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Site Congestion in Recreation Choice Models:  
A Generated Regressors Approach to Beach Site Selection 
 

Abstract. Site congestion has received limited attention in revealed preference studies.  
Difficulties of incorporating congestion in site choice models include simultaneity bias 
and complications associated with obtaining data on expectations.  Using site choice data 
from an onsite sample of North Carolina beach goers, we attempt to address these issues 
by generating exogenous proxies for anticipated congestion with the help of instrumental 
variables. We find statistical support for including congestion in our random utility 
models, and a concave (downwards) relationship between congestion and utility.  Results 
suggest that, in accord with theory, failure to account for congestion can lead to bias in 
RUM parameter estimates.  
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Site Congestion in Recreation Choice Models: 
A Generated Regressors Approach to Beach Site Selection 

 

1. Introduction 

Recreation demand models have a rich history in natural resource economics as a tool for 

exploring consumer preferences for recreation and informing regulatory policy and 

management decisions.  The basic random utility model (RUM) makes use of a utility 

maximization framework with a particular specification that provides a simple, closed-

form econometric solution and an insightful characterization of individual preferences for 

attributes of recreation sites.  Site congestion is an attribute that has received limited 

attention in the empirical revealed preference literature.  As an attribute of the recreation 

site, congestion presents formidable challenges for empirical modeling.  Simultaneity is 

inherent in the relationship between site choice and congestion—congested sites will 

appear popular because many individuals choose to visit them, but they are congested 

simply because they are popular.  Endogeneity of congestion will lead to upward bias in 

the RUM congestion coefficient and bias in the coefficients of covariates that are 

correlated with congestion.  In addition, there are measurement issues associated with site 

congestion; ex post congestion is typically observed by researchers, but ex ante 

anticipations of congestion likely influence behavior. 

In this article, we explore the role of congestion in a RUM of beach site selection.  

We review how previous research has examined the issue of congestion in recreation site 

choice models and offer a simple approach for addressing site congestion with intercept 

data and small choice sets.  Our data pertain to barrier island sites on the North Carolina 

coast.  As the data are gathered onsite, our estimation strategy must adjust for 



endogenous stratification.  In addition, congestion is only observed at the chosen site.  

We use weather conditions to generate exogenous approximations of congestion levels at 

all sites in the choice set and invoke the assumption of rational expectations to utilize our 

congestion forecasts as approximations of anticipated congestion—the amount of 

congestion that individuals envision at the various sites when deciding which site to visit.  

Standard errors of the RUM are adjusted to reflect the sampling distribution of the first-

stage generated regressor equation.  Our results suggest that, in accord with theory, 

failure to account for congestion in estimation can lead to bias in RUM parameter 

estimates.        

This paper proceeds as follows.  Section 2 reviews the literature on congestion in 

recreation demand models.  Section 3 describes the endogeneity problem as related to 

congestion and some of the existing approaches for dealing with endogeneity in RUMs.  

Section 4 presents the data, and section 5 describes the chosen method.  Section 6 reports 

our empirical results, and section 7 concludes. 

 

2. Recreation Demand and Site Congestion 

Congestion at recreation sites induces interdependency among individual preferences 

analogous to the non-additivities in demand explored by Leibenstein (1950).1  Physical 

space at any recreation site must be limited; congestion sets in when some individuals 

perceive other users of the site in such a way that it influences their own utility of 

consumption attributable to visitation at the site.  Under such conditions, individual 

demand for recreation is not additive in the conventional sense, as demand for individual 

                                                 
1   The “bandwagon” effect—in which utility from consumption is an increasing function of others’ 
consumption—and the “snob” effect—in which utility from consumption is a decreasing function of others’ 
consumption—are both examples of non-additivity in market demand. 



i at any price can depend on the aggregate demand of the other j ≠ i users of the site 

(Fisher and Krutilla 1972).  Congestion may also be expressed as affecting individual i’s 

cost of visiting the site (Jakus and Shaw 1997), in which case the price of visit is a 

function of aggregate demand. 

Early studies on congestion in recreation demand focused on efficiency of market 

outcomes and optimal management strategies (Fisher and Krutilla 1972; Cicchetti and 

Smith 1973; Anderson and Bonsor 1974; McConnell and Duff 1976; Freeman and 

Haveman 1977; McConnell 1988).  Generally, excessive congestion (or “crowded” 

conditions) is characterized as a negative attribute in site choice models, though aversion 

to congestion may be heterogeneous.  Findings indicate that consumer surplus measures 

will be biased if congestion effects are present and not accounted for; the bias will be 

upward if congestion is a negative attribute.  This is further complicated by the premise 

that some individuals prefer more congested areas to those with a lower density of users 

(Eroglu and Harrel 1986; Anderson, Kerstetter, and Graefe 1998).   

From an empirical perspective, congestion presents formidable challenges.  If 

congestion affects site choice and it is missing from estimation, misspecification can 

occur in the form of omitted variable bias—the researcher can expect bias in parameter 

estimates for all covariates that are correlated with the omitted congestion variable.  Since 

congestion is likely to be driven by the relative desirability of site attributes, the analyst 

can expect some degree of correlation between congestion levels and site attributes, the 

implication being a high potential for bias in parameter estimates that are relevant for 

policy analysis.  Including congestion levels in empirical analysis is not straightforward, 

however.  In site choice models, a congestion measure is also likely to cause simultaneity 



bias because the congestion measure, which is treated as an exogenous variable in the 

model, is a function of the choices of other individuals—site congestion will be 

endogenous because it is determined simultaneously with site choice.  Thus, we have 

potential for bias even if congestion is included in the model.   

Empirical recreation demand analyses of congestion have primarily made use of 

stated preference methods (Cicchetti and Smith 1973; McConnell 1977; Walsh et al. 

