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Visualizing and Testing Convergence Between 
Two Income Distributions1 

 
 
Introduction 
 
 In a variety of applications, the evaluation of economic policies depends on 

whether two income distributions are becoming more alike, or converging.  Have the 

policies of the European Union led to convergence among the income distributions of 

member countries?  Have the policies of the United States made distributions of income 

by race more alike over time?  In the making and reporting of such evaluations, it would 

be useful to have a visual representation of convergence and a means for testing whether 

any movement is statistically significant.  We illustrate how to use the interdistributional 

Lorenz curves (ILCs) of Butler and McDonald (1987) to represent convergence visually, 

and show how to test for significant movements in these curves over time. 

The familiar Lorenz curve offers a visual representation of the dispersion of 

incomes within one distribution.  An ILC looks at inequality across two distributions.  

Corrado Gini (1916, 1959), who proposed the most famous index of inequality derived 

from the Lorenz curve, also proposed different ways to capture the degree of inequality 

across two distributions.  The first way measures the extent of overlapping between two 

distributions and the second way measures the difference between the concentrations of 

each distribution below a reference point in the other.  The ILC corresponds in one of its 

forms to the second approach, as Deutsch and Silber (1997) have demonstrated.  Deutsch 

and Silber (1999) survey the literature on inequality across distributions, giving attention 

                                                 
1 The authors are grateful for valuable comments from John Formby and other session participants at the 
Eastern Economic Association meetings (Washington, DC) and at the Department of Economics seminar, 
East Carolina University.  We take sole responsibility for any remaining shortcomings of the paper. 
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to the development of the concepts of the economic distance between two subgroups and 

of the economic advantage by one subgroup over another.  They also associate the ILCs 

of Butler and McDonald (1987) with the latter idea. 

Dagum (1980) defined economic distance ratios that measure the degree of 

economic affluence of a richer subgroup relative to a poorer one, but Shorrocks (1982) 

criticized their formulation.  Dagum (1987) proposed a reformulation, but Vinod (1985) 

pursued a new direction by defining measures of economic advantage by one subgroup 

over another.  Gastwirth (1985) questioned whether these measures were substantively 

different from others already available.  Butler and McDonald (1987) took a stochastic 

dominance approach to measuring economic advantage, which yields the ILCs that we 

use in this paper.2 

 The earlier approaches to interdistributional inequality collapsed all the 

information in the distributions into a summary measure (index number), as the Gini 

coefficient reduces the information in a Lorenz curve to a single number.  While such an 

approach is convenient, it also imposes value judgments that may be neither obvious nor 

widely accepted when made explicit.  Even Butler and McDonald (1987) collapse their 

ILCs into Peitra indices in their application.  This paper shows how to implement the 

dominance approach in two applications. 

 With suitable data, it is possible to use statistical inference procedures in 

comparisons of ILCs.  Our approach to statistical inference covers any incomplete 

                                                 
2  A related literature in sociology, starting with Yitzhaki and Lerman (1991) and continuing through 
Reardon, et. al. (2006), develops measures of income (and other forms of) stratification or segregation.  
Yitzhaki and Lerman (1991) investigate the relationship between inequality and stratification.  We compare 
our contribution to Reardon, et. al. (2006) later in the paper.  Like the literature on economic distance and 
economic advantage, studies of stratification or segregation rely primarily on index numbers rather than 
dominance comparisons. 
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moment, and it imposes no prior restrictions on the functional form of the underlying 

distribution.  We can test whether an ILC for a given year differs significantly from the 

45-degree line, and whether ILCs for two years differ significantly.  The latter enable us 

to determine whether ILCs are converging toward, or diverging from, the 45-degree line.  

Bishop, et. al. (2003) generate ILCs for one moment (income shares), but do not provide 

statistical inference procedures.  Bishop, et. al. (2004) offer procedures for comparisons 

of income shares within a given year, but no rigorous test for comparisons across years.  

This paper provides a more comprehensive presentation by including comparisons for 

any moment (population shares, income shares, etc.) as well as comparisons across 

groups and over time. 

The next section describes the construction of ILCs with an application to 

European convergence.  We then present the statistical inference procedures with an 

application to economic advantage by race in the United States.  The final section offers a 

summary of our main findings, along with concluding comments. 

