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I. Introduction 

Airline flight delays, like any other kind of waiting for service, may negatively affect 

customers (passengers) in many ways.  Delays can increase passengers’ anger, uncertainty and 

dissatisfaction with the service provided (Taylor 1994). In December 2007, U.S. airline delays 

reached their highest monthly level since the Bureau of Transportation Statistics began tracking 

flight delays in 1995 as 32 percent of domestic flights arrived late. Furthermore in 2007, U.S. 

airline delays reached their highest annual level since 1999, as 24 percent of all domestic flights 

arrived late. To address this problem, the FAA recently threatened to fine airlines with persistent 

delays.1 

In ranking flight delays among airlines and airports, the sole (and official) measure used by 

the U.S. Department of Transportation is the proportion of flights delayed (i.e.,  a flight is 

counted as “delayed” if it arrives fifteen or more minutes behind schedule).  This DOT “flight-

counting” measure of delays has been adopted by the industry and is widely reported by the 

media as the de-facto standard to measure on-time performance.  In fact, the DOT’s Air Travel 

Consumer Report provides a monthly ranking of airlines based on the percentage of on-time 

arrivals.2    

One drawback with a counting measure of delays is that the duration of delay plays no role in 

the calculation (e.g., no distinction is made between flights delayed sixteen minutes vs. sixty 

minutes).   An implication of using a counting measure for delays is that airlines have no 

incentive to shorten flight delays for flights that are already considered “delayed”.  This criticism 

of the “flight-counting” measure is akin to that of the official poverty measure – the headcount 

ratio.  With the headcount ratio, the overall poverty of a society is calculated as the proportion of 

                                                 
1 For example, see http://www.aviation.com/business/071024-ap-fines-for-delays.html. 
2 The Air Travel Consumer Report is available online at: http://airconsumer.ost.dot.gov/  
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the people below the poverty line; a person whose income is just below the poverty line and a 

person who has no income at all are treated the same by the measure. 

Amartya Sen (1976) pointed out the problems with the headcount measure of poverty and 

laid the foundation for poverty measurement.  Besides demanding that a poverty measure reflect 

the incomes of the people below the poverty line, Sen forcefully argued that a poverty measure 

should also be sensitive to the distribution of income among the poor.  In the three decades 

following Sen’s seminal contribution, the notion of poverty and the issues involved in its 

measurement have been thoroughly investigated and the literature today provides a 

comprehensive guideline for poverty measurement.  

In this paper, we adopt the approach pioneered in poverty measurement to examine the 

measurement of flight delays.  The similarity between these two measurements suggests that 

much of the calibrations crafted to measure poverty can be applied when measuring flight delays.  

For example, in the context of measuring flight delays, the distribution-sensitivity of poverty 

measurement requires that an aggregate measure of flight delays also be sensitive to the 

distribution of the time delayed among the passengers; the flight delay becomes more severe if 

some passengers experience prolonged delays compared to delays that are more evenly 

distributed among all delayed passengers.  

The literature on airline delays has recognized the statistical shortcomings of the fifteen 

minute delay standard, hence airline researchers have used a variety of flight delay measures 

including: counting the number of flight delays (Brueckner 2002), calculating the minutes of 

travel time on a route in excess of the monthly minimum (Mayer and Sinai 2003), determining 

the minutes of arrival (Mazzeo 2003) and departure delay (Rupp 2008).  Moreover, Bratu and 

Barnhart (2006) show that when factors such as flight cancellations and missed connections are 

factored in, actual passenger waiting times are nearly two-thirds higher than minutes of aircraft 

arrival delay (the DOT reported measure). The unique contribution of our paper is that we derive 

a delay measure based on passenger preferences, not simply based on a measure’s statistical 

properties. Of course, any measure of airline delays must assert a passenger preference ordering; 

we model passengers as preferring fewer, shorter, and more equal delay times.   

The paper is organized as follows.  Section II provides the axiomatic framework for 

measuring aggregate flight delays.  We examine the notion of flight delay and propose a set of 

axioms governing the measurement of flight delays for a group of airline (or airport) passengers.  
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We then propose a class of decomposable measures of flight delays as well as a partial 

dominance condition for the rankings of flight delays.  In Section III, we apply the proposed 

measures and dominance condition to measure and rank flight delays of two major U.S. airlines.  

Section IV provides some extensions and discussion. 