1983; Boxall, Rollins, and Englin 2003).  As recognized by Timmons and Murdock 

(2007), stated preference models avoid simultaneity bias by hypothetically varying the 

degree of congestion independent of other parameters.  While arguably capable of 

providing insights into recreation behavior, this approach may suffer from any number of 

biases that can plague stated preference studies.  Only a handful of researchers have 

attempted to address congestion in the context of revealed preference models 

(Schuhmann and Schwabe 2004; Boxall, Hauer, and Adamowicz 2005; Timmins and 

Murdock 2007).   

Jakus and Shaw (1997) review some of the difficulties in addressing congestion in 

revealed preference studies.  They characterize four types of congestion: actual, expected, 

anticipated, and perceived.  Actual and perceived congestion are ex post measures, actual 

congestion being the congestion level measured by an outside observer (i.e. someone not 

in the sample), and perceived congestion an individual’s subsequent assessment of 

congestion at a site.  Expected and anticipated congestion are ex ante measures, expected 

congestion being the mean of a distribution, and anticipated congestion being an 

individual’s own estimate of the congestion they would experience if they decide to visit 

a site.  The Random Utility Model presumes that site choice stems from a rational 



assessment of site attributes, such that anticipated congestion is most likely to be the 

relevant measure for RUM estimation.  Obtaining information on individuals’ ex ante 

assessments, however, can require extraordinary effort on the part of the researcher.   

Recent revealed preference studies liken the generation of congestion to a Nash 

bargaining model, where individuals make recreational site choices based on their 

expectations of the location that other individuals may choose (Boxall, Hauer, and 

Adamowicz 2005; Timmins and Murdock 2007).  This concept was originally illustrated 

by Cesario (1980), who described a resorting mechanism in which individuals shift their 

use from more congested sites to less congested sites conditional on site attributes.  In 

equilibrium, individuals’ expectations of congestion are confirmed by the actual behavior 

of others.  Thus, theory provides a mechanism by which actual congestion may provide a 

reasonable approximation of anticipated congestion—in equilibrium the two measures 

should be equal. 

Schuhmann and Schwabe (2004) use various measures of actual and expected 

congestion as a proxy for anticipated congestion in recreational fishing in North Carolina.  

Their actual congestion measure is that observed by surveyors, while expected congestion 

is a measure of central tendency from previous time periods.  They find a stable concave 

(downwards) relationship between utility and congestion, with “optimal” congestion 

varying with the measure of congestion employed and by user type.  Thus, empirical 

evidence suggests that moderate levels of congestion may enhance utility associated with 

a site.  Schuhmann and Schwabe do not consider the possible endogeneity of actual 

congestion.   



Boxall, Hauer, and Adamowicz (2005) collect ex post assessments of anticipated 

congestion for wilderness visitors in Canada.  They develop a model of congestion 

forecasting that posits the formation of anticipated congestion as the result of a bounded 

yet rational assessment of information on site characteristics, individual characteristics, 

and previous congestion levels of a subset of the universe of sites.  They identify this 

formulation as more realistic than assuming perfect forecasting across all sites.  They 

estimate competing site choice models using the ex post assessment of anticipated 

congestion levels (or its modal value where missing at the individual level) and using a 

forecasted congestion measure that serves as an instrument.  They find that the forecasted 

congestion model performs better in terms precision and plausibility of parameter 

estimates. Their results indicate the mean effect of congestion is indeed negative (i.e. a 

“bad”), but users exhibit heterogeneous preferences for congestion with 11% exhibiting a 

positive effect (i.e. a “good”).   

Timmins and Murdock (2007) use an endogenous sorting model to account for 

site congestion.  This method works well in light of the difficulties associated with 

finding suitable instruments.  An adequate instrument must correlate with congestion, but 

exhibit redundancy in the site choice model.  Timmins and Murdock invoke equilibrium 

conditions with regard to expected share of individuals (i.e. congestion) across sites and 

use a contraction mapping to identify fixed site effects, which are then decomposed into 

covariate effects via a smoothed GMM quantile estimator.  One of the advantages of their 

approach is that the use of instrumental variables is relegated to the linear part of 

estimation, in which the properties of this approach are well understood.  Their results 

confirm that failure to account for congestion is likely to lead to omitted variable bias.  In 



their study, they find that a failure to account for congestion leads to an understatement of 

welfare attributable to loss of a site by roughly ½.    

We propose a generated regressors approach for estimating the impacts of 

congestion in a model of recreational beach choice in North Carolina.  Our method’s 

strengths lie in its ability to deal with a small sample of sites and low cost of data 

collection.  The approach of Timmins and Murdock (2007) requires a large number of 

sites be sampled in order for there to be sufficient data for the second stage regressions; 

our approach works with a choice-based sample with information on congestion at only 

the chosen site and with a small number of sites in the choice set.  

We control for endogeneity of congestion measures with an instrumental variables 

approach assuming ex post observed congestion is a valid measure of ex ante anticipated 

congestion.  Our generated regressors approach addresses the lack of data on congestion 

across all sites for all choice occasions.  Bias from intercept sampling, otherwise known 

as choice based sampling, is corrected using Weighted Exogenous Sample Maximum 

Likelihood methods (Manski and Lerman 1977).2    We explore specifications of a site-

duration choice model within a RUM framework both with and without measures of 

congestion. 