 

The Construction of Interdistributional Lorenz Curves 

 As noted above, interdistributional inequality has roots in a proposal by Gini 

(1916) to measure the inequality across two distributions by the difference between the 

concentrations of each distribution below a reference point in the other.  In the spirit of a 

stochastic dominance approach, we alter this proposal to include more than one reference 

point and we select common reference points from the pooled distribution of incomes for 

the two groups.  We obtain the concentrations of the two distributions below the common 

reference points from partial moments of the distributions, as we show formally below.  
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Intuitively, the first partial moment yields the proportion of people with incomes below a 

given reference point, and the second partial moment yields the proportion of total 

income that falls below a given reference point. 

 To perform a comparison of inequality across two distributions, we must first 

partition the population by some socio-economic characteristic (such as region, race, or 

gender), and compare the “degree of affluence” (Dagum, 1980) of one subgroup relative 

to another.  ILCs plot partial moments for each subgroup at the common reference points, 

or “income targets”.  We can construct ILCs for each partial moment, but we focus on the 

first and second moments, that is, the population and income shares for each group below 

the set of common targets, respectively.  If the moments are equal at each target, the ILC 

lies on the 45-degree line.  If the moments are not equal, and we assign the group with 

larger income shares to the horizontal axis, the ILC lies below the 45-degree line, like a 

Lorenz curve. 

We begin by formally defining the concepts underlying ILCs.  Let x be a 

continuous income variable with a probability density .  Let  denote the 

cumulative distribution function (CDF) of x, and let the inverse CDF of x be written 

.  Without loss of generality, let  define the target incomes.  

When  p = 0.1, 0.2, …, 1.0, the target incomes become the decile order statistics.  Let 

 be an indicator variable such that  if 
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where E is the expectation operator.  For 0=h  the partial moment reduces to )(τF , 

which gives the cumulative population share with incomes below the income target τ.   

Following Butler and McDonald (1987), we define the normalized incomplete moment of 

x for τ≤x  as 

 
(2)  ,  )(/),,(),,( hxExhMxh ττφ =

 
 For 1=h , the normalized incomplete moment gives Lorenz ordinates, ),1,( xτφ =

);( xL τ , which becomes clear if we write the Lorenz curve in the form proposed by 

Bishop, Chow, and Formby (1994),  

 

(3)   [ ] )(/)()();(
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where is the mean of x.  We can interpret )(xE );( xL τ  as the proportion of total 

income received by individuals with incomes x ≤ τ , the target income. 

 To represent population subgroups, let incomes be classified by K mutually 

exclusive groups {  and define an indicator variable  such that  

if  and  otherwise.  This indicator variable allows us to rewrite (3), 

because 

}Kkk ,..,2,1, =Φ

0=x

x
kG 1=x

kG

kx Φ∈ kG

)(/( x
k

x GEGxIτ )()1 xx
k

x
k IxGE τ==E  and )1( =x

kGxE )(/( x
kGEE= )x

kxG .  

Bishop, Chow, and Zeager (2002) use this approach to show that:  

 
THEOREM 1.  ),( xL τ  can be decomposed by  for  k = 1, 2, …, K  in that  ),( )(kxL τ
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where ( ) ( )k x
kP E x G E x⎡ ⎤= ⋅⎣ ⎦ .   We can interpret  as the income share of subgroup 

k with respect to the income variable x. 

( )kP

 We show here that similar reasoning can be applied to cases in which .  

That is, expression (2) can also be decomposed by population group k (k = 1, 2, …, K): 

1≠h
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Since  is expressed as the expected value of a function of the random income 

times the indicator variables for targets and population groups, we can easily determine 

the property of its decomposition from the overall 

),,( )(kxhτφ

),,( xhτφ as follows: 

THEOREM 2.  ),,( xhτφ  can be decomposed by  for  k = 1, 2, …, K  in 
that  
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where ( ) ( ) (k x h

kw E x G E x⎡ ⎤= ⋅⎣ ⎦ )h .  We can interpret  as the h-th moment for 

subgroup k with respect with the income variable x. 

( )kw

  Butler and McDonald (1987) use ),,( xhτφ  to define two “natural” ILCs for 

population subgroups.  For ease of presentation, consider two population subgroups, so 

that K = 2.  The first natural ILC is obtained by plotting  against .  

