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A Semi-Parametric Estimator for Revealed and Stated Preference Data  

An Application to Recreational Beach Visitation 

 

Abstract 

We present a semi-parametric approach for jointly estimating revealed and stated 

preference recreation demand models.  The discrete factor method (DFM) allows for 

correlation across demand equations and incorporates unobserved heterogeneity.  Our 

model is a generalized negative binomial with random effects; the random effect is 

composed of a discrete representation of unobserved heterogeneity and a factor loading 

that translates the heterogeneity measure into a demand effect.  Our empirical application 

is to beach recreation demand in North Carolina.  Statistical evidence supports our DFM 

specification, which imposes less restriction on model dispersion and incorporates 

unobserved heterogeneity in a flexible manner.  Elasticity estimates are smaller than 

those derived from models with parametric specifications for unobserved heterogeneity, 

and welfare estimates are slightly larger (and less precise).  While parametric models 

clearly dominate if the specification of unobserved heterogeneity is correct, the semi-

parametric DFM provides a flexible alternative in cases where mis-specification is a 

potential problem. 

 

JEL: C81, D12, Q51 

Key words: beach recreation demand, revealed and stated preference, unobserved 

heterogeneity, semi-parametric 
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1. Introduction 

Resource economists are increasingly gathering revealed preference (RP) data in 

conjunction with information on stated preference (SP).  Adamowicz, Louviere, and 

Williams [2] note the potential for combining RP and SP data so that one can explore 

behavior associated with levels of environmental quality that are not observed.  Aside 

from changes in environmental quality [22, 25, 30], others have used SP data to examine 

behavioral changes stemming from variations in travel cost [4, 10, 13], in access to 

resources [16, 43], and in management conditions [24].  Through combining information 

on revealed and stated behavior, the analyst can potentially learn more about underlying 

preferences and test for various restrictions.  In addition, information on real behavior 

may be helpful in calibrating or validating stated preference data [22, 43]. 

In this paper we estimate parameters of revealed and stated recreation demand 

using a semi-parametric technique—the discrete factor method (DFM) (also known as 

discrete factor approximation).  This method permits us to account for unobserved 

heterogeneity across agents, while at the same time allowing for correlation across RP 

and SP demand equations.  We condition the joint distribution of revealed and stated 

demand on a factor that represents unobserved heterogeneity, which is approximated by a 

step function.  The unconditional likelihood function is obtained by summing over the 

discrete distribution of the unobserved factor using empirically estimated probabilities for 

inclusion in the latent segments.  Due to the use of a discrete distribution for unobserved 

heterogeneity the estimator falls in the class of finite mixture models.  An attractive 

feature of this approximation approach is that a small number of supports for the discrete 

distribution (e.g., three or four) has been shown to compare favorably (on the basis of 
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precision and unbiasedness) to alternative estimators that require more restrictive 

distributional assumptions [29].1  Thus, the DFM is generally robust, computationally 

simple, and quite flexible.  This approach has not, to our knowledge, been applied to 

recreation demand data.   

Our econometric approach for modeling a quasi-panel of recreation demand 

makes use of a generalized negative binomial model.  Conceptually, an individual-

specific random effect enters each demand equation additively and is scaled by a factor 

loading that varies across equations.  Individual-specific heterogeneity cannot be 

identified, but rather is approximated by a discrete distribution, the probability mass and 

supports of which are estimated empirically.    Model parameters are estimated via quasi-

maximum likelihood.  Our data pertain to beach recreation demand in North Carolina.   

 Our DFM generalized negative binomial (DFM-GNB) specification performs 

quite well in comparison with competing models according to a number of statistical tests 

based on likelihood values.  Using a likelihood ratio test (LRT), we reject the standard 

NB1 and NB2 specifications of the negative binomial model at conventional significance 

levels.  Using LRT and information criteria, we find support for DFM-GNB over a 

generalized negative binomial without unobserved heterogeneity.  Comparing DFM to 

parametric approaches for incorporating unobserved heterogeneity, information criteria 

and Vuong’s [42] non-nested likelihood ratio test favor the DFM-GNB model over 

normality-based estimates.   

Elasticities derived from the DFM model consistently exhibit less responsiveness 

than the parametric models, suggesting that more variation in recreation demand is 

attributed to unobserved heterogeneity as we move from a parametric specification to a 
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less restrictive alternative.  Average predicted recreation trips are very close to the sample 

means for the DFM-GNB, while predicted trips for normality-based estimates appear to 

exhibit more bias.  This bias is extremely large for the multivariate Poisson log-normal 

(MPLN) model [13].  We construe the poor performance of the MPLN model as evidence 

of mis-specification of the distribution of unobserved heterogeneity.  Nonetheless, MPLN 

estimates exhibit much tighter confidence intervals.  On this basis, the normality-based 

estimates clearly dominate if the parametric specification of unobserved heterogeneity is 

correct.  The semi-parametric DFM approach, however, provides a flexible alternative in 

cases where mis-specification is a potential problem.  As mis-specification of 

unobservable components is difficult to assess, given its robustness and simplicity of 

estimation the DFM remains a viable alternative. 

 

2. Combining Stated and Revealed Preference Data 

We formulate a recreation demand model that incorporates revealed demand under 

current conditions and stated demand under both current conditions and hypothetical 

improvements in resource quality.  Since we have multiple observations on each 

individual (quasi-panel data), we account for unobserved heterogeneity at the individual 

level in a way similar to the standard random effects model for panel data.  Our 

econometric specification is a generalized negative binomial model, in which we use a 

semi-parametric technique—the discrete factors method (DFM)—to account for 

unobserved heterogeneity and permit correlation across RP and SP demand equations.   

Our analysis of recreation demand is based to on the following negative binomial 

model [11]:  
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where i indexes individuals; t = 1, 2, …, T represents demand treatments (RP or SP 

demand under quality conditions qt), yit is recreation demand for individual i under 

treatment t, )'exp( βμ itit x= is individual i’s conditional recreation demand for treatment 

t, with xit being a matrix of covariates and β denoting a vector of unknown parameters.  

The variance of trip demand under treatment t is given by Var[yit | xit] = μit + αμit
2, and α 

is an additional parameter to be estimated.  Cameron and Trivedi [11] refer to this 

specification as NB2.  Dispersion (variance divided by the mean) in NB2 is proportional 

to the mean, 1 + αμit. 