 
 
3. Endogeneity in RUM 
 
Endogeneity occurs when observed explanatory variables are correlated with error terms, 

resulting in misspecification when relying on estimation procedures such as RUMs, 

which assume independent errors (Louviere et al. 2005).  This can be represented 

                                                 
2 Other researchers have addressed the potential for bias due to choice based sampling by  allocating 
sampling proportions according to population proportions in their sampling design (Schuhmann and 
Schwabe 2004; Boxall, Hauer, and Adamowicz 2005). 



mathematically in RUMs, as follows:  the utility that individual n obtains from choosing 

site i can be decomposed into a deterministic portion of utility, represented by V(·), and a 

random component of utility, represented by nie .  The utility function is:    

nininini esxtcVU += ),,(          (1) 

where nitc  represents travel and time costs for individual n to site i, ix  represents 

observed attributes of site i, and ns  represents characteristics of individual n.  

Endogeneity occurs in this context when the random component of utility ( nie ) is 

correlated with observed site characteristics or travel costs.  In discrete choice models, 

this correlation is assumed to be zero or constant across alternatives (Train 2003).  

Violation of this assumption results in biased parameter estimates.  Endogeneity can be 

depicted with the decomposition: 

niinie εξ +=            (2) 

where iξ  represents error specific to site i and niε  represents individual-specific 

idiosyncratic taste for sites which is assumed to be independent across individuals and 

sites, as well as identically distributed.  Timmins and Murdock (2007) interpret iξ  as 

reflecting unobservable site characteristics that induce a mechanical correlation between 

the level of congestion and nie .   

When a congestion measure is included as a site attribute, the utility associated 

with site selection can be depicted as:  

ninniinini escxtcVU += ),,,( ,         (3) 



where eni follows (2), and nic  represents the anticipated congestion (in the sense of Jakus 

and Shaw).  In equilibrium, anticipations of congestion are confirmed at the site level and 

we have: 

 ci = c(m, Prob m chooses i: V(tcmi, xi, ci (Prob m chooses i), sm) + emi  

>  V(tcmj, xj, cj (Prob m chooses j), sm) + emj; ξi)   (4) 

For m ≠ n (m = 1, …, n – 1, n + 1, …., M) individuals visiting site i.  Actual congestion is 

simultaneously determined by all users’ site choice processes, which within the 

probabilistic structure of RUM reflects the probability of other m individuals choosing 

site i.  In this formulation, any observed congestion measure is likely correlated with iξ , 

which represents unobserved site characteristics that influence sorting across sites.  To 

correctly estimate the impact of congestion on site choice, it is necessary to break this 

correlation.  In our model, we assume that congestion on and between sites exists in an 

equilibrium state, thus allowing us to use a fitted value of congestion estimated using 

observed congestion (ci) as a proxy for anticipated congestion (cni).   

In addition to the traditional instrumental variable (IV) method, a number of 

potential approaches are available for dealing with endogeneity in choice models 

(Louviere et al. 2005).3    In this paper, we generate exogenous approximations of site 

congestion (a variant of the more traditional instrumental variables approach) to break the 

correlation between congestion and site attributes.  This approach is not ideal, as the 

properties of IV estimation are not clear in nonlinear models due to the fact that proof of 

consistency of IV relies on the expectation operator (which is a linear operator).  

Nonetheless, the traditional IV approach fits our data limitations—a choice-based sample 

                                                 
3 For example, the BLP method (Berry, Levinsohn, and Pakes 1995), the control function approach (Villas-
Boas and Winer 1999; Blundell and Powell 2001; Petrin and Train 2006), and the dual approach (Matzkin 
2004) are potential candidates. 



with information on congestion at only the chosen site and with a small number of sites in 

the choice set.4   While we cannot prove consistency of our estimates, our results exhibit 

a pattern consistent with successfully controlling of endogeneity.  In any event, our 

approach is arguably better than doing nothing to address site congestion (as in many 

previous studies on recreation site choice). 

 
 
4. Data 
 
Our study utilizes visitation information from seven beach sites in North Carolina, 

collected between July 2, 2003 and November 2, 2003.  Data were gathered onsite at 

Cape Lookout National Seashore, Hatteras Island, Fort Macon State Park, Pea Island 

National Wildlife Refuge, the Rachel Carson National Estuarine Research Reserve, 

Topsail Island, and Wrightsville Beach.  Figure 1 exhibits the spatial distribution of sites 

in coastal North Carolina.  These sites were chosen in an effort to adequately represent 

the wide variety of beach recreation sites found on North Carolina’s barrier islands.   

The data were collected onsite at different times of the day and on different days 

of the week, approximately ten days per month.  Each beach was surveyed at least once 

every third week on alternating days of the week, so as to acquire the most representative 

sample possible. Due to the onsite sampling procedure, corrections for endogenous 

stratification were necessary to achieve consistent results (Manski and Lerman 1977).   

Table 1 provides summary statistics for individuals in our sample and for the 

seven beach sites.  Distance to each site is calculated using the individual hometown and 

                                                 
4 With a larger number of sites in the choice set, the BLP approach can be utilized (as shown by Timmons 
and Murdock (2007)).  With information on congestion levels across all sites on all choice occasions, the 
control function approach could be explored.  The dual approach can be employed if exogenous variation in 
the endogenous variable can be found (Train and Winston forthcoming).  



beach zip codes.  Travel costs are measured as the sum of pecuniary and time costs.  

Pecuniary travel costs reflect fuel and vehicle wear-and-tear (approximated as 

$0.485×[round trip distance to each site]).  Opportunity costs of the travel time are 

estimated as a fraction of annual income (approximated as 3
1  × hourly wage).5  Average 

round-trip travel cost is around $450.  The average group size is 4.65 people and two-

thirds of those intercepted were making a multiple-day trip to the beach. 

 Given the limited number of sites in our data, we must be judicious in our choice 

of site characteristics to be included.  We include log-transformed shoreline length in our 

model in order to capture the scale of each site, and we express some of our site attributes 

in “per unit length” terms in order to reflect this standardization. Failure to address 

differences in site area could lead to aggregation bias, since several of our sites had the 

potential to be dissected into smaller sites.  Haener et al. (2004) found that including 

variables which account for the size of aggregated sites allows model parameters to be 

equivalent across scales.6    Average shoreline length is about 19.5 miles.   