With h = 0, we are plotting population (instead of income) shares below common income 

targets in both groups.  If the population shares are equal across the groups,  = 

 at each target income (τ), and the ILC corresponds to the 45-degree line.  On 

the other hand, if one group (say, k = 1) is “disadvantaged” [  >  at 

),0,( )1(xτφ

,0,( xτφ

),0,( )2(xτφ

),0,( )1(xτφ

),0,( )2(xτφ

),0,( )2(xτφ

))1(

6 
 



each τ], and that group is assigned to the horizontal axis, then the ILC lies below the 45-

degree line, like the Lorenz curve.  In those cases for which a group is disadvantaged at 

some income targets and advantaged at others, the ILC crosses the 45-degree line.  The 

second natural ILC is obtained by setting h = 1 (yielding income, instead of population 

shares), plotting  against , and interpreting it in similar fashion. ),1,( )1(xτφ ),1,( )2(xτφ

 Normatively, ILC dominance implies that a subgroup of the population with 

either a larger share of its people or a larger share of its incomes below a give income 

level is “disadvantaged” relative to the rest of the population.  Defining the reference 

points as income levels, instead of percentages of the population (as with Lorenz curves, 

which depend totally on relative income comparisons), makes it possible to appeal to the 

“more is better” principle that has very broad support among economists.  Further, we 

note that a mean-preserving transformation within any sub-group does not reduce its 

“economic disadvantage.”  

Figure 1 illustrates a hypothetical ILC for two population subgroups, A and B.  

Points on the ILC are generated as follows.  We select the order statistics (upper income 

cutoffs) for the deciles in the distribution of pooled incomes (across subgroups) as target 

incomes and estimate each ILC at these reference points.  For each target income, we plot 

the corresponding shares for the subgroups A and B on the vertical and horizontal axes, 

respectively.  Therefore, the B-A difference (economic advantage) will be the vertical 

distance between the 45-degree line and the ILC.   

 We illustrate actual ILCs (for the case h = 1) with Luxembourg Income Study 

(LIS) data on European countries.  The purpose of these illustrations is to show the three 

possible outcomes that one can obtain from comparisons of ILCs:  dominance, equality, 
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and crossing.  The LIS provides micro data on per capita, disposable family income for 

Germany in 1989 and 2000, for Spain in 1990 and 2000, and for Italy in 1991 and 2000, 

given in terms of each country’s currency.3  To make the income levels comparable 

across countries and consistent over time, we rescale the LIS incomes using the real, per 

capita GDP of the countries from the Penn World Tables in 1990 (Spain = $12,525, Italy 

= $16,817, and Germany = $16,947) and 2000 (Spain = $19,037, Italy = $22,867, and 

Germany = $23,917).  Even with the rescaling, the LIS micro data determine the 

dispersion of incomes within each country. 

 Figure 2 plots the income shares for Spain against those for Italy, with Spain 

measured on the horizontal axis and Italy on the vertical axis.  ILCs for the earlier and 

later years appear on the same diagram.  Given that the ILCs for each year lie below the 

45-degree line, the income shares below each income target are smaller for Italy than for 

Spain, so Spain is clearly the disadvantaged group in both years.  The 2000 ILC also lies 

everywhere above the ILC for the earlier years, so it appears that a convergence toward 

the 45-degree line occurred during the 1990s.  That is, the income distributions for the 

two countries apparently became more alike. 

 Figure 3 shows the corresponding comparison for Germany and Spain, with 

Germany measured on the vertical axis.  As in the previous comparison, the initial ILC 

lies everywhere below the 45-degree line, indicating an economic advantage for Germany 

over Spain.  Yet the 2000 ILC lies at or above the ILC for the earlier years, which implies 

that Germany’s advantage diminished during the 1990s.  Here the picture is more subtle, 

however, than in the previous comparison.  At the bottom of the distributions we see no 

                                                 
3 The LIS database supports a limited number of software applications and, unlike most databases, is not 
“downloadable.”  Given these limitations, we defer our presentation of statistical inference procedures to 
the following section. 
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change, whereas at the top of the distributions the economic advantage seems to have 

vanished entirely. 

 Figure 4 shows the remaining comparison of Italy and Germany, with Italy 

measured on the horizontal axis and Germany on the vertical axis.  In contrast to the 

previous comparisons, the ILCs both cross the 45-degree line, so we do not find a clear 

economic advantage.  Germany may have a slight advantage at the bottom of the income 

distributions and Italy may have a slight advantage at the top.  Further evaluation of these 

“slight advantages” observed in Figure 4 calls for more appropriate statistical inference 

procedures, which we present in the next section. 