A generalized version of the negative binomial model in equation (1) is: 
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where p is an additional parameter to be estimated [12], and the scale parameter αt is 

allowed to vary across treatments.  The conditional variance for yit is Var[yit | xit] = μit + 

αtμit
p.  This specification provides a more flexible characterization of dispersion—1 + 

αtμit
p-1—and nests specifications NB1 (p = 1) and NB2 (p = 2) [12].  We introduce a 

random effects component ( itε ) to conditional demand.  Our random effect is 

decomposed into a scalar representation of unobserved heterogeneity ( iλ ) that is common 

to all demand equations for the same individual and a coefficient, or factor loading ( tγ ), 

that is common to a specific demand treatment across all individuals.  Expected demand 

conditional on observable characteristics and unobserved heterogeneity type is: 

)exp()exp()exp()exp(),|( ititititititiitit xxxx λγβλγβεβλβμ =+=+= .          (3) 
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The common heterogeneity term allows for cross-equation correlation: 0],cov[ ≠imij εε  

for any two demand equations j ≠ m.  The semi-parametric DFM approximates λi with a 

step function that takes K discrete values; from hereon we subscript λ with k rather than i 

to denote this approximation.  The factor loadings ( tγ ) rescale unobserved heterogeneity 

into a recreation demand effect that can vary across demand equations.  

Note that in implementing the DFM, we decompose the errors across multiple 

equations so that one random component is common to individuals and another is unique 

to each demand equation.2    In other words, with the common discrete factor, we allow 

all heterogeneity components to be correlated.  The magnitude of correlations, however, 

is determined by the factor loadings ( tγ ).  This approach of introducing correlation is 

different from that of parametric random effects as there is no need to explicitly specify 

the structure of the variance-covariance matrix.  Nevertheless, this approach can still 

suffer from the curse of dimensionality if multiple random effects are specified.  For 

instance, one may assume there is unobserved heterogeneity in the own-price, cross- 

price, and income effects.  In this case, estimation would become much more difficult: a 

model with 3 independent random effects with 4 points of support each would imply 64 

conditional likelihood functions to enter the unconditional likelihood function.3   

 

3. Discrete Factors Method and Likelihood Function 

DFM was proposed by Heckman and Singer [19] as an approach for modeling 

unobserved heterogeneity.  This method has two distinct advantages in the class of 

mixture distribution estimators.  First, DFM does not impose a priori arbitrary 

distributional forms for unobserved heterogeneity, while maintaining the asymptotic 
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efficiency of maximum likelihood estimators [29].  The distribution of heterogeneity type 

is approximated with a step function and integrated out through a weighted sum of step 

levels [19], where the weights are given by empirically estimated probabilities.  Mroz 

[29] demonstrates that when the true correlation of the error terms is multivariate normal, 

DFM performs well in comparison with estimators which assume multivariate normality; 

and when the underlying distribution is non-normal, DFM dominates other normality 

based estimators in terms of unbiasedness and precision.  Second, DFM is 

computationally simple.  For instance, the MPLN model adopted by Egan and Herriges 

[13] requires evaluating multidimensional integrals based on the assumption that the 

random effects across equations follow a multivariate lognormal distribution.  Although 

simulation methods are adopted to make these evaluations feasible, the computations are 

somewhat cumbersome.  Using DFM, the likelihood function conditional on unobserved 

heterogeneity can be constructed as follows.  

A priori we do not know to which class of heterogeneity each individual belongs.  

The likelihood function for individual i is thus: 
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,),|Pr()Pr(

,|,...,Pr)Pr(

1

1
1

∑ ∏

∑

=

=

⎭
⎬
⎫

⎩
⎨
⎧

=

=

K

k
kit

t
itk

K

k
kitiTiki

xy

xyyL

λλ

λλ
      (4) 

where )Pr( kλ  is the probability of individual i having heterogeneity level k, and there are 

K levels of heterogeneity.  Combining the generalized negative binomial specification 

(equation 2) with DFM (equations 4), individual i’s contribution to the likelihood 

function, , can be rewritten as: iL
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Note the conditional mean μitk reflects individual-level observables, demand treatment, 

and heterogeneity type.  The sample likelihood function is derived as the product of (5) 

over all N individuals:  
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We refer to this model as the discrete factors method-generalized negative binomial 

(DFM-GNB) specification. The semi-parametric specification of unobserved 

heterogeneity allows unrestricted correlations across RP and SP demand equations for the 

same individual i. 

Our specification imposes a restriction that all unobserved heterogeneity and 

correlation among the individual demand equations enters the full model through the 

factor loadings γt and the factor λk, with ,,...,1,0)Pr( Kkk =∀>λ  where K is the total 

number of points support for the discrete distribution.  Without loss of generality, λ is 

confined to the unit interval: 
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The transformed probability weights are given as follows: 
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The logit kernals in (7) and (8) are strictly concave, facilitating optimization procedures.  

Note that the K – 2 vector λ  and the K – 1 vector θ  are parameters to be estimated, 

along with T vectors α and γ, and the standard vector of demand parameters β.  The 

support points, λk, and the transformed probabilities, Pr(λk), can be calculated from the 

parameter estimates via equations (7) and (8). 

The incorporation of latent segments with endogenous probabilities makes the 

DFM similar to the latent class model,4 recently applied to recreation choice data [8, 32, 

33, 35, 38] and choice experiments [17, 34].  The discrete factor method and latent class 

model differ in two important ways.  First, the latent class model produces separate 

covariate parameter estimates for each latent segment, while DFM does not unless the 

discrete factor is interacted with model covariates.  In the standard setup the discrete 

factor is only interacted with a constant term.  Second, the latent class model often 

imposes a priori assumptions about determinants of classification by including covariates 

in the class probabilities, while DFM does not.  For instance, Boxall and Adamowicz [8] 

employ a factor analysis of 20 “motivational indicators” so that probability weights of the 

latent classes can be constructed.  More commonly, individual characteristics are 

included as covariates for the class probabilities [17, 32, 34, 38].5 As indicated by Greene 

[15, pp. 440], if the class probabilities are fixed parameters and only a constant term is 
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included as a covariate in the mean of the random parameter distribution, then the latent 

class model is equivalent to a DFM approach in modeling the distribution of unobserved 

heterogeneity.   

While parametric mixing approaches such as the mixed logit (e.g. [39]) are 

available for random utility models of recreation choice, the latent class approach offers a 

potential advantage in that it makes use of more information in the dataset by allowing 

for inclusion of individual characteristics as covariates in class probabilities in the 

conditional logit model.  Scarpa, Thiene, and Tempesta [36] is one of the only studies 

that apply a finite mixture model to introduce preference heterogeneity in modeling total 

demand for recreation (i.e., not a site choice model).  They apply the latent class model to 

a system of hiking demand equations for the Italian Eastern Alps.   

We contend that the DFM is more appropriate for this type of recreation demand 

data for a number of reasons.  First, the latent class model is demanding in terms of the 

number of parameters to be estimated.  As estimated parameters increase drastically with 

rising number of classes, Scarpa, Thiene, and Tempesta [36] can only include three or 

four covariates in most specifications even when the information criteria favor a model 

with only two classes of unobserved heterogeneity.  DFM, on the other hand, utilizes a 

relatively parsimonious specification.  Second, in the zero-inflated count models 

employed by Scarpa, Thiene, and Tempesta, all parameters are constrained to be equal 

across 18 destination sites (the panel dimension).  DFM allows for some variability 

across the panel dimension (on our case, RP and SP demand), with the degree of 

variability depending upon the specification.6  Third, the basic structure of DFM allows 

for correlation in the panel dimension (across sites in Scarpa, Thiene, and Tempesta or 
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across demand equations in our study), while the latent class model would require 

modification to accommodate this type of correlation.  Fourth, identification can be 

problematic in latent class specifications, as individual covariates can appear in both the 

class probabilities and the demand equations.  Most often we do not have exclusion 

conditions – information on variables that belong to class probability but not to the main 

demand equations; in many cases, identification is based purely on functional form.   