 

II. Measuring Aggregate Flight Delays 

 

Consider a group of N passengers with different delay times xi, i = 1, 2, …, n.  Here the group 

can be viewed as all passengers of an airline or an airport.  Clearly, not all passengers have their 

flights delayed; some may even depart and arrive early.  In this sense, xi can be positive 

(delayed), negative (arrived early), or zero (on time).  For the group as a whole, we denote 

1 2( , ,..., )= NX x x x  as the flight-delay profile of the group. 

For the passengers as a group, we want to construct a summary measure of delays so that 

comparisons and rankings among different groups of passengers are feasible.  To this end, we 

define a measure of flight delays as a single value function, 

1 2( , ,..., )= ND D x x x  

which reflects the aggregate level of flight delays for the group as a whole.  To characterize ( )�D , 

we follow the axiomatic approach that Sen (1976) pioneered in poverty measurement.  In this 

approach, we first lay out the basic ideal properties that an index of flight delays should possess 

and then generate satisfactory flight-delay measures within the boundaries of the axioms. 

II.1. Axioms on ( )�D  

We first require that the flight-delay index be a continuous function of all flight-delay times.  

Continuity: ( )�D is continuous function of 1 2( , ,..., )= NX x x x . 

The second axiom is the anonymity axiom which states that the identities of the passengers 

play no role in the computation of ( )�D : if two populations have  the same flight-delay profile 

then the two groups should have the same level of flight delays.  Profiles 1 2( , ,..., )= NX x x x  and 

1 2( , ,..., )= NY y y y  are the same if =Y PX  for some permutation matrix P.  A permutation 

matrix is a square matrix with elements zero and one where each row and column sums to one.  

Formally, the anonymity axiom is stated as follows: 

Anonymity: ( ) ( )=D Y D X if =Y PX for some permutation matrix P. 
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The next axiom is the counterpart of the focus axiom in poverty measurement.  In the context 

of flight-delay measurement, the focus axiom states that an index of flight delays is only 

concerned with delays, hence arriving early by twenty minutes or by two hours make no 

difference for the calculation of ( )�D .  That is, recalling that early arrival means 0<ix , in the 

following statement, an increase in the early arrival time ix  by some ε i  to ε= −i i iy x has no 

effect on ( )�D . 

Focus: ( ) ( )=D Y D X if Y is obtained from X via =i iy x  if all 0>ix  and ε= −i i iy x  for any 

0≤ix  and for any 0ε ≥i . 

Contrary to an early arriving flight, if a flight has been delayed, then any further delay will 

increase the level of aggregate delays.  This is the monotonicity axiom to which we alluded 

earlier in the introduction.  In the following statement, a passenger’s delay time increases from 

ix  to ε= +i i iy x . 

Monotonicity: ( ) ( )>D Y D X if Y is obtained from X via ε= +i i iy x  for some 0>ix  and for 

some 0ε >i . 

While an index ( )�D  that satisfies the monotonicity axiom reflects the length of a 

passenger’s delay, it may not address the distribution of delays among passengers.  To put the 

necessity of this concern into perspective, consider a total delay of one hour between two flights 

with an equal number of passengers on a route.  In one case, every flight is delayed by thirty 

minutes, whereas in the other case the outcome alternates between arriving on-time and arriving 

one hour late. Which case should be considered to have a higher level of passenger flight delays?  

A passenger may not mind a delay of ten, twenty or even thirty minutes, but anger, anxiety, 

uncertainty and boredom mount at an increasing rate as delay prolongs.  In this sense, the overall 

problem of delays in the first case may be considerably smaller compared to the second case. For 

example, in February 2007, JetBlue Flight 751 was stranded at JFK Airport for more than ten 

hours. This flight delay would never have become front-page news if JetBlue had evenly 

distributed ten hours of delay over ten JetBlue flights.  Stranded passengers become particularly 

unhappy when they have to make tight connections, or even worse, miss their connecting flights.  

The general idea that spreading the total delay time more evenly across all passengers (or 

flights) leads to a lower level of aggregate delay can be imposed as an axiom on ( )�D .  In the 
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following statement, passenger s experiences a longer delay than passenger t ( 0s tx x> > ) and 

from X to Y passenger s’s delay is shortened by ε while t’s delay is prolonged by ε (all other 

passengers’ delays are not affected).   

Distribution Sensitivity: ( ) ( )D Y D X< if Y is obtained from X via (1) s sy x ε= − , and 

t ty x ε= +  for some 0s tx x> >  and for some 0ε >  such that 0s ty y> > ; and (2) i iy x=  for all 

,i s t≠ . 