 

Statistical Inference Procedures 

To develop an inference test for ILCs, we select a set of m income classes or 

target income levels, denoted by { }mii ,...,2,1=τ , to which there correspond K sets of 

ILC ordinates { ⎮i = 1, 2, …, m, and k = 1,2,…,K}.  This approach 

allows us to relax the assumption of a continuous CDF, as the Lorenz and concentration 

ordinates correspond to a set of target incomes instead of a set of quantile functions.  

Empirically, the targets are selected as a set of sample quantiles ( ) of the income 

variable x, i.e., = 0.1,   = 0.2, …,  = 0.9, which in our application are sample 

deciles.   Then, if we draw a random sample of size N from the population, and if the 

CDF of x is strictly monotonic, has the property of strong or almost sure consistency 

(Rao 1965, 335). 

( )( , , )k
i h xφ τ

1p 2p

pξ̂

9p

pξ̂
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Let ( 1x , 2x ,…, Nx ) be a set of identical and independently distributed (i.i.d.) 

random sample incomes drawn from the population density f(x).  According to equation 

(5), the decomposed interdistributional Lorenz ordinates can be estimated as   

(7)  ( ) 1 1
,( )

1 1

ˆ ˆ( , , ) ( ) ( )j j j

i

N N
x x xh k h

i k i j k j k
j j

h x N x G I N x Gτφ φ τ − −

= =

h⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑  

Let )' = …,11 ( )
( ,

x mK
Φ = Φ 2 ,..., mKΦ Φ ( 1,(1)( ,hφ ,(1)

h
mφ ), ( 1,(2)

hφ ,…,  ),…, (,(2)
h
mφ 1,( )

h
Kφ ,…, ),( ) )

h
m Kφ

′
 

be a vector of mK decomposed ILC ordinates.  The estimates of the vector Φ  can be 

written as )' = 1
ˆ ˆ( ,Φ 2

ˆ ,Φ
1 ( )x mK
Φ = ˆ

mKΦ..., ( 1,(1)
ˆ( ,hφ …, ,(1)

ˆh
mφ ), ( 1,(2)

hφ̂ ,…,  ),…, (,(2)
ˆh
mφ 1,( )

hˆ
Kφ ,…,

 .  From equations (5) through (7), the decomposed ILC ordinates are functions 

of 

)) )m K

′

(
i

,(
ˆhφ

)x x h
kE xG Iτ⎡ ⎤⎣ ⎦  and ( )x h ⎤⎦kG⎡⎣E x  for i = 1,2, …, m and k = 1,2,…, K.  To derive the 

asymptotic sampling distribution of Φ , it is necessary to determine the sampling 

distributions of these estimates, ( )
i

x x h
kxG Iτ ,and ( )x h

kxG  for i = 1,2, …, m and k = 

1,2,…, K. 

We define the vector of ( 1K m )+ parameter estimators as  

1 [ ( 1)]x K m+
Ψ = 1 2 ( 1)( , ,..., ) 'K mψ ψ ψ +  = (( 11( )x x hxG Iτ ,…, 1( )

m

x x hxG Iτ , )1( )x hxG , …, ( 1
( )x x h

KxG Iτ , 

…, ( )
m

x x h
KxG Iτ , ))( )x h

KxG
′
. 

  
THEOREM 3.   Suppose 1 2( , ,..., )Nx x x are i.i.d. random samples of a size of N drawn 

from the population density function f(x).  Given a set of predefined target incomes 
{ } 1mii ,...,3,2,1=τ  such that 0 < τ < …< mτ < ∞, and a population decomposed into 

K mutually exclusive groups, the vector )(ΨN Ψ−  converges in probability to a 
K(m+1) variate normal distribution with mean zero and a variance-covariance 

( )ji ,σ=Ω , where 
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where Cov denotes the covariance measure.   
 
PROOF.  Given that the income samples x and the indicator variables G and I are i.i.d., 

the h-th power function i.i.d. random variable is also i.i.d.  From direct calculations, it 

can be shown that iiE ψψ =)( , i = 1,2,…, ( 1K m )+ .  Then, for large samples, the 

Kolmogorov Strong Law of Large Numbers implies that iψ  converges in probability to 

iψ .  From the Lindeberg-Levy Central Limit Theorem, we obtain the result that 

)( iiN ψψ − converges in distribution to .  Finally, from the Cramer-Wald 

Theorem, it can be shown that 

),0( 2
iN σ

)( −ΨN Ψ converges to a multivariate normal 

distribution, ),0( ΩN .  Q.E.D. 