On the other hand, if one does has a priori knowledge about covariates that affect 

class membership, the standard DFM model will not take account of this information.  

Moreover, the manner in which the unobserved heterogeneity component is introduced in 

DFM is rather restrictive compared to a latent class model.  In particular, the 

heterogeneity term is additive in the main demand equation unless covariate interaction 

terms are introduced. 

 If we allow the discrete factor to interact with not only a constant term, but also 

model covariates, we obtain a discrete analog to the random parameters model [1]: 

)exp()](exp[])(exp[),|( itiititiitiitit xxx λγδλβλγδλβλβμ +=++= ,  (3’) 

whereδ is a vector of parameters for the interaction terms.  Employing specification (3’) 

will produce class-specific parameter estimates, but in a more parsimonious way than the 

latent class model for rank[x] > k > 2.  The number of parameter estimates increases by 

rank[x] in moving from specification (3) to (3’) regardless of the number of classes, while 

for the latent class model the number of parameter estimates increases by rank[x]×(k-1) 

because separate parameters are estimated for each class.  The downside of specification 

(3’) is the fairly restrictive way that class-specific estimates are produced; they are 

rescalings of the common heterogeneity component and may be difficult to interpret. 
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 For comparison purposes, we also estimate a GNB model with additive 

unobserved heterogeneity that follows a standard normal distribution and the multivariate 

Poisson-lognormal (MPLN) model of Egan and Herriges [13].  For the MPLN model, 

!
))(exp()|Pr(

it

y
itit

itit y
xy

itμμ−
= , 

which is the standard Poisson density, and )'exp( ititit x εβμ += , where  

),,( 1 iTii εεε K≡ is assumed to follow a multivariate normal distribution, i.e. ),0(~ ΩNiε .  
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variance-covariance matrix in the MPLN model.  In particular, the unobserved error 
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4. Data 

The survey data, originally analyzed in Whitehead et al. [44], contain information on 

recreation demand for seventeen beaches in five southeastern North Carolina counties, 

including both revealed and stated visitation.  The stated preference responses describe 

intended visitation in the subsequent year under current conditions, as well as how 

beachgoers would change visitation in the subsequent year in response to hypothetical 

improvements in parking spaces/access points and beach width.  The data were gathered 
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via random telephone survey of North Carolina counties within 120 miles of the study 

site in spring of 2004.  The response rate was 52 percent, with a final sample size of 664.7     

For purposes of our analysis, demand is aggregated over the seventeen beach 

sites.  Descriptive statistics are included in table 1.  The average number of observed trips 

is 11, while planned trips in the subsequent year under current conditions is slightly 

higher at 13.  Improvements in parking facilities that would obviate beachgoers’ need to 

search for a parking space or beach access point (holding parking fees and beach 

congestion constant) increase the average number of stated trips to 17 in the subsequent 

year.  Implementation of a beach replenishment policy to improve beach width by an 

average of 100 feet increases the average number of stated trips in the subsequent year to 

14.  Travel distance is measured as distance between population centers at the home ZIP 

code and the nearest beach county ZIP code.  Travel costs are measured as the sum of 

pecuniary ($0.37/mile) and time (33% of wage) costs, assuming an average speed of 50 

miles per hour.  Average trip cost to southeastern NC beaches is $89, while average cost 

to the Outer Banks (a substitute site) is $202.  Average income is $59 thousand per year. 

We thus focus on the demand for recreational beach trips: 

)exp( 0 ktitZiXimicpiopitk ZXmcpopy εββββββ ++++++=  
)exp( 0 ktitZiXimicpiop ZXmcpop λγββββββ ++++++=    (9)  

where opi is the own price travel cost to southeastern North Carolina beaches for 

individual i, cpi represents cross price travel cost to the Outer Banks of North Carolina—

a substitute beach recreation site for individual i, mi is income, Xi includes individual 

characteristics and interactions, Zit is a vector of indicators for various stated preference 

responses (including access and beach width scenarios), and εkt is a random effect.  Both 

γt and λk are unobserved; we cannot separately identify them.  It is only meaningful that 
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they be multiplied in equation (3) and interpreted jointly in analyzing their effect on 

recreation demand.8  For the MPLN model, recreation demand is specified according to 

the first line of equation (9), with the T-vector ),0(~ ΩNiε  replacing εkt, and the form of 

Ω given above. 

For specification (3’), the conditional expectation of demand is given by: 

)exp(

)exp( 0

ktkitZkiXkimkicpkiop

itZiXimicpiopitk

ZXmcpop

ZXmcpopy

λγλδλδλδλδλδ

ββββββ

+++++

×+++++=
 (9’) 

This model is a discrete analog of a random parameters model, with the first line of 

equation (9’) representing the conditional expectation of demand for type k = 1 (because 

λ1=0 as indicated in (7) above) and the complete equation applying to types k = 1 - K.  

Thus, this form of the DFM model allows for different coefficient estimates by class 

through the interaction of the discrete factor.   

 

5. Results and Discussion 

We turn now to parameter estimates for our DFM-GNB model (equations 6-8).  The 

unconditional sample likelihood function is programmed into FORTRAN and all 

parameters are obtained by the Davidson-Fletcher-Powell (DFP) optimization algorithm. 

Given a finite sample size, econometric theory does not provide the optimal number of 

points of support in DFM.  In general, researchers add points of support until the 

likelihood function value fails to improve significantly, based on a likelihood ratio test 

[20, 27, 29, 31]. 

The likelihood ratio testing procedure, however, has shortcomings in this 

application.  Specifically, under the null hypothesis that fewer support points represents 
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the true model, the Hessian matrix for the alternative model (i.e., more points of support) 

is singular.  As a result, the likelihood ratio test (LRT) statistic does not follow an 

asymptotic Chi-square distribution under the null hypothesis.  In a Monte Carlo study, 

however, Mroz [29] demonstrates that this test performs fairly well when deciding 

between small numbers of support points (up to four).  We first estimate the DFM-GNB 

models with three points of support and incrementally increase the number of supports to 

five, at which the likelihood function fails to improve significantly based on Akaike’s 

Information Criterion (AIC) [3] and the Bayesian Information Criterion (BIC) [37].  A 

likelihood ratio test also favors the selection of four points of support.  The results 

presented in this paper are based on four points of support for the discrete distribution.  