In poverty measurement the axiom of distribution sensitivity is referred to as the axiom of 

transfers – a transfer of income from a less poor to a poorer person reduces poverty.  Since it is 

not natural to talk about transferring time delayed between two passengers, we opt to use the 

term “distribution sensitivity” for the same requirement in measuring aggregate flight delays. 

The next axiom that we will impose on ( )�D  enables the comparison of flights delays 

between different airlines (or airports) where the number of passengers may differ.  The 

following axiom states that if an airline expands through a simple replication, then the level of 

flight delays remains unchanged.    

Replication Invariance: ( ) ( )D Y D X= if Y is obtained from X via a simple replication, i.e., 

( , ,..., )Y X X X= . 

 Finally, we introduce a consistency requirement that enables the ranking of flight delays to 

be independent of the measuring units of time, (e.g., minutes vs. hours).    

Unit Consistency: If ( ) ( )D Y D X> then ( ) ( )D Y D Xθ θ>  for all 0θ > . 

 This last axiom says that if the flight-delay profile Y exhibits more aggregate delay than X 

when time is measured in minutes, then the conclusion (ranking) remains the same if time is 

measured in hours or any other units. 

II.2. The Implications of the Axioms and Some Examples of ( )�D   

The anonymity axiom implies that we can consider an ordered profile of flight delays, i.e., 

for each 1 2( , ,..., )= NX x x x  we can assume that 1 2 ... Nx x x≥ ≥ ≥ .  The focus axiom implies that 

for those passengers whose flights are not delayed (i.e., 0ix ≤ ), ( )�D  does not depend upon the 

specific values of ix .  It follows that we can set all those negative values of ix  to zero – ( )�D  

does not distinguish between those passengers who arrived early and those arriving on time.  For 

each profile X, the anonymity axiom and the focus axiom together allow us to consider the 
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censored profile 1 2( , ,..., )NX x x x=% % % %  which sets every negative ix  to zero, i.e., max( ,0)i ix x=%  for 

1,2,...,i N= , and 1 2 ... Nx x x≥ ≥ ≥% % % . 

Using our notation, the official measure of aggregate flight delays is  

 1
1

1( ) ( )
N

i
i

D X I x
N =

= ∑  (2.1) 

where ( )iI x  is an indicator function which equals one if 0ix >  and zero otherwise.  This flight-

counting index satisfies only anonymity, replication invariance, and unit consistency.  It violates 

continuity at the point 0ix =  since for any flight with delay – no matter how slight  (i.e., ix is to 

zero) – it is counted as one in 1( )D X , however, if the delay time is zero then the flight is counted 

as zero.  This problem may be even more intensified with the ambiguity about what constitutes a 

“delay”? (i.e., how many minutes must the flight be late to be considered “delayed”?).   

 More importantly, the flight-counting measure violates the monotonicity axiom and the 

distribution sensitivity axiom.  As mentioned in the introduction, the violation of monotonicity 

implies that once a flight is deemed “delayed” the airline has no incentive to shorten the delay as 

far as minimizing 1( )D X  is concerned.  In fact, the airline may have an incentive to prolong the 

flight delay in order to get other flights on time so that 1( )D X  becomes smaller.  The violation 

of the distribution sensitivity means that whether the total delay time is spread evenly among 

passengers (flights) or is concentrated among a few passengers/flights matters little to the picture 

that 1( )D X  portrays. 

 A measure of flight delays which is a modest improvement over 1( )D X  would be the 

following average-time-delayed measure 

 2
1 1

1 1( ) ( )
N N

i i i
i i

D X x I x x
N N= =

= =∑ ∑ % . (2.2) 

Compared with 1( )D X , the (normalized) average-time-delayed measure 2 ( )D X  satisfies 

continuity, anonymity, monotonicity and replication invariance, however, it violates the 

distribution sensitivity axiom.  Although it is an improvement over 1( )D X , 2 ( )D X  is not an 

ideal measure since it violates the distribution sensitivity.  To allow any prolonged delay (i.e., the 

JetBlue JFK case) to be weighted more than just another delay in the calculation of aggregated 

delays, ( )D X  must reflect the axiom of distribution sensitivity. 



7 

 A measure that satisfies all aforementioned axioms is easy to construct.  In fact, we propose 

a class of such measures.  Consider a continuous, increasing, and convex function ( )xφ  with 

(0) 0φ = , a member of the class is   

 
1

1( ) [ ( )]
N

i i
i

D X x I x
Nφ φ

=

= ∑ . (2.3) 

It is easy to verify that ( )D Xφ  satisfies all axioms examined above except the unit consistency 

axiom.  To satisfy unit-consistency, function ( )xφ  must also be homogenous (Zheng 2007).  An 

example of the satisfactory functionφ −  is ( )x xαφ =  with 1α > . 