Theorem 3 allows us to analyze the sampling distribution of the estimated 

decomposed ILC ordinates.  Applying Rao’s (1965) theorem on the limiting distribution 

of differentiable functions of random variables, the limiting distribution of is also 

multivariate normal.  We summarize this result in the following theorem.  

Φ̂

 
THEOREM 4. Under the conditions of Theorem 3, the vector of estimated decomposed 

ILC ordinates )' = 11 ( )
ˆ ˆ( ,

x mK
Φ = Φ 2

ˆ ˆ,..., mKΦ Φ ( 1,(1)
ˆ( ,hφ …, ,(1)

ˆh
mφ ), ( 1,(2)

ˆhφ ,…,  ),…, (,(2)
ˆh
mφ 1,( )

ˆhφ K
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,…, is asymptotically normal in that ),( )
ˆ )h
m Kφ

′ ˆ(N )Φ −Φ  has a limiting Km -variate 

normal distribution with mean zero and covariance matrix )(' ijvJJV =Ω= , where Ω is 

defined in Theorem 3 and J is defined as =
)2()2( kKmxKm

J
+

/j jδ δ
Ψ=Ψ

⎡ ⎤Φ Ψ⎣ ⎦ .   

 
 
Then, the covariance estimate of the k-th and l-th estimated decomposed ILC ordinates, 
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One can perform a goodness-of-fit test for a marginal change in the subgroup 

moments.  That is, one can test for differences in the decomposed moments for subgroup 

1 (e.g., 
1

ˆ
mx
ψ = ( - ,…, -  )' ).   Under the null hypothesis that  )1(

1L̂ )1(
1Ĉ )1(ˆ
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appropriate test statistic is  
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From Theorem 3, the c -statistic is also asymptotically distributed as a (central) chi-

squared variate with m-degrees of freedom. 

Alternatively, one could test a joint hypothesis such that { :0 jH jψ = -)1(
jL

},...,10)1( mjC j == .  Then the appropriate test statistics are  

(9)      j =Z
N

N
jj

j

/ˆ
ˆ

Θ

ψ
, for 1,2,...,j m= . 

Let jmj
ZZ

≤≤
=

1

* max  be the largest absolute value of the test statistics.  We then apply the 

Sidak (1967) probability inequality and the results in Hochberg (1974) and Richmond 

(1982) to control the size of the multiple sub-hypothesis tests.     

THEOREM 5.  Let  be a vector of m test statistics corresponding to (9).  
From Theorem 4, the distribution of vector Z converges asymptotically to an m-variate 
normal distribution.  Under the null hypothesis, the confidence interval of at least 

( ',...,1 mZZZ = )

)100 1( −α  percent for the extreme statistic, , can be defined as: Z*( )τ
 
(10)   ,       Z SMM m*( ) ( ; ; )τ α± ∞

where SMM m( ; ; )α ∞  is the asymptotic critical value of the α-point of the Studentized 
Maximum Modulus (SMM) distribution (Stoline and Ury 1979) with parameter m and ∞ 
degrees of freedom. 
 
Further, let , and    .  The asymptotic joint confidence interval 

of at least 100

jmj
ZZ

≤≤

+ =
1

* max

1( )−

jmj
ZZ

≤≤

− =
1

* min

α percent is: 

(11)   .    − ∞ ≤ ≤ ≤− +SMM m Z Z SMM m( ; ; ) ... ( ; ; )* *α ∞α

We emphasize that test statistic  in (8) illustrates only one possibility, and that the 

results of Theorem 3 and the SMM approach for controlling the joint test size can be 

applied to a wide range of hypothesis tests for subgroup income distribution comparisons.  

We also note that the proposed methodology employs a finite-target testing approach, so 

c
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it may have low power in detecting tail inequality for fat-tail distributions.  Thus, the 

power of the tests is an issue for further research. 

 To illustrate our statistical inference procedures, we apply them to incomes of 

whites and nonwhites in the CPS.  We estimate ILCs at deciles for these groups and test 

whether they differ from the 45-degree line in a particular year and from each other 

across years, using data from the CPS in 1977, 1987, 1992, 1997, and 2002.  We avoid 

comparisons during 1993-95, when the CPS made substantial changes in the top-coding 

of incomes in the public-use sample (Burkhauser, et. al., 2004).  Our sample includes 

only primary families (excluding single-person families and unrelated individuals).  We 

correct for inflation to allow pooling of incomes across time, but we make no adjustments 

for the size and composition of the family.  