Our econometric specification (9) includes age, marital status, interactions of age 

and marital status with own-price, cross-price, and income in the X vector, and indicators 

for stated preference treatments (sp) (t = 2, 3, or 4), the access treatment (t = 3), and the 

beach width improvement treatment (t = 4) in the Z vector.  Note, the revealed preference 

treatment (t = 1) is the excluded category, and access and beach quality conditions (qt) for 

treatments 1 and 2 are identical.  Parameter estimates and robust standard errors for the 

DFM-GNB model are presented in column 1 of table 2.9,10,11  Using the LRT we find 

joint significance for the model at conventional levels (p < 0.0001), and most of the 

parameter estimates are statistically significant at the 1% level, except for the sp and 

beach width treatment indicators, and the interactions of marital status with own-price 

and income.  The LRT rejects the restriction that the p parameter in equation (6) is equal 

to 1 or 2 for a p-value less than 0.0001.12  All of the parameters of the DFM-GNB model 

associated with the distribution of unobserved heterogeneity are statistically significant at 

 16



conventional levels, except for 3θ .  The K – 2 estimates of λ  represent parameters of the 

mass points of our heterogeneity distribution in equations (7), while the K – 1 estimates 

of θ  correspond with parameters of the probability distribution for heterogeneity types in 

equations (8).  The support points, λk, and probabilities, Pr(λk), are calculated from the 

parameter estimates.   

Figure 1 displays the distribution of unobserved heterogeneity for the DFM-GNB 

specification.  The lowest heterogeneity type (λ1 = 0) has the highest probability (41 

percent), and larger values of λ — λ2 = 0.325, λ3 = 0.617, λ4 = 1.00—exhibit 

monotonically decreasing probabilities of 30 percent, 16 percent, and 13 percent, 

respectively.  In the standard DFM model, the discrete factors enter the exponential of the 

demand equation as an additive term with a factor loading γt, where t = 1, 2, 3, 4 

represents the demand treatment for our quasi-panel data.  The factor loadings translate 

unobserved heterogeneity mass points (which are confined to the unit interval) into a 

recreation demand effect (that is unrestricted).  We explored using four distinct 

parameters for the γt term in equation (4)—essentially allowing for the factor loadings to 

vary across all four scenarios—but the unrestricted model did not significantly improve 

the log-likelihood value.13  Our final model in column 1 of table 2 includes only two γ 

terms, both of which are positive suggesting a positive correlation across RP and SP 

demand. 

  The distribution of unobserved heterogeneity and the factor loadings have a 

plausible and intuitive interpretation in this application that can provide potential insight 

into recreation demand panel data.  Since the factor loadings are positive, conditional 

recreation demand is increasing in unobserved heterogeneity.  As such, the classes of 
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unobserved heterogeneity can be thought of as demand-intensity types, with type λ1 = 0 

representing low intensity demand, type λ4 = 1.00 representing high intensity type, and 

the remaining types (λ2 and λ3) being intermediate. 

Column 2 of table 2 displays results for a generalized negative binomial model 

without controls for unobserved heterogeneity (NUH-GNB).  The log-likelihood value 

for this model, which restricts all parameters of the DFM model to zero, is much smaller 

than the DFM-GNB log-likelihood.  The LRT does not support the restriction imposed by 

NUH-GNB (p-value < 0.0001).14  The DFM-GNB is preferred according to information 

criteria (smallest AIC and BIC values). 

We turn next to comparisons of the DFM-GNB model with parametric 

counterparts, specifically the multivariate Poisson-lognormal (MPLN) model [13] and a 

GNB specification with unobserved heterogeneity following a standard normal 

distribution (norm-GNB).  The MPLN model is estimated using a maximum simulated 

likelihood procedure with 1000 Halton draws,15 and the norm-GNB is estimated via 

quasi-maximum likelihood with unobserved heterogeneity integrated out by using 

Gaussian-Hermite quadrature.  Parameter estimates for the MPLN model are presented in 

column three of table 2.  All coefficients associated with this model are statistically 

significant at the 1% level for a type I error.  The norm-GNB estimates are presented in 

the last column of table 2, and all coefficients associated with this model are statistically 

significant at the 1% level, with the exception of the beach width scenario indicator. 

A practical complication in comparing DFM with parametric models is that since 

the models are based on different formulations of unobserved heterogeneity, they are not 

nested.  In order to examine the performance of alternative non-nested models with 
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sample data, we adopt AIC, BIC, and Vuong’s non-nested test [42].16  According to the 

AIC and BIC scores, the DFM-GNB specification outperforms the MPLN model.17  The 

AIC and BIC are lower for the DFM-GNB.  The first step of Vuong’s test indicates 

rejection of the null hypothesis that the MPLN and DFM-GNB models cannot be 

distinguished at a significance level of 0.01 using a likelihood ratio variance test.  The 

directional test in the second step indicates that the DFM-GNB model is preferred, but 

the test statistic is not statistically significant.18  Hence, we conclude that, taking the 

number of parameters into account, the DFM-GNB specification provides a better fit to 

the data than the MPLN model, while the advantage of DFM-GNB is not statistically 

significant at conventional levels.  In comparison with the norm-GNB model, the DFM-

GNB outperforms in terms of information criteria and the Vuong test.19  Thus, 

comparative evidence in support of our semi-parametric model is favorable.   

Demand model parameters for each specification represent average effects across 

heterogeneity types, while the NUH-GNB model ignores unobserved heterogeneity.  

Elasticity estimates in table 3, exhibit a fairly wide range across specifications.  The 

average DFM-GNB effect suggests price inelastic demand (εop = -0.54), while the models 

with standard normal heterogeneity exhibit more price responsiveness―inelastic for 

norm-GNB (εop = -0.82) and elastic for MPLN (εop = -1.65).  The model that ignores 

heterogeneity indicates price elasticity close to unitary (εop = -1.01).  A similar pattern is 

found in the cross-price elasticities, with relatively low responsiveness found in the 

DFM-GNB (εcp = 0.40) and more responsiveness in the other models (εcp = 0.74 for the 

NUH-GNB, εcp = 1.58 for the MPLN, and εcp = 1.03 for the norm-GNB).  All estimations 

imply that beach visitation is a normal good when evaluated at the means of the data (εm 
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= 0.29 for DFM-GNB, εm = 0.60 for NUH-GNB, εm = 0.53 for MPLN, and εm = 0.36 for 

norm-GNB).  Overall, the pattern of results shows less responsiveness in DFM parameter 

estimates, suggesting that more variation in recreation demand is attributed to unobserved 

heterogeneity as we move from a parametric specification to a less restrictive alternative. 

The coefficient on the sp dummy variable is not different from zero in the DFM-

GNB or NUH-GNB models.  Prima facie, these results do not appear to support the 

existence of hypothetical bias in the data after conditioning on observable and 

unobservable characteristics.  The coefficient on the sp dummy is positive and 

statistically significant in MPLN and norm-GNB models, consistent with the hypothetical 

bias heuristic of Huang, Haab, and Whitehead [22, 43].  The DFM and norm-GNB 

specifications also include a factor loading (γ) that varies across RP and SP demand.  