Because we are primarily interested in the relationship between site choice and 

measures of beach access, our RUM model incorporates a number of site characteristics 

which are likely to influence access.  The average site has 2.6 access points with parking 

every mile and about 0.08 access points with off-road-vehicle (ORV) access every mile.  

Only Cape Lookout National Seashore and Hatteras Island allow ORV access.  In 

addition to access variables we include the number of residential housing units as an 

indicator of the potential for rental accommodations, as well as a rough indicator of the 

                                                 
5 We addressed missing income responses with an hourly wage rate of $5.15, the minimum wage in N.C.  
As a result, this measure is a conservative estimate of the true value. 
6 Some sites may have the potential to be affected by aggregation bias.  The variables indicating 
shorelength and the number of access points with parking should address this bias. 



level of development on site. The average site has 2,026 residential housing units, and 

24% of the sites in our data set can only be accessed via ferry.  The small choice set limits 

our ability to model other amenities that may drive site choice because of correlation with 

included access variables.   We, however, explore the potential for omitted variable bias 

in our analysis. 

Actual (observed) congestion was recorded by a surveyor at the time surveys were 

administered.  Before interviewing individuals, the surveyor counted all people that were 

visible at the site from a central vantage point using a handheld clicker counter.  The 

surveyor then administered surveys to individuals in that particular area.  At times, the 

surveyor walked some distance from the access point to administer the survey.  If 

traveling sufficiently far, the surveyor would make an additional person count to reflect 

varying congestion along the shore.  Average congestion was 55 people, with a standard 

deviation of 75, a minimum of 1, and maximum of 440. 

 

5. Methods 

We propose that it is possible to employ a generated regressors approach to address 

missing congestion data, while at the same time using instruments to purge endogeneity 

of congestion in our site choice model.  We assume that recreational users are constrained 

utility maximizers who choose the site Ii∈  which gives the highest level of satisfaction 

via equation (3).  We assume beachgoers exhibit rational expectations in considering the 

congestion levels at potential beach sites. Actual site congestion is simultaneously 

determined by each recreational user’s optimal choice via equation (4).   



In order for our generated congestion forecasts to function as suitable instruments, 

we must impose: E(z'ε) = 0, where z is a vector of instrumental variables (including the 

exogenous variables in (3)) and ε is the idiosyncratic error from equations (2) and (3); 

and our instruments should be partially correlated with endogenous congestion once the 

other exogenous variables are controlled for (Wooldridge 2001).  While the latter 

condition can be tested in a first-stage linear IV regression, the former condition, in 

general, cannot be tested as ε is unobservable.  Moreover, in nonlinear models the 

expectation E(z'ε) = 0 does not necessarily apply because the expectations operator is a 

linear operator. Nonetheless, as we show below, our results appear consistent with this 

restriction.  To identify the congestion effect within an instrumental variables framework, 

we require instruments that explain congestion at the site, but not choice between sites.  

Suitable instruments include exogenous demand shocks (i.e. occurrences that alter 

demand for recreation over choice occasions).  

Our first stage equation produces a proxy for anticipated congestion as a 

generated regressor.  This approach is necessary because congestion is observed at 

chosen sites, but not at alternative sites in the choice set.  The generated regressor 

addresses simultaneity bias by the inclusion of instruments which explain beach 

congestion, but not site choice.  Our semi-log functional form imposes non-negativity on 

the congestion measure in the first stage.  The second stage of estimation is a discrete site 

choice model in which fitted congestion at each site is included as a covariate.  In 

equilibrium, anticipated and experienced levels of congestion will be equal.  Our first 

stage forecast of ex post actual congestion serves as a proxy for ex ante anticipated 

congestion.   



Our generated regressor approach is inspired by empirical methods which utilize 

observed variables to proxy for unobserved site quality attributes. The method has 

similarities with techniques used to calculate expected fish catch, commonly applied 

within the recreation fishing demand literature.  McConnell, Strand, and Blake-Hedges 

(1995) model recreational anglers’ expected catch using a count process.  Expected catch 

is assumed to be a function of some combination of individual characteristics (skill set, 

experience, etc.), trip characteristics (trip length, time of year, etc.), and site 

characteristics.  Fitted measures allow observed catch conditional on these characteristics 

to act as a proxy for expected catch.  In a very similar way, our congestion measure 

utilizes observed congestion to model unobserved anticipated congestion.7      

We can depict the specific form of the mean level of anticipated congestion as 

ihihiih zxQ υαα ++= 21ln ,       (5) 

where Qih is the number of individuals observed at site i on day h, xi represents 

characteristics of site i, zi is a vector of instrumental variables for site i on day h, and ihυ  

is the error term for site i on day h.  We use a linear projection of anticipated congestion, 

rather than a count model as is common in dealing with expected catch, in order to 

maintain orthogonality between ihQ̂  and ihυ .  One of the most difficult tasks is finding 

viable instruments for our model; the instruments must be factors that help explain 

congestion, but not choices between sites.  We employ weather variables specific to the 

                                                 
7 One major difference between expected catch and expected congestion lies in the importance of 
individual characteristics in the anticipation of quality.  Fishing success, while partly determined by 
external factors, is heavily influenced by the skill of the fisherman.  In the case of beach recreation, the 
characteristics of a particular user arguably have little influence on resulting site congestion.  In equilibrium 
individuals sort across sites such that utility is maximized and anticipated congestion equals realized 
congestion (Cesario 1980; Timmins and Murdock 2007).  Thus in equilibrium, individual characteristics 
have no impact on the level of congestions other than how preferences for congestion influence sorting 
behavior. 



choice occasion (i.e. day).  The weather variables are collected from three coastal weather 

stations which collectively cover all seven sites in our dataset.  Each weather station 

covers a large geographical area, encompassing multiple beach sites.  We argue that there 

is little variation in weather between sites on any given day, so these variables are not 

likely to influence choice between sites; however, factors such as temperature, 

precipitation and convective storms are likely to influence the level of congestion at a site 

on any given day.  