 Table 1 presents the mean incomes of whites and nonwhites, adjusted for 

inflation, over the years we consider.  Before the change in top-coding (1976-91), the 

mean incomes for both population subgroups increased slowly, 5.45 percent for whites 

and 3.86 percent for nonwhites.  After the change in top-coding (1996-2001), the mean 

incomes increased much more rapidly, 13.54 percent for whites and 11.37 for nonwhites.  

By construction, the ILCs are sensitive to changes in both the level and dispersion of the 

distributions by population subgroup. 

 Table 2 presents statistical tests for white-nonwhite ILCs, based on population 

shares (h = 0) in 1976 and 1991, before the change in top-coding for the CPS public-use 

samples.  Column (1) shows the target incomes, which are decile order statistics for the 

distribution of incomes pooled across subgroup and time.  Columns (2) and (3) report the 

estimated population shares in 1976 for whites and nonwhites at or below each target 
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income, with standard errors in parentheses.  Column (4) gives differences in population 

shares by race.  Columns (5)–(7) give the corresponding information for 1991.  Column 

(8) reports the “difference in differences” over time, while column (9) provides the test 

statistics, Zj, j=1,2,…,10, from equation (9) in section 2.  We also give the chi-squared 

test statistic c from equation (8) in section 2 in the bottom row of Table 2.  

An inspection of columns (4) and (7) of Table 2 reveals that the estimated 

differences between the 45-degree line and the 1976 and 1991 ILCs are large relative to 

their standard errors.  The chi-squared statistics in both columns are highly significant as 

well.  Both results indicate that whites have an economic advantage over nonwhites for 

these years.  Column (8) alerts us to a possible crossing of ILCs for 1976 and 1991, 

because the difference in differences yields both negative and positive signs.  The SMM 

test statistics in column (9), however, do not support a crossing, because no positive test 

statistic is significant at the ten-percent level.  Hence, we find that the white-nonwhite 

ILC (for population shares) shifted away from the 45-degree line during 1976-91, 

creating a widening advantage for whites over nonwhites during the period. 

 To explore why the advantage of whites over nonwhites (in population shares) 

changed over time, consider the rows of Table 2 in more detail.  Recall (Table 1) that 

mean incomes rose ─ albeit slowly ─ during 1976-91 and grew slightly faster for whites 

than nonwhites.  Nevertheless, Table 2 reveals that population shares at or below fixed 

target incomes rose in the bottom four deciles for whites and nonwhites, which mean that 

incomes were falling at the bottom of the distribution.  Population shares declined in the 

upper six deciles for whites and nonwhites, indicating rising incomes (as reflected in the 

rising means).  These patterns show a widening dispersion of incomes in both subgroups.  
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The changes in both the level and dispersion of incomes in each subgroup influence the 

comparisons of ILCs over time, because they affect the population shares at or below 

fixed incomes. 

 Table 3 shows the statistical tests for the white-nonwhite ILCs, based on income 

shares (h = 1) instead of population shares in 1976 and 1991.  Once again, the nonwhite-

white differences in columns (4) and (7) are large relative to their standard errors and the 

chi-squared statistics in these columns are highly significant, which implies an advantage 

for whites over nonwhites using income shares.  In column (8), a few positive “difference 

in differences” are statistically significant, but the negative one (in the top decile) is not, 

so the ILC for income shares converged toward the 45-degree line, unlike the population-

share ILC in Table 3.  This finding is reinforced by the chi-squared statistic in column 

(8), which is statistically significant.4 

 Table 4 gives a summary of the ILC comparisons.  We show comparisons for 

population shares (h = 0) and income shares (h = 1), and for different periods.  The first 

row gives the results for a period (1976-91) in which the ILC based on population shares 

is diverging, while the ILC based on income shares is converging.  The second row gives 

the results for a period (1986-91) that illustrates no significant differences between ILCs, 

using population shares or income shares.  The last row presents a period (1996-2001) in 

which we find a statistically significant crossing using population shares, but converging 

ILCs using income shares.  In all cases except the crossing, the chi-squared statistic and 

                                                 
4 Reardon, et. al. (2006), who study urban income segregation, plot the inverse of our decomposed Lorenz 
ordinates (our Table 3; their Figures 1 and 2) for various census tracts in San Francisco and Detroit.  In 
contrast to the ILC, whose analog would be to compare two Census tracts, they compare the individual 
Census tracts to the city average.  Their Figures 3 and 4 are similar to a plot of our white-nonwhite 
differences (Table 3, column 3) for all Census tracts.  Given the large number of tracts in each city, they 
follow an index number approach to presenting their findings.  With fewer comparisons to make, we follow 
the dominance approach, which avoids the ambiguities arising from a multiplicity of index numbers. 
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the dominance comparisons yield identical conclusions, but the chi-squared statistic is 

misleading in the case of a crossing. 