Since the factor loadings rescale unobserved heterogeneity, the γsp coefficient can be 

interpreted as an interaction term for SP treatments and unobserved heterogeneity.  The 

RP and SP factor loadings are significantly different from one another, with γsp > γrp.  

Thus, some degree of hypothetical bias (that associated with higher intensity visitors) 

could manifest through this parameter.  The access scenario (t = 3) indicator is 

statistically significant and positive in all models (with the exception of the NUH-GNB 

model), indicating that the average visitor would make more beach trips if parking and 

access conditions were improved.  The width scenario (t = 4) indicator is not statistically 

significant in any of the models except MPLN, in which it is positive. 

The parameter estimates of the discrete analog of a random parameters model 

given by specifications (3’) and (9’) are presented in table 4.  Using the same criteria as 

above, four classes of heterogeneity is the preferred specification.  The BIC favors the 
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standard DFM model over the random parameters specification.  The AIC, however, 

favors random parameters and a likelihood ratio test rejects the hypothesis that the 

interactions terms are jointly zero.20 

The random parameters DFM specification can provide additional insight into the 

latent classifications revealed in the data.  Distinct parameter estimates for classes (i.e. 

demand intensity types) are calculated as: 

 βk = β + δλk, for k = 1 - K,       (10) 

where β are the covariate parameters in the first column of table 4 and δ are the covariate 

interaction parameters in the second column of table 4 vectors.  Since λ1 = 0 for the low 

intensity demand type, the first column of table 4 applies.  For this type, the own-price 

coefficient is about half the magnitude of the standard DFM-GNB specification, but the 

elasticity evaluated at the means and taking interactions into account is about the same 

(εop = -0.53).  The cross-price elasticity for this type, on the other hand, is negative (εcp = 

-0.23) though not statistically significant (standard error = 0.59).  The sp treatment effect 

is statistically insignificant, while the access treatment (t = 3) effect is positive and 

significant.   

Only five of the fourteen interactions terms in the second column of table 4 are 

statistically significant, suggesting that only the effects of cross-price, income, the sp 

treatment, and interactions of income with marital status and age vary across 

heterogeneity types.  The cross-price elasticity, for example, varies from εcp = -0.002 for 

λ2 to εcp = 0.0007 for λ4, though none of the estimates are statistically significant at 

conventional levels.  While parsimonious in comparison with latent class models, the 

interaction of discrete factors with model covariates is a fairly restrictive way to produce 
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class-specific parameter estimates because heterogeneity in covariate effects is reduced to 

a rescaling of the common discrete factor type.  Despite the fact that the AIC and 

likelihood ratio test favor the random parameters specification, the lack of statistical 

significance in the majority of covariate parameter estimates and restrictive form of 

heterogeneity lead us to focus on the standard DFM model.  Nonetheless, the random 

parameters DFM model could be worth pursuing in this and other applications, as 

alternate specifications (i.e. dropping some primary interaction terms or limiting the 

number of DFM interaction terms) could prove to fit the data well and provide for more 

insight into class-specific preferences. 

We measure the economic value of recreation trips as the area under the 

compensated demand function that intersects the uncompensated demand function at the 

observed price and quantity—a measure of compensating variation [18].  Bockstael, 

Hanneman, and Strand [7] show this formula to be: 
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income coefficient (taking account of interactions in equation (3)) rescaled to be in the 

same units as price, and ~
,, marriedage maropageopop ×+×+= βββopβ  is the own-price 

coefficient (accounting for interactions).  Thus by equation (11), we employ duality to 

evaluate economic welfare for every individual in the sample under conditions t and 

conditional on heterogeneity type k.  Measures of average conditional trip demand and 

(absolute value of) average annual compensating variation by heterogeneity type for 
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relevant demand conditions are presented in table 5.  Asymptotic standard errors for 

compensating variation are calculated using the delta method. 

Estimation results by heterogeneity type exhibit systematic differences in the 

conditional mean of trips with lower values of λ associated with lower recreation demand.  

Likewise, estimates of compensating variation are smaller for lower values of λ as 

indicated by equation (11).  For example, for the RP data predicted demand is 2.2, 5.5, 

12.8, and 38.2 days per year for heterogeneity types 1 through 4 respectively, with 

compensating variation measures of $360, $914, $2109, and $6380.  While these annual 

welfare estimates can be divided by number of trips to produce unit measures, the form of 

(11) produces roughly comparable per trip estimates across heterogeneity types, ranging 

from $164 to $167 per trip for the low-intensity demand and high-intensity demand, 

respectively.  These estimates are similar to recent approximations (consumer surplus) of 

the value of beach recreation days—ranging from $38 to $274 per trip for an array of 

North Carolina beach sites [5] and $137 to $178 per trip for two Georgia beach sites 

[23]—and somewhat larger than what Whitehead et al. [44] found—roughly $90 per 

trip—using the same data.  Trip estimates associated with SP data are slightly higher, 

ranging from 2.4 to 58 days per year, with corresponding welfare measures of $400 and 

$9759. 

Turning next to the hypothetical improvement scenario, we find significantly 

higher demand when parking and access points are improved so that beachgoers would 

not have to spend an inordinate amount of time searching for a parking space and would 

not have to walk a great distance to access the beach.21  Under this scenario conditional 

beach trips increase 46 to 99 percent, with the degree of amplified demand increasing 
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monotonically with demand-intensity type.  Compensating variation increases by roughly 

similar proportions, suggesting that improvements in access and parking could induce 

considerable economic benefits. It is conceivable, however, that hypothetical bias could 

be expressed through the SP factor loading (γsp - which is common to all SP demand 

equations).  To explore this possibility we calculate conditional trip demand and 

economic welfare excluding the statistically insignificant sp parameter estimate and 

employing the factor loading associate with RP demand (γrp).22  Under these conditions, 

we find that beach recreation demand increases a more moderate 31 to 32 percent, with 

similar increases in economic welfare.  Thus, evidence does suggest that the SP data may 

exhibit hypothetical bias, but this bias can be excised using procedures similar to 

Whitehead et al. [43]. 

Our DFM heterogeneity types can be thought of as latent sub-populations, and 

welfare for the full population [41] can be summarized by employing our empirically 

estimated probability weights: 
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producing an average welfare measure analogous to the standard compensating variation 

measure.  For our other specifications, individual welfare is calculated as: 
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where )exp( iitit x εβμ += , ),0(~ ΩMVNiε  for the MPLN model; )exp( ititit x εγβμ += , 

)1,0(~ Niε for the norm-GNB model; and )exp( βμ itit x=  for the NUH-GNB model.  

Average compensating variation is the mean of (12) or (13) over the entire sample.  
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Conditional trip means and summary welfare measures for each of the four models under 

relevant demand conditions are presented in table 6. 