As some individual and site attributes are unobservable to the researcher, the 

RUM focuses on the probability of choice.  The probabilistic statements in our basic 

model are represented by the conditional logit model, where Vni is a linear function and 

each random component, niε , is assumed to be independently, identically distributed 

extreme value (McFadden 1974).  A benefit of using the conditional logit model is the 

fact that it results in the following closed form expression: 

P(n chooses beach site i)
∑

==
J nj

ni
n U

U
iP

)exp(
)exp(

)( ,    (6) 

which is globally concave in parameters.   

In estimation it was necessary to correct for potential bias from on-site sampling 

(also known as choice-based sampling).  On-site sampling was chosen because it was 

both convenient and cost effective.  Numerous authors have identified the key issues 

related to choice-based samples (Manski and Lerman 1977; Manski and McFadden 1981; 

Cosslett 1981; Imbens 1992).  These studies show that data collected from onsite 

sampling leads to parameter estimates influenced not only by the value of the site 

attributes, but also by the sampling intensity applied by the researcher.  This means that if 

the sampling proportions are different than the population proportions, the parameter 



estimates will be inconsistent with the true values.  We correct for choice based sampling 

using weighted exogenous stratification maximum likelihood estimation (WESMLE) as 

determined by Manski and Lerman (1977).8  WESMLE is a pseudo-maximum likelihood 

estimation procedure in which a weight is computed as the population proportion divided 

by the sample proportion.  Table 2 gives the sample and population proportions used in 

estimation of the WESMLE procedure.9  The WESML estimator is commonly used when 

the distribution of site choices made by recreational users in the population is known but 

the marginal distribution of exogenous characteristics, specifically user characteristics, is 

not necessarily known.  Our estimator is: 

 ∑
=

N

n
nnn ziPiw

1
),|(ln)(max β

β
      (7) 

where )(
)()(

iQ
iHiw =  is Manski and Lerman’s weight, with H(i) representing the population 

proportions and Q(i) representing the sample proportions of site visitation.10   

Without corrections, our estimation procedure is inherently flawed due to the loss 

of information between the two stages.  In general, the coefficient estimates for generated 

regressors will be consistent, but the standard errors and test statistics will be invalid 

because the inclusion of anticipated congestion in a second stage regression fails to 

account for the sampling variation of the fitted value (Wooldridge 2001).  As a result, we 

                                                 
8 Special thanks to David Brownstone for the Stata code for the correction of the WESMLE covariance 
matrix. 
9 Population proportions were determined by using existing visitation projections in area land use plans.  In 
these equations, visitation is a function of parking capacity, hotel capacity, rental capacity, and ferry 
schedules. 
10 Manski and Lerman (1977) show that this estimator is consistent for β  but not efficient. We use 
Cosslett’s (1981b) weight, which is slightly different than the weight shown above, but is more efficient.  

Specifically, 
s

n n
Nsriw )()( = , where ns represents the number of observations in each strata (i.e. site), 

∑= snN  for Ss∈∀ , and r(s) represents the qualification factor (determined by utilizing the 
population proportions for site choice). 



utilize a paired bootstrap procedure to estimate the standard errors within the WESMLE 

procedure.  The paired bootstrap allows us to approximate the effect of the first step 

estimation on the asymptotic variance-covariance of the second step.  The process 

consists of random draws from the sample with replacement.  Each new sample is then 

used to estimate the recreation site choice model.  This is repeated so to develop a 

distribution of coefficient estimates, which are then used to calculate the standard 

errors.11  

 

6. Results 
 
The results for our first stage congestion regression models are presented in table 3.  As 

requisite in IV estimation, we include site characteristics from the RUM in our first stage 

equation.  In addition, the forecast includes a dummy variable indicating weekend or 

holiday visitation. Our instruments are temperature (in degrees Fahrenheit), a dummy 

variable indicating occurrence of a thunderstorm, and precipitation (in inches).  In 

addressing endogenous variables via IV, it is necessary to test for the appropriateness of 

instruments.  Our specification exhibits a joint F statistic of 21.46 for the instruments 

precipitation, temperature, and thunderstorms which is well above the threshold 

suggested by Staiger and Stock (1997).   

We next test if the instrumental variables are orthogonal to the error process in the 

IV equation.  We test our subset of instruments using the Hansen C test.  The Hansen C 

statistic tests if a subset of a model’s overidentifying restrictions appear to be satisfied 

through the calculation of two Sargan-Hansen statistics, where the first Sargan-Hansen 

                                                 
11 For more information on the empirical applications of bootstrap procedures, see Horowitz (2001) or 
Brownstone and Valletta (2001). 



statistic is calculated from the full model and the second statistic comes from a model 

without the instruments (Baum, Schaffer, and Stillman 2003).  The difference between 

the two Sargan-Hansen statistics is distributed , with df = number of instruments, and 

is used to test the null hypothesis that instrument orthogonality conditions are satisfied.  

Our initial specification does not exhibit orthogonality between instruments and the error 

term; the p-value for the Hansen C test is less than 0.0001, indicating that the null 

(orthogonality of instruments) should be rejected at any conventional level of statistical 

significance.   