 The measures defined in (2.3) are decomposable in the sense that the overall level of flight 

delays can be written as a weighted average of all subgroups’ level of delays.  This 

decomposability property is very useful in that it identifies the contribution of the delay from 

each subgroup (an airline or an airport) to the overall delay of the industry. 

II.3. Flight-Delay Dominance 

 For each ( )xφ , we can calculate the corresponding flight-delay measure for each airline or 

airport.  Then we can compare these flight-delay measures among airlines and airports to rank 

them from the most to the least delayed services.  Clearly, the choice of the function ( )xφ  is 

consequential: different functions may lead to different rankings.  A natural and important 

question is under what conditions can we rank one airline as having a higher level of flight 

delays than another airline for all possible functions ( )xφ ?  In this section, we establish a partial 

ordering condition and provide a device to enable this unanimous comparison. 

 Recall that if all measures satisfy anonymity and the focus axiom, then we can consider a 

censored and decreasingly ordered version of each flight delay profile.  Relying on a censored 

and sorted flight delay profile 1 2( , ,..., ,0,...,0)rX x x x=% % % %  where r is the number of passengers 

delayed, we can construct a flight-delay curve as follows.  For each passenger i in the sorted 

profile, we first calculate  

 
1

1( ; )
i

j
j

C X i x
N =

= ∑ % . (2.4) 



8 

That is, ( ; )C X i  cumulates the first i longest delays: 1( ;1) xC X
N

=
%

, 1 2( ;2) x xC X
N
+

=
% %

, 

1 2 3( ;3) x x xC X
N

+ +
=
% % %

, …  Next, we plot the sequence { ( ; )}C X i  against the corresponding 

cumulative passenger proportion { }i
N

 in a graph with i
N

  on the horizontal axis and ( ; )C X i  on 

the vertical axis.  The following graph depicts such a curve which is referred to as the flight-

delay curve. 

 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

The flight-delay curve is concave up to the point 2{ / , ( )}r N D X  and then it becomes flat 

since 0ix =  for i r> . 

With the flight-delay curve, we can define our partial flight-delay dominance relationship as 

follows: for two flight delay profiles X and Y with the same number of passengers N, X flight-

delay dominates Y if  

 ( ; ) ( ; )C X i C Y i≤  (2.5) 

for all 1, 2,...,i N=  and the strict inequality holds for some i.  Graphically, (2.5) says that the 

flight-delay curve of X lies nowhere above that of Y and strictly below over some range. 

r/N 1

2 ( )D X  
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 The important result of this section is the following equivalence between the partial flight-

delay dominance and the rankings by all members of flight-delay class of (2.3). 

 

Proposition 1. For any two flight-delay profiles X and Y, the following two conditions are 

equivalent: 

(1) ( ) ( )D X D Yφ φ≤  for all members of ( )Dφ �  and ( ) ( )D X D Yφ φ<  for some members of ( )Dφ � ; 

(2) The flight-delay curve of X dominates that of Y. 

Proof.  See Jenkins and Lambert (1997). 

 

 This proposition also has an important implication for ranking flight delays when different 

cutoffs are used to define what is considered “being delayed.”  Up to this point in our theoretical 

calibration of measurement, we have assumed that a flight is delayed as long as it is later than 

scheduled.  Now suppose that there are two definitions of delay: one is s minutes behind 

schedule and the other is t minutes behind schedule with 0 s t< < .  For example, in our empirical 

illustration below we consider both 5 minutes and 15 minutes delay cutoffs.  An interesting 

question to ask is: if one airline has less aggregate delay than another airline when s-minute 

delay cutoff is used, will the airline also have less delay when a t-minute delay cutoff is used 

instead?  The following corollary provides a useful guideline for delay comparisons with 

different delay cutoffs. 

 

Corollary 1. For any two flight-delay cutoffs s and t, and two pairs of flight-delay profiles 

( , )s sX Y  and ( , )t tX Y , if the flight-delay curve of sX dominates that of sY  then the flight-delay 

curve of tX dominates that of tY . 