Most models under-predict the number of trips, except for the MPLN which 

greatly over-predicts trip levels.  For example, the DFM-GNB predicts 9.49 trips per year 

for the RP baseline compared to 10.93 for the NUH-GNB model, 62.04 for the MPLN 

model, and 7.90 for the norm-GNB specification—the observed level is 11.08. 

The DFM-GNB model produces a summary compensating variation estimate of 

$1574 per visiting household per year, or about $166 per trip, for economic cost 

attributable to loss of access to beach sites in southeastern North Carolina.  Compensating 

variation under SP demand is somewhat higher at $2202 per visiting household per year.  

Controlling for potential hypothetical bias (SP-access* estimates), improvements in 

access increase compensating variation by 32 percent, to $2079 per year.  The standard 

errors for DFM-GNB are rather large in comparison with the other models. 

The GNB specification without controls for unobserved heterogeneity produces 

mean conditional trip estimate very close to the sample mean.  Welfare measures are 

lower than those produce by DFM-GNB.  Compensating variation for loss of access for 

the RP data is $975 per visiting household per year, or about $89 per trip.  This baseline 

is close to that found in Whitehead et al. [44].  Compensating variation for SP data is 

slightly higher at $1176 per visiting household per year, while economic welfare for 

improved access (excluding the sp coefficient) is $1275 per year.  The $300 difference in 

welfare (31% increase) between RP and the hypothetical-bias adjusted access scenario is 

roughly equivalent to that found by Whitehead et al. [44]. 
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The MPLN model produces extremely high trip estimates, ranging from 62.04 for 

RP to 99.15 for SP-access scenario.  These estimates are approximately five times the 

size of the sample statistics, and much greater than estimates from other specifications.  

Compensating variation estimates are also somewhat large, ranging from $2407 for RP to 

$4015 for SP-access.  We construe this as evidence that the MPLN model is mis-

specified.  The parameter estimates do not fit the data very well.23  Standard errors, 

however, are relatively small (e.g. $45.50 for RP).  Lastly, the norm-GNB results produce 

conditional trip estimates that are somewhat lower than the other models and welfare 

estimates that are similar to the NUH-GNB model.  

Empirical evidence tends to favor the DFM-GNB specification over a 

specification that ignores unobserved heterogeneity (NUH-GNB) and models that impose 

multivariate normality on unobserved heterogeneity (MPLN and norm-GNB).  Thus, 

results suggest the flexibility inherent in the semi-parametric characterization of 

unobserved heterogeneity has advantages in model-fitting.  The asymptotic standard 

errors of variable transformations (elasticities and measures of compensating variation), 

however, tend to be rather large.  The MPLN model produces the most precise parameter 

estimates, but these estimates will be biased if the normal distribution for unobserved 

heterogeneity is mis-specified or if the restrictions on the covariance matrix are invalid.  

Our results are consistent with mis-specification of the MPLN model in our application, 

though removal of outliers improves the fit of MPLN. 

  

6. Conclusions 
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Information on revealed (RP) and stated preference (SP) is often gathered by those 

interested in valuing hypothetical changes in environmental quality or resource 

management regimes.  Cameron [10] proposed combining these sources of data to 

improve model estimation and welfare calculations.  Joint estimation allows one to glean 

more information about the underlying structure of preferences by imposing cross-

equation restrictions on model parameters and assessing behavior associated with 

unobserved levels of exogenous factors in a way that was consistent with the observed 

levels.   

Our results provide support to the DFM-GNB specification for modeling panel 

(and quasi-panel) count demand data.  The method provides for a flexible 

characterization of count dispersion and incorporates unobserved heterogeneity while 

allowing for cross-equation correlations.  Parameters associated with unobserved 

heterogeneity tend to exhibit statistical significance, and the model that ignores 

unobserved heterogeneity (NUH-GNB) is rejected at conventional significance levels.  

Each specification includes age and marital status (dummy variable for married) of the 

survey respondents, as well as interactions of age and marital status with own-price, 

cross-price, and income.  Results suggest that both observable and unobservable 

heterogeneity are important aspects of recreation demand. 

Information criteria and Vuong’s non-nested likelihood ratio test support the 

DFM-GNB over a generalized negative binomial model in which unobserved 

heterogeneity follows a standard normal distribution (norm-GNB).  The same criteria 

lend statistical support to the DFM-GNB over the multivariate Poisson log-normal 

(MPLN) model, but the second step of the Vuong test is not statistically significant.  Each 
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of the parametric heterogeneity models exhibits more responsiveness in terms of 

covariate elasticities (own-price, cross-price, and income), suggesting that more variation 

in recreation demand is attributed to unobserved heterogeneity as we move from a 

parametric specification to a less restrictive alternative.  The MPLN model, however, 

provides poor fit to the data, with estimated trips roughly five times the sample statistics.   

Welfare estimates derived from the DFM model are roughly 50% larger than 

those derived from the generalized negative binomial models that ignore unobserved 

heterogeneity (NUH-GNB) and impose standard normality (norm-GNB).  Moreover, the 

confidence intervals associated with DFM are significantly larger.  Welfare estimates for 

the MPLN model are much larger than any of the competing models, largely reflecting 

the apparently large bias in predicted trips.  In particular, the MPLN results appear 

sensitive to outliers.  The confidence intervals for MPLN, however, are relatively tight 

(an order of magnitude less than DFM).  With joint normal unobserved heterogeneity, the 

MPLN estimator will be asymptotically efficient.  If, however, normality does not hold 

then the MPLN estimates is biased and inconsistent. The DFM specification provides a 

flexible specification that should produce reliable, albeit potentially less efficient, 

estimates under general conditions.  We recommend that both models be explored in 

empirical work. 

Including latent segments with endogenous probabilities makes the DFM 

approach similar to the latent class model, but the standard form of DFM posits the class 

probabilities as fixed (rather than functions of covariates) and does not produce separate 

parameter estimates by class.  We argue that, in comparison with the latent class model, 

the DFM framework is appropriate for count demand panel data, since: (i) the 
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introduction of discrete factors explicitly incorporates cross-equation correlations; (ii) the 

specification is more straightforward as covariates do not appear in both the demand 

equation and class probabilities; and (iii) the specification is parsimonious, while 

allowing for variation across agents and across the panel dimension.  These attributes of 

the model, however, may not always be advantageous given the data at hand, as a priori 

knowledge of information that affect class membership is not utilized, and the way in 

which unobserved heterogeneity is introduced may be viewed as restrictive. 

Given our empirical estimates of beach recreation under current and improved 

conditions, we are able to interpret heterogeneity types as reflecting demand intensity.  

Since heterogeneity is approximated by a discrete distribution, we can use the support 

points to produce welfare estimates that vary by heterogeneity type, not unlike the results 

from latent class RUMs.  This flexibility can allow policymakers and analysts to explore 

welfare effects within the user population. 
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1 See Blau and Hagy [6], Hu [21], and Mocan and Tekin [27] for applications of DFM. 