2
dfχ

We explored possible misspecification due to correlation among subgroups in our 

sample.   Consider subgroups that vary by group size, or the size of the traveling party 

(“group” variable in table 1).  By choosing to visit a site, groups contribute to the overall 

site congestion, and this effect varies with the size of the group.  Larger groups induce 

more congestion than do smaller ones, and sites that attract large groups will tend to 

exhibit greater variation in congestion levels.  Thus, variability in congestion could 

systematically vary with group size.  We cluster our robust standard errors by group size 

in order to account for this subgroup correlation.  Utilizing this specification with intra-

cluster correlation, we find the Hansen C test fails to reject the null hypothesis that 

temperature, precipitation, and the thunderstorm dummy variable are proper instruments 

(p-value=0.1443). Table 3 shows the Hansen C test results for the semi-log congestion 

specifications with and without clustering.   

Having some confidence in the validity of our instruments, we turn to the IV 

regression.  Results are presented in the last column of table 3.  The parameter estimates 

for the IV equation are reduced form estimates, but the coefficients on the instruments are 



nonetheless intuitive.  We see that sites are less congested on rainy days and on days with 

thunderstorms.  Also, as the temperature increases, the congestion forecasts are higher.  

As expected, congestion is considerably higher on weekends and holidays (as exhibited 

by the “weekend” variable).12  The mean and range of forecasted congestion during 

weekend and weekdays/holidays for each beach site is depicted in table 4. 

The second stage of estimation uses the fitted congestion measures as an 

exogenous variable in the RUM of site choice and trip duration.  We compare a basic site 

choice model to a specification which includes the fitted congestion measure.  We also 

include two specifications with site specific constants.13  These specifications should give 

some indication of how well our expected congestion measure performs.  If we 

adequately address the endogeneity in this congestion measure, our coefficient on 

expected congestion should be similar in the models with site constants and without.14  If 

our expected congestion measure does not break the correlation with unobserved site 

attributes, the coefficients for the models with and without site specific constants should 

differ. 

To produce correct standard errors with two stage estimation, we utilize a paired 

bootstrapping procedure.  We take 475 random draws with replacement from our sample; 

within each iteration, we run our WESMLE procedure, saving the coefficient estimates.  

We repeat this procedure 1000 times, so to develop a distribution of parameter 

                                                 
12 Hypothesis tests (t-tests) indicate significant differences between mean weekday and weekend/holiday 
congestion for each site at the 0.001 level. 
13 Likelihood ratio tests indicate that models with site specific constants have better fit than those without, 
but including site specific constants limit analysts’ ability to measure policy relevant questions relevant to 
individual site attributes that do not vary within site. 
14  Murdock (2006) has a detailed discussion of site specific constants in recreation site choice models. 



coefficients.  We then calculate our standard errors from the distribution of 1000 

bootstrapped coefficients.   

In our second stage site choice model, individuals chose between single- and 

multi-day trips at the seven different sites.  We approach the estimation of the RUM with 

an emphasis on beach access among the seven sites.  Access points with parking provide 

an amenity in that beach goers have more options in accessing the beach and can be more 

confident that they will be able to find a parking spot once they arrive.  ORV access 

points give users more ability to spread out along a beach and enable users to bring more 

beach gear onsite.  The ferry-only dummy variable indicates sites only accessible via 

ferry (either public or private).  Ferries can limit access due to schedule limitations and 

additional travel cost (both time, and in the case of private ferries, money).  Importantly, 

these attributes will almost certainly be correlated with congestion levels, and thus one 

cannot hope to accurately estimate the parameters for these covariates without accounting 

for congestion. 

We also include a variable indicating the number of residential houses onsite and 

a variable for the natural log of shore length in miles.  Residential housing provides a 

rough estimate of the number of rental opportunities as well as an idea of the level of 

development on the site.  Shore length helps account for potential aggregation bias.  

Results for our site choice models are displayed in table 5.   

Models 1 and 2 present our access attributes specification that corresponds with 

the IV regression in column 3 of table 3, model 2 including a quadratic specification of 

anticipated congestion.  Models 3 and 4 provide robustness checks of our specification, 

by including site-specific constants and covariates that vary within site—travel cost, the 



multi-day indicator, and congestion.  Likelihood ratio tests indicate all models are jointly 

significant at p-values less than 0.001.  All parameter estimates are statistically 

significant at p-values less than 0.05, except for “housing” in model 2, the Topsail Island 

and Wrightsville Beach indicators in model 3, and the Topsail Island indicator in model 

4.   Signage of the estimates generally conforms to expectations.  Travel costs have a 

negative effect on utility, all else being equal.  The number of access points with parking 

per mile, ORV access points per mile, and shoreline length each has a positive effect on 

utility.  The dummy variable for exclusive-ferry access is negative, and the multi-day trip 

indicator is positive. 

Similar to the findings of Schuhmann and Schwabe (2004), our model supports a 

quadratic congestion effect in the representative beach user's utility functions.15  Figure 2 

depicts this relationship for the model without site-specific constants (model 2) and the 

model with site-specific constants (model 4).  The difference in optimal congestion 

between the two models is negligible—61 people for model 2 and 62 people for model 4.  

A t-test of the coefficient value for model 2 indicates that there is no statistically 

significant difference when compared with coefficient value for model 4.  This suggests 

that our instruments perform well in the first stage regression. 