Proof.  The proof of this result can also be found in poverty ordering literature (again, see 

Jenkins and Lambert 2007).  Note that increasing the delay cutoff has the same effect as 

lowering the poverty line.  It is a known result in poverty measurement that if one distribution 

has less poverty than another distribution for all poverty measures at a given poverty line then 

the conclusion holds for all lower poverty lines. 
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From this corollary, it follows that if JetBlue has less aggregate delay than US Airway (i.e., 

the flight-delay curve of JetBlue lies below that of US Airway) for the 5-minute delay cutoff, 

then we can be certain without checking that JetBlue will also have less delay than USAir for 

any higher delay cutoffs (10 minutes, 15 minutes, …). 

 

II.4. A Gini-type Measure of Flight Delays 

 The flight-delay curve lends directly to a Gini-type measure of flight delays.  The measure is 

simply equal to the area beneath the flight-delay curve which is 

2
1

1 1 1 1 1 1( ) ( ;1) [ ( ;1) ( ;2)] ... [ ( ; 1) ( ; )]
2 2 2

1 ( 1)( 2)
4

g

N

i
i

D X C X C X C X C X N C X N
N N N

N i N i x
N =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + − +∑ %

(2.6) 

Note that this measure is not decomposable in the sense that we defined above.  The Gini-type 

measure reflects a unique passenger preference about flight delays.  In this measure, a passenger 

cares not only about his/her time delayed but also about the relative position in the delay profile 

(i.e., how many people have less delay time than the passenger).  See Lambert (2001, pp. 122-

123) for more detailed discussion on the Gini-type preference in social welfare measurement. 

   

III. An Illustration of the Flight Delay Curve 

 

In this section we apply the flight delay curve developed above to actual flight delay data.  

To illustrate our approach we use Bureau of Transportation Statistics on time performance data 

for every domestic flight for two carriers, JetBlue and US Airways during the first week of July 

2005.3  

 Table 1 provides simple delay counts (standard errors and test statistics) for the two carriers 

for two time periods in 2005: July 1-7 and July 1-4, and six alternative delay cutoffs. We begin 

with the DOT definition of a flight “delay” (i.e., flights arriving fifteen or more minutes later 

than scheduled).  For the seven day period we find that JetBlue (29.37%) has significantly fewer 

official delays than US Airways (31.84%) (z-score = 2.24).  For the four day sample we find no 

significant difference (30.86% vs. 29.96%) in the official delay rate (z-score = 0.62).  

                                                 
3 Since this paper focuses on flight delays, we exclude both diverted and canceled flights. 
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 The natural question to ask is:  Do these official delay rates accurately describe the two 

carriers’ delay distributions?  Our answers are: perhaps and not at all.  To arrive at these 

conclusions we must first examine the test statistics at all possible delay times.  In the seven day 

case (see Table 1), US Airways has significantly higher delay rates than JetBlue for all delays 

that exceed ten minutes. We note that for five and ten minute delay thresholds the two carriers 

have delay rates that are not significantly different.  

Figure 2 illustrates the July 1-7, 2005 delays where ten minutes serves as the delay threshold. 

This figure provides the flight delay curves for JetBlue and US Airways.  On the x-axis we plot 

the cumulative proportion of flights—the incidence of delay is given by the length of the flight 

delay curve’s non-horizontal section.  As noted in the Table 1 using a ten minute definition for 

flight delays, the delay rate for both carriers is slightly over 36 percent during the first week of 

July, 2005. After this point, both curves in Figure 1 become horizontal.    

On the y-axis we plot the intensity of delay.  The vertical intercept at p  = 1 is the aggregate 

delay gap, D2(X), averaged across all of a carriers’ flights. The average delay gap would then be 

equal to the slope of the ray from the origin to the point where the flight delay curve initially 

goes horizontal (here at 0.36).  Figure 2 shows that JetBlue has a smaller aggregate (and average) 

delay rate (0.047) than does US Airways (0.051), for the period July 1-7.  

The inequality dimension of flight delays is summarized by the degree of concavity of the 

non-horizontal section of the flight delay curve. If there is equality of delays among the delayed 

flights, i.e., if the delay gaps were equal, then the ray from the origin would be a straight line 

with slope equal to z (ten minutes, in this case) minus the average delay time.  As noted above 

the flight delay curve combines all three elements: delay rate, delay gap, and delay inequality.  

Returning to Figure 2 we see that the JetBlue flight-delay curve dominates US Airways since its 

flight delay curve (the solid line) lies everywhere inside the equivalent curve for US Airways 

(the dashed line).  Thus, in this case the industry’s fifteen minute delay standard (US Airways 

31.84% vs. JetBlue 29.37%) gives the correct ordinal delay ranking of these two carriers for all 

delay measures above ten minutes. 