 As Table 4 shows, the techniques presented here allow researchers to identify 

movements toward greater interdistributional equality or inequality between two groups 

by testing for convergence or divergence in ILCs over time.  Once such movements have 

been identified, it would be natural to seek explanations for them, but that is beyond the 

scope of this paper, and must be left for future research.  

 

Conclusions 

 We have demonstrated that the ILCs of Butler and McDonald (1987) offer a 

convenient visual representation of convergence or divergence between distributions of 

income over time, and we have proposed methods for testing whether the movements are 

statistically significant.  These tests apply to ILCs based on population shares and income 

shares – or any incomplete moment of the distributions – and impose no prior restrictions 

on the functional form of the underlying distribution. 

We have illustrated these methods with applications to LIS data on income 

distributions in Spain, Italy, and Germany in the 1990s, and to CPS data on distributions 

of income for whites and nonwhites from the 1970s through 2001.  We find convergence 

between Spain and Italy, and Spain and Germany, but not between Italy and Germany.  In 

comparisons of income distributions by race in the United States, the findings depend on 

the time frame and on the choice of population or income shares for constructing the 

ILCs. 



                                                                                                                         



Figure 2 
Convergence between Spain and Italy? 
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Figure 3 
Convergence between Spain and Germany? 

ILCs for 1990 and 2000 
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Figure 4 
Convergence between Italy and Germany? 

ILCs for 1990 and 2000 
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                            Table 1  
                             Mean Incomes for Whites and Nonwhites 

  
Year White Nonwhite 

   
1976 53,393 35,483 

  (183.0) (426.0) 
1986 57,193 37,736 

 (217.0) (497.0) 
1991 56,303 36,853 

  (215.0) (502.0) 
1996 61,646 40,886 

  (335.0) (776.0) 
2001 69,995 45,535 

  (301.0) (541.0) 
  

Note:  All incomes are expressed in 2001 dollars.  The numbers in 
parentheses are standard errors.  

  

                                                                                                             



Table 2 
 Interdistributional Lorenz Ordinates (Population Shares) for Nonwhite vs White:  1976 and 1991 

    1976     1991              Converging ILCs?

Target White Nonwhite 
Nonwhite-

White White Nonwhite Nonwhite-White Difference in Test 
Income Share Share Difference Share Share Difference Differences Statistic 

(1) (2) (3) (4)=(3)-(2) (5) (6) (7)=(6)-(5) 8=(4)-(7) (9) 
  0.0768 0.2352 0.1584 0.0945 0.2811 0.1865 -0.0281   

14,728 (0.0014) (0.0070) (0.0071) (0.0015) (0.0072) (0.0073) (0.0102) -2.76 
  0.1767 0.4083 0.2317 0.1901 0.4145 0.2244 -0.0073   

23,058 (0.0020) (0.0081) (0.0083) (0.0021) (0.0078) (0.0081) (0.0112) 0.63 
  0.2767 0.5277 0.2510 0.2926 0.5290 0.2364 0.0146   

31,025 (0.0023) (0.0082) (0.0085) (0.0024) (0.0079) (0.0083) (0.0112) 1.23 
  0.3878 0.6290 0.2412 0.4000 0.6313 0.2314 0.0099   

39,042 (0.0025) (0.0079) (0.0083) (0.0026) (0.0077) (0.0081) (0.0112) 0.85 
  0.5038 0.7355 0.2317 0.4995 0.7139 0.2143 0.0173   

47,808 (0.0026) (0.0072) (0.0077) (0.0026) (0.0072) (0.0077) (0.0108) 1.59 
  0.6245 0.8191 0.1946 0.6010 0.7931 0.1921 0.0025   

56,798 (0.0025) (0.0063) (0.0068) (0.0026) (0.0065) (0.0069) (0.0097) 0.26 
  0.7390 0.8901 0.1510 0.7006 0.8592 0.1586 -0.0076   