Corresponding to the notion that failure to include congestion in the model leads 

to omitted variable bias, we witness interesting changes in parameters estimates across 

the models.  When forecasted congestion is included, there is a change in the coefficients 

for parking, ferry-only access, and ORV access variables.  This suggests a correlation of 

congestion with these measures.  When the congestion measure is included, the 

                                                 
15 A likelihood ratio test indicates that the quadratic form has better fit than the linear form ( ). 52.172

1 =χ



coefficient on access points with parking subsequently increase, suggesting that failure to 

account for congestion leads to other attributes reflecting congestion effects.  Parameter 

estimates for attributes which intensify congestion, such as access points with parking, 

will be attenuated in estimation (biased toward zero).  On the other hand, parameter 

estimates for attributes that allow users greater ability to avoid congestion, such as ORV 

access and ferry only access, will be upward biased in estimation.  T-tests indicate that 

downward bias in the parking variable is statistically significant with 99% confidence (t-

value = -8.61) and upward bias in the ferry only access variable is statistically significant 

with 95% confidence (t-value = -1.89).  We did not find a statistically significant upward 

bias for ORV access points (t-value = 0.72). 

Our next step involves the calculation of welfare estimates for changes in 

amenities at these seven sites.  Table 6 depicts these results.  When we compare the basic 

site choice model (model 1) to the congestion model (model 2), we find that failure to 

include the congestion measure understates the welfare effect of access points with 

parking and overstates the welfare effect of ORV access points.  In a comparison of 

welfare measures, the percentage difference in welfare loss for a 25% change in access 

points with parking (per mile) is roughly 19% greater for the specification with 

congestion.  On the other hand, the percentage difference in welfare loss for a 25% 

change in ORV access points (per mile) is roughly 9% less for the specification with 

congestion.  Examining the welfare effect of expected congestion, we find a 9% greater 

effect in the model without site specific constants in comparison to the model with site 

specific constants.  As indicated by the confidence intervals, however, none of these 

welfare differences are statistically significant.   



    
7. Discussion 
 
Despite the prevalence of literature that identifies the level of congestion at recreation 

areas as an import site attribute, the difficulty associated with incorporating congestion in 

revealed preference models of recreational demand has discouraged most scholars from 

exploring congestion effects.  The primary difficulty can be traced to the complexity of 

endogenous regressors in nonlinear models.  We describe congestion as a measure that is 

simultaneously determined by multiple agents.  This process produces bias in probability 

models of site choice because the simultaneous determination of congestion is likely 

caused by unobserved attributes at the sites themselves.  Our solution is to apply a 

generated regressor approach with instrumental variables similar to that used in the 

development of proxies for expected catch and other unobserved ex ante environmental 

quality measures.  With the application of weather variables and weekend/holiday 

characteristics that help explain expectation for site congestion without explaining the 

choice between sites, we attempt to meet the necessary orthogonality conditions for 

consistent estimation.   

The fitted congestion measures improve the estimation of recreational demand 

models.  We find that failure to include congestion in the model leads to downward bias 

for site attributes with positive correlation with congestion and upward bias for attributes 

with negative correlation.  As the number of access point with parking spots increases, 

congestion generally increases.  Controlling for congestion allows more accurate 

understanding of influence of these types of amenities on site selection.  Other amenities, 

such as ORV access points, give beach goers more of an opportunity to spread out along 



the beach, thus diminishing congestion.  While we do find a smaller coefficient for ORV 

access when we control for congestion, the difference is not statistically significant. 

 We find that congestion has a nonlinear effect on beach users’ utility.  At low 

levels, users appear to be positively affected by the presence of other beachgoers.  As 

congestion levels increase, however, this affect begins to negatively impact beach users.  

This finding coincides with the importance of user interaction and space availability on 

beach experience.  It is possible that some users experience some type of bandwagon 

affect when going to the beach.  The affect of congestion may only become negative 

when other users begin to infringe upon each others personal space or when beach 

visitors’ crowding norms are exceeded.  This nonlinear relationship deserves more 

attention, but data limitations inhibit a deeper investigation.   

Research extensions could investigate this bandwagon effect in an attempt to 

better understand optimal levels of congestion.  A deeper understanding would allow 

managers to develop strategies to better manage congestion over time and space to 

maximize user satisfaction and minimize amenity degradation.  Studies have shown that 

the character of use is as important as actual density levels in determining perceived 

congestion levels (Graefe, Vaske, and Kuss 1984; Shelby and Heberlein 1986).  For 

example, a relatively small number of people who are participating in an activity that 

conflicts with other users (i.e. loud music, active games, etc.) may cause visitors to feel 

more crowded than a larger number of people who are participating in more passive 

recreational activities.  This suggests that managers can influence perceptions of 

congestion through policies, rules, and zoning. 



We are unable to account for preference heterogeneity for congestion among 

users.  Previous recreational demand models have identified preference heterogeneity for 

congestion using stated choice methods (Michael and Reiling 1997; Boxall, Rollins, and 

Englin 2003), but we are only aware of two revealed preference study that illustrates this 

type of heterogeneity (Boxall, Hauer, and Adamowicz 2005; Timmons and Murdock 

2007).  We hypothesize that heterogeneous users may respond differently to congestion 

according to personal characteristics or their primary beach activity.  For example, some 

sunbathers may regard beach visitation as a social event and surfers may desire an 

audience.  Anderson, Kerstetter, and Graefe (1998) referred to this as the “functional 

density” of a site, rather than utilizing the negative connotations associated with the term 

“crowding”.  Other users, such as anglers or those seeking peace and quiet, are likely to 

have a lower tolerance for congestion.  Data limitations hinder our ability to further 

explore preference heterogeneity.  While investigation of congestion preferences via 

mixing distributions seems a worthwhile endeavor, the difficulties associated with 

applying such methods to endogenously stratified samples renders this approach beyond 

the scope of our study.16  We leave further investigations of preference heterogeneity for 

congestion to future research. 