2 We show the details of this mechanism using a stylized model with bivariate random 

errors in the online Appendix. Note that this single random effect approach with different 

factor loadings for each equation could not capture the full generality of the underlying 

multivariate normal distribution, as this specification places restrictions on the structure 

of the variance-covariance matrix. 

3 The latent class approach resolves this problem by assuming that there are a finite 

number of person types. With several parameters that vary across type and several types, 

the curse of dimensionality arises again. 

4 Latent class modeling can be viewed as a finite mixture approach to random parameter 

models [e.g. 15]. 

5 Morey, Thatcher, and Breffle [28] explore the use of Likert-scale attitudinal responses 

in estimating a latent class attitudinal model and how this approach could be used in 

conjunction with choice models. 

6 We note that our data are aggregated over sites, so our results also restrict coefficients 

across sites.  This is due, however, to the nature of the data, not the DFM approach. 

7 The interested reader is referred to Whitehead et al. [44] for more information on the 

survey. 



                                                                                                                                                 
8 Our dataset includes both visitors that made day trips to the beach and visitors that 

stayed overnight.  Whitehead et al. [44] find no evidence of bias with these data in 

pooling different user types. 

9 Considering that the log-likelihood function might not be globally concave, we start the 

estimation with a variety of initial parameter values, which are generated by a grid 

search.  Our estimation programs consistently converge to virtually the same parameter 

estimates except for married, op×married and inc×married.  The parameter estimates 

presented in table 2 correspond with the highest log-likelihood value.   

10 We explored interactions of treatment variables (specifically sp (t = 2, 3, or 4), access 

(t = 3), and width (t = 4) with own-price, cross-price, and income to allow for structure 

change between treatments [44], but the parameter estimates were not statistically 

significant; a LRT supports restricting the parameters to zero (χ2
df=9 = 12.423). 

11 The LRT supports pooling data across equations and estimating one set of coefficients 

for the primary demand parameters, rather than different estimates for each of the four 

equations (χ2
df=33 = 10.041). 

12 The online appendix contains parameter estimates for DFM models with NB1 and NB2 

variance specifications.  For the restriction implied by NB1, χ2
df=1 = 1099.555, and for the 

restriction implied by NB2, χ2
df=1 = 191.718. 

13 For the restriction implied by the model with only two factor loadings, χ2
df=2 = 1.263. 

14 For the restriction implied by NUH-GNB, χ2
df=7 = 3023.761. 

15 Following Train [40], Halton sequences are used to numerically compute a 

multidimensional integral in the MPLN model. Thanks are due to Kevin Egan and Joe 

Herriges for providing the GAUSS code for this estimation procedure. 
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2 2

16 Details of these steps can be found in the Appendix of Englin and Lambert [14]. 

17 AIC s sLζ= −

s

 and BIC = -2Ls+ζsln(N), where Ls is the log-likelihood of model 

specification s, N is the sample size, and ζ is the number of parameters in specification s. 

18 The directional test sample-weighted t-statistic is 1.12. 

19 The first step null hypothesis for the Vuong test is rejected at a significance level of 

0.01, and the second step favors DFM-GNB over norm-GNB with a sample-weighted t-

statistic of 3.67. 

20 For the restriction implied by standard DFM-GNB, χ2
df=14 = 83.328. 

21 The width (t = 4) scenario did not appear to shift recreation demand, thus trips and 

welfare measures for this scenario are not reported. 

22 If, on the other hand, the magnitude of SP parameters also reflects an expectation of 

higher income [43], our hypothetical bias-adjusted estimates will represent a lower 

bound. 

23 Note that the MPLN model in Egan and Herriges [13] over-predicts the mean visits by 

nearly 30% for a type of visitation in their data. Our results suggest that fit of MPLN 

parameters is hampered in the presence of extreme values in dependent variables. 

Exploring a subset of our data with outliers removed, the goodness-of-fit for MPLN 

estimates is considerably improved. 
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Table 1:  Descriptive Statistics (N = 664) 

Variable Mean 
Standard 

Deviation 

Own-price (op) – travel cost to southeastern NC 

beaches 
89.49 61.09 

Cross-price (cp) – travel cost to Outer Banks, NC 

beaches 
202.05 57.04 

Income (m) – household income in thousands of 

US dollars 
58.75 26.89 

Age – age of respondent 43.82 15.14 

Married – dummy variable for married respondent 0.68 0.47 

Trips  for t = 1 (y1) – revealed preference trips 11.08 23.00 

Trips for t = 2 (y2) – stated preference trips under 

current conditions 
13.05 24.84 

Trips for t = 3 (y3) – stated preference trips under 

improved access 
17.10 30.50 

Trips for t = 4 (y4) – stated preference trips under 

improved beach width 
14.17 26.40 

 

 



Table 2: Beach Recreation Demand Models 
Dependent variable: annual beach trips (yit)  

 DFM-GNB NUH-GNB MPLN norm-GNB 
Variable parm std err parm std err parm std err parm std err 
own-price -0.007 0.001 -0.016 0.001 -0.012 0.001 -0.002 0.001 
cross-price 0.006 0.001 -0.005 0.001 -0.011 0.001 0.012 0.001 

income -0.006 0.001 0.007 0.001 0.005 0.002 -0.018 0.001 
married -0.841 0.076 -1.229 0.069 -2.110 0.140 -0.179 0.078 

age 0.006 0.002 -0.038 0.002 -0.052 0.004 0.011 0.002 
sp 0.104* 0.070 0.185* 0.154 0.363 0.035 0.180 0.060 

access 0.274 0.050 0.266* 0.139 0.334 0.026 0.280 0.051 
width 0.091* 0.065 0.097* 0.242 0.093 0.032 0.086* 0.064 

op×married 0.0004* 0.0004 0.004 0.001 0.007 0.001 0.002 0.001 
op×age 0.0001 0.0001 0.0001 0.0001 -0.0001 0.0001 -0.0002 0.0001 

cp×married 0.003 0.001 0.003 0.001 0.008 0.001 -0.002 0.001 
cp×age -0.0001 0.0001 0.0001 0.0001 0.0003 0.0001 -0.0001 0.0001 

inc×married -0.001* 0.001 -0.004 0.001 -0.013 0.001 0.003 0.001 
inc×age 0.0003 0.0001 0.0001 0.0001 0.0003 0.0001 0.0005 0.0001 
constant 0.809 0.123 4.265 0.156 5.377 0.247 0.648 0.113 
αrp 0.016 0.003 0.878 0.098 - - 0.033 0.005 
αsp 0.002 0.0007 0.632 0.056 - - 0.005 0.001 
p 3.211 0.069 2.204 0.033 - - 3.002 0.055 
γrp 2.856 0.135 - - - - -0.753 0.031 
γsp 3.167 0.036 - - - - -0.816 0.010 