67,814 (0.0023) (0.0051) 0.0000  (0.0024) (0.0055) (0.0060) (0.0082) -0.92 
  0.8455 0.9438 0.0983 0.8005 0.9137 0.1131 -0.0148   

82,377 (0.0019) (0.0038) (0.0042) (0.0021) (0.0045) 0.0049  (0.0065) -2.28 
  0.9353 0.9847 0.0494 0.9031 0.9648 0.0617 -0.0123   

108,398 (0.0013) (0.0020) (0.0024) (0.0016) (0.0029) (0.0033) (0.0041) -3.02 
Chi-

Square             
Statistic     1456.7      1267.2 40.0   

Note: The target incomes are the decile order statistics for the distribution pooled across years and population subgroups expressed 
in 2001 dollars.  numbers in parenthesis are standard errors.  The test statistic for converging ILCs is a student maximum modulus 
(SMM).  The critical values of the smm for the 5-percent and 10-percent levels are 2.76 and 2.52, respectively. 

                                                                                                                         



Table 3 
Interdistributional Lorenz Ordinates (Income Shares) for Nonwhite vs White:  1976 and 1991 

    1976     1991              Converging ILCs?

Target White Nonwhite 
Nonwhite-

White White Nonwhite Nonwhite-White Difference in Test 
Income Share Share Difference Share Share Difference Differences Statistic 

(1) (2) (3) (4)=(3)-(2) (5) (6) (7)=(6)-(5) 8=(4)-(7) (9) 
  0.0139 0.0634 0.0495 0.0150 0.0608 0.0458 0.0037   

14,728 (0.0003) (0.0025) (0.0025) (0.0003) (0.0023) (0.0023) (0.0034) 1.09 
  0.0489 0.1538 0.1049 0.0470 0.1273 0.0802 0.0246    

23,058 (0.0007) (0.0047) (0.0048) (0.0006) (0.0041) (0.0041) (0.0063) 3.91 
  0.0992 0.2446 0.1454 0.0955 0.2100 0.1146 0.0309   

31,025 (0.0011) (0.0066) (0.0067) (0.0011) (0.0060) (0.0061) (0.0090) 3.42 
  0.1717 0.3416 0.1744 0.1600 0.3029 0.1429 0.0315   

39,042 (0.0016) (0.0083) (0.0085) (0.0016) (0.0028) (0.0029) (0.0116) 2.71 
  0.2613 0.4728 0.2115 0.2353 0.4013 0.1660 0.0456   

47,808 (0.0022) (0.0099) (0.0101) (0.0021) (0.0093) (0.0095) (0.0139) 3.27 
  0.3762 0.5917 0.2156 0.3268 0.5105 0.1837 0.0319   

56,798 (0.0027) (0.0108) (0.0111) (0.0026) (0.0106) (0.0109) (0.0156) 2.04 
  0.5058 0.7135 0.2077 0.4335 0.6231 0.1897 0.0180    

67,814 (0.0031) (0.0110) (0.0114) (0.0030) (0.0114) (0.0118) (0.0164) 1.10 
  0.6549 0.8232 0.1683 0.3649 0.7308 0.1659 0.0024    

82,377 (0.0034) (0.0103) (0.0108) (0.0034) (0.0115) (0.0120) (0.0162) 0.15 
  0.8140 0.8365 0.1225 0.7341 0.8628 0.1288 0.0063    

108,398 (0.0032) (0.0076) (0.0083) (0.0036) (0.0103) (0.0109) (0.0127) -0.45 
Chi-

Square             
Statistic     746.8      564.2 27.0   

Note: The target incomes are the decile order statistics for the distribution pooled across years and population subgroups expressed 
in 2001 dollars.  numbers in parenthesis are standard errors.  The test statistic for converging ILCs is a student maximum modulus 
(SMM).  The critical values of the smm for the 5-percent and 10-percent levels are 2.76 and 2.52, respectively. 

                                                                                                                         



                        Table 4
                                      Summary of ILC Comparisons 

  Population Shares Income Shares 
Period (h = 0) (h = 1) 

      
  Diverging Converging 

1976-1991 (40.0) (27.0) 
  No Difference No Difference 

1986-1991 (5.9) (3.4) 
  Crossing Converging 

1996-2001 (48.4) (45.1) 

Note:  The numbers in parentheses are chi-squared statistics.  The critical 
value for the chi-squared statistic is 16.9. 
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	where .   We can interpret  as the income share of subgroup k with respect to the income variable x.