To further illustrate the usefulness of the flight delay curve we consider an alternative time 

frame for our sample of flights: July 1st through July 4th.   Recall that for the fifteen minute delay 

standard we find no significant difference in delay rates between JetBlue and US Airways.  

Using a ten minute delay threshold, however, we find that US Airways has a smaller delay rate 
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than JetBlue at the ten percent significance level (z-score = 1.83).  Furthermore, for a five minute 

delay threshold, US Airways has a significantly lower delay rate (z-score=3.02).  In contrast, as 

the delay window is expanded (beyond twenty minutes) we find that JetBlue now has 

significantly lower delay rates. Clearly, the fifteen minute standard—in case that there is no 

difference between carriers--does not adequately describe the distributions of flight delays. 

Figure 3 presents the flight delay curves for July 1-4 using five minutes as the delay 

threshold. The first dimension of flight delay preferences, the delay rate, is shown on the 

horizontal axis. We observe  that the US Airways flight delay curve (the dashed line) becomes 

horizontal at a lower delay rate than does JetBlue’s flight delay curve, which reflects US 

Airways’ lower delay rate at five minutes.  

 The second dimension of flight delay preferences, the intensity of flight delays (i.e., the 

slope of the ray from the origin where the flight-delay curve becomes horizontal), is shown on 

the vertical axis of Figure 3.  Here we see that JetBlue has the lower aggregate delay rate (0.139 

versus 0.148). This example provides a clear conflict between the preference for fewer versus 

shorter delays.  The third dimension of delay preferences, the inequality among flight delays, is 

reflected in the greater concavity of the flight delay curves. In this example the US Airways 

flight delay curve shows a larger degree of delay inequality (i.e., greater concavity).  In sum, any 

conflict between passenger preferences (for fewer, shorter, and more equal delays) will result in 

crossing flight delay curves, as clearly seen in Figure 3.  Crossing flight delay curves prohibit an 

ordinal ranking of carrier flight delays. 

There are at least two possible solutions to the delay ambiguity shown in Figure 3.  The first 

approach is to propose a cardinal delay preference function that specifies a tradeoff between the 

number of flight delays, the length of delays, and the equality of delays.  An example of a 

cardinal preference function is the well-known Gini index of inequality described above.4  The 

Gini-type indexes, which reflect the area under the flight-delay curves, are reported in the figure 

notes.  For Figure 3, the Gini-type indexes are 0.0519 for JetBlue and 0.0505 for US Airways. 

Thus, passengers with Gini-type preferences will prefer US Airways to JetBlue.  A second 

solution is to expand the delay window and check for an ordinal ranking of carriers. Figure 4 

                                                 
4 Lambert and Jenkins (1997) note that the preference tradeoffs embodied in the TIP Gini (our 
flight delay Gini) are equivalent to the modified-Sen index proposed and discussed by Shorrocks 
(1995).  Formatted: Font: 12 pt
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illustrates the second option using a ten minute (instead of a five minute) delay window.  In this 

case, JetBlue’s flight delay curve lies everywhere below US Airways flight delay curve, 

implying that passengers will prefer JetBlue to US Airways.      

 

IV. Conclusion 

 

Airline economists are well aware of the caveats with using fifteen minutes as a delay 

standard, hence a variety of alternative flight delay measures have been used in the literature. 

The unique contribution of our paper is the derivation of a delay measure which is based on 

passenger preferences, not an arbitrary cut-off decided by the Department of Transportation. We 

propose a delay ordering based on three widely acceptable preferences--passengers will prefer a 

carrier that provides fewer, shorter, and more equal delay times.  Based on these three preference 

assumptions we propose the flight delay curve and identify the conditions under which an 

unambiguous ordering of carriers can be identified.  Given the generality of our preference 

assumptions the flight delay curve provides only a partial ordering of carriers.  In the case of 

‘crossing’ flight delay curves we offer several possible solutions.  

We illustrate the flight delay curves using actual delay data for July 2005.   Our empirical 

findings suggest that for longer time frames (i.e., a week or a month) aggregate measures of 

flight delays like the DOT delay definition (proportion of flights delayed 15 minutes or more) are 

fairly representative of on-time performance. When we examine shorter time periods, however, 

the DOT delay definition is less representative of the distribution of flight delays, and hence the 

flight delay curves provide valuable information that reflect passenger preferences.  
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