2λ  0.730 0.029 - - - - - - 
3λ  -0.476 0.034 - - - - - - 
1θ  1.166 0.149 - - - - - - 
2θ  0.870 0.158 - - - - - - 
3θ  0.213* 0.180 - - - - - - 
σ1 - - - - 1.365 0.025 - - 
σ2 - - - - 1.327 0.020 - - 
σ3 - - - - 1.289 0.017 - - 
σ4 - - - - 1.293 0.027 - - 
ρrp - - - - 0.815 0.005 - - 
ρsp - - - - 0.985 0.001 - - 

lnL -7552.09 -9063.97 -7646.99 -7653.55 
LRT (df) 
[p-value] 

39,578.19 (24) 
 [<0.0001] 

36,554.42 (17) 
[<0.0001] 

62,420.8 (20) 
 [<0.0001] 

39,375.27 (19) 
 [<0.0001] 

AIC 15154.19 18163.95 15335.99 15347.11 
BIC 15266.65 18244.92 15430.46 15437.07 
* - not statistically significant at 5% level for type I error.  For each model, the number of unique 

individuals included in estimation is 664.  Standard errors are robust. 

 



Figure 1: Unobserved Heterogeneity
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Table 3: Elasticity Estimates 

Elasticity DFM-GNB NUH-GNB MPLN norm-GNB 

own-price -0.5443 
(0.0183) 

-1.0106 
(0.0294) 

-1.6523 
(0.0244) 

-0.8173 
(0.3579) 

cross-price 0.4027 
(0.1905) 

0.7388 
(0.0414) 

1.5825 
(0.0054) 

1.0312 
(0.4337) 

income 0.2938 
(0.0357) 

0.5973 
(0.0294) 

0.5292 
(0.0001) 

0.3591 
(0.0322) 

Asymptotic standard errors are calculated via the delta method and are indicated in 

parentheses. 
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Table 4: Random Parameters DFM-GNB Model 
Dependent variable: annual beach trips (yit)  

 
Primary and DFM 

parameters  
( θλγραβ ,,,,, ) 

Heterogeneity 
interaction  

(δ) 
Variable parm std err parm std err 
own-price -0.0037 0.0010 0.0037* 0.0020 
cross-price -0.0041 0.0011 0.0049 0.0025 

income -0.0019* 0.0023 -0.0097 0.0048 
married -0.6586 0.1192 -0.0163* 0.2351 

age -0.0168 0.0032 0.0079* 0.0074 
sp 0.0717* 0.0985 1.3838 0.1982 

access 0.3244 0.0914 -0.1295* 0.2001 
width 0.1224* 0.1252 -0.0729* 0.2681 

op×married 0.0013* 0.0008 -0.0028* 0.0015 
op×age -0.0001 0.0000 -0.0001* 0.0000 

cp×married 0.0024 0.0008 0.0027* 0.0015 
cp×age 0.0001* 0.0001 0.0001* 0.0001 

inc×married 0.0016* 0.0018 -0.0095 0.0036 
inc×age 0.0002 0.0000 0.0002 0.0001 
constant 2.2433 0.1739 - - 
αrp 0.0187 0.0036 - - 
αsp 0.0023 0.0007 - - 
p 3.1583 0.0661 - - 
γrp 2.2447 0.3821 - - 
γsp 1.2148 0.1983 - - 

2λ  0.7518 0.0316 - - 
3λ  -0.4389 0.0381 - - 
1θ  1.5760 0.1646 - - 
2θ  1.2220 0.1720 - - 
3θ  0.6630 0.1913 - - 

lnL -7510.43 
LRT (df) 
[p-value] 

 39,661.51 (37) 
 [<0.0001] 

AIC 15098.86 
BIC 15274.30 
* - not statistically significant at 5% level for type I error; standard errors 

are robust. 
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Table 5: Predicted Trips and Welfare by Treatment and Heterogeneity Type 
for Standard Discrete Factors Method-Generalized Negative Binomial 

Treatment λk k 
Predicted 

Trips 

Compensating 

Variation# 

0.000 1 2.19 $360.57 
(126.55) 

0.325 2 5.55 $913.94 
(320.76) 

0.617 3 12.77 $2109.00 
(740.04) 

RP 

1.000 4 38.19 $6379.64 
(2236.60) 

0.000 1 2.43 $400.34 
(140.51) 

0.325 2 6.82 $1123.15 
(394.18) 

0.617 3 17.18 $2841.79 
(997.06) 

SP 

1.000 4 57.84 $9759.12 
(3418.00) 

0.000 1 3.21 $526.90 
(166.55) 

0.325 2 8.98 $1479.17 
(467.40) 

0.617 3 22.61 $3748.46 
(1183.30) 

SP-access 

No correction 

for 

hypothetical 

bias 1.000 4 76.10 $12,962.23 
(4070.60) 

0.000 1 2.89 $474.55 
(166.55) 

0.325 2 7.31 $1203.42 
(422.34) 

0.617 3 16.81 $2779.99 
(975.38) 

SP-access* 

Corrected for 

hypothetical 

bias 1.000 4 50.24 $8443.79 
(2958.60) 

# - Absolute values of compensating variation are presented.  RP estimates employ the γrp 

factor loading; SP estimates employ the γsp factor loading, except for  SP-access*, which 

are calculated using the γrp factor loading and excluding the sp coefficient.  Asymptotic 

standard errors (in parentheses) are calculated using the delta method. 



Table 6: Summary Predicted Trips and Compensating Variation for Demand Models 

 DFM-GNB NUH-GNB MPLN norm-GNB 

Treatment 
Predicted 

Trips 

Compensating 

Variation# 

Predicted 

Trips 

Compensating 

Variation# 

Predicted 

Trips 

Compensating 

Variation# 

Predicted 

Trips 

Compensating 

Variation# 

RP 9.49 $1574.19 
(548.67) 10.93 $975.08 

(129.95) 62.04 $2407.05 
(45.50) 7.90 $915.65 

(172.69) 
SP 13.18 $2201.62 

(763.39) 13.51 $1175.86 
(156.58) 77.48 $2966.61 

(65.50) 9.93 $1151.86 
(206.90) 

SP-access 17.34 $2914.28 
(905.66) 17.16 $1538.94 

(204.60) 99.15 $4014.95 
(91.61) 13.14 $1527.29 

(274.04) 
SP-access* 12.48 $2078.73 

(722.81) 14.26 $1275.47 
(169.77) 68.96 $3053.41 

(63.60) 10.45 $1213.49 
(228.70) 

# - Absolute values of compensating variation are presented.  RP estimates employ the RP factor loading (γrp), while SP estimates 

employ the SP factor loading (γsp).  The exception is SP-access* estimates, which are calculated using the RP factor loading (γrp) 

and excluding the sp coefficient in demand estimation to correct for potential hypothetical bias in the data.  Asymptotic standard 

errors for compensating variation are calculated using the delta method and are displayed in parentheses. 

 
 


