolò (2005) present

axiomatic studies of rules to assigning players to one and two public facilities with

congestion. Milchtaich (1996) and Konishi, Le Breton and Weber (1997c) investigate

congestion in strategic form games. The only article we found on endogenous coalitions

is Konishi, Le Breton and Weber (1997b), which shows the existence of free mobility

equilibrium, where no player deviates unilaterally by joining another jurisdiction or stay-

ing alone, for a local public goods economy with congestion. Such equilibrium exists

when all individuals have a common congestion function, utility is quasi-linear in the

private good, and local public goods are �nanced by a poll tax. Further results concern-

ing, for example, other equilibrium concepts, alternative taxation or abstract feasible

sets, and more general preferences, are still open research questions.
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