 

8. Conclusions 

This study addresses issues related to congestion as a site attribute in revealed preference 

models of site choice.  Typically, congestion is ignored because the difficulty of 

incorporating endogenous variables in nonlinear models—one usually cannot ensure the 

                                                 
16 We attempted to test for heterogeneity using interaction terms by primary beach activity.  Our lack of 
identification may have been the result of our small choice sets. 
 



necessary conditions for IV hold in a nonlinear setting, and it is often difficult to find 

adequate instruments.  We examine recreational beach site choice using intercept data by 

employing a two stage estimation procedure.  The first stage generates an exogenous 

proxy for anticipated congestion at all sites in the choice set by projecting observed 

congestion onto site characteristics and variables describing weather conditions (which 

serve as instruments).  The second stage site choice/duration model includes anticipated 

congestion as a covariate and is estimated by Weighted Exogenous Stratified Maximum 

Likelihood Estimation (WESMLE) in order to correct for choice-based sampling.   

RUMs that include congestion exhibit a better statistical fit.  Results suggest that 

failure to include congestion measures leads to bias in parameter estimates for covariates 

that are correlated with congestion.  This bias impacts welfare estimates, potentially 

under- or over-valuing site amenities.  We find a quadratic relationship between 

congestion and utility.  At low levels of congestion, utility responds positively to 

increases in users; as space becomes more limited, congestion appears to negatively 

impact utility.  Our data limits our ability to investigate preference heterogeneity for 

congestion.  We leave this investigation to future studies. 

  



References 
Anderson, M., D.L.Kerstetter, and A.R.Graefe, (1998), ‘The Effects of Festival Attributes 

upon Perceptions of Crowding’, in H.G. Vogelsong, comp. ed., Proceedings of 
the 1997 Northeastern Recreation Research Symposium (pp. 182-185). Bolton 
Landing, NY: US Forest Service.  

Anderson, F.J. and N.C. Bonsor,  (1974), ‘Allocation, Congestion, and the Valuation of 
Recreational Resources’, Land Economics 50, 51-57. 

Baum, C., M.E. Schaffer, and S. Stillman, (2003), ‘Instrumental Variables and GMM: 
Estimation and Testing’,  Stata Journal  3(1), 1-31. 

Berry, S., J. Levinsohn, and A. Pakes, (1995), ‘Automobile Prices in Market 
Equilibrium’, Econometrica 63, 841-890. 

Blundell, R.W. and J. Powell, (2004), ‘Endogeneity in Semiparametric Binary Response 
Models’, Review of Economic Studies 71, 655-679. 

Boxall, P., K. Rollins, and J. Englin, (2003), ‘Heterogeneous Preferences for Congestion 
During a Wilderness Experience’, Resource and Energy Economics 25, 177-195. 

Boxall, P., Hauber, and W. Adamowicz, (2005), ‘Modeling Congestion as a Form of 
Interdependence in Random Utility Models’, Staff Paper 05-01,  Department of 
Rural Economy, University of Alberta. 

Brownstone, D. and R. Valletta, (2001), ‘The Bootstrap and Multiple Imputations: 
Harnessing Increased Computing Power for Improved Statistical Tests’, Journal 
of Economic Perspectives  15 (4), 129-141. 

Cesario, F. (1980), ‘Congestion and the Valuation of Recreation Benefits’, Land 
Economics 56 (3), 329-338. 

Cicchetti, C.J. and V.K. Smith, (1973), ‘Congestion, Quality Deterioration, and Optimal 
Use: Wilderness Recreation in the Spanish Peaks Primitive Area’, Social Science 
Research 2, 15–30. 

Cicchetti, C.J. and V.K. Smith, (1976), The Costs of Congestion: An Econometric 
Analysis of Wilderness. Cambridge, MA: Ballinger. 

Cosslett, S.  (1981), ‘Maximum Likelihood Estimator for Choice-based Samples’, 
Econometrica  49(5), 1289-1316. 

Eroglu. S., and G. Harrell, (1986), ‘Retail crowding: Theoretical and strategic 
implications’, Journal of Retailing 62(4), 346-364. 

Freeman, A. and R.H. Haveman, (1977), ‘Congestion, Quality Deterioration, and 
Heterogeneous Tastes’, Journal of Public Economics 8, 225–232. 

Fisher, A. and J. Krutilla,  (1972), ‘Determination of Optimal Capacity of Resource-
Based Recreation Facilities’, Natural Resources Journal 12,: 417-444. 

Graefe, A.R., J.J. Vaske, and F.R. Kuss, (1984),  ‘Social Carrying Capacity: An 
Integration and Synthesis of Twenty Years of Research’, Leisure Sciences 6, 395-
431. 

Haab, T. C. and K. E. McConnell, (2002), Valuing Environmental and Natural 
Resources: The Econometrics of Non-Market Valuation. Cheltenham, UK: 
Edward Elgar. 

Haener, M.K., P.C. Boxall, W.L. Adamowicz, and D.H. Kuhnke, (2004), ‘Aggregation 
Bias in Recreation Site Choice Models: Resolving the Resolution Problem’, Land 
Economics  80(4), 561-574. 



Horowitz, J.L. (2001), ‘The Bootstrap’, in E.E. Leamer and J.J. Heckman, eds., 
Handbook of Econometrics, Volume V.  Amsterdam: Elsevier Science Publishers. 

Ibens, G.W. (1992),  ‘An Efficient Method of Moment Estimator for Discrete Choice 
Models with Choice Based Sampling’, Econometrica 60, 1187-1214. 

Jakus, P. and W.D. Shaw, (1997), ‘Congestion at Recreation Areas: Empirical Evidence 
on Perceptions, Mitigating Behavior, and Management Preferences’, Journal of 
Environmental Management 50, 389–401. 

Leibenstein, H. (1950), ‘Bandwagon, Snob, and Veblen Effects in the Theory of 
Consumer Demands’, Quarterly Journal of Economics 65, 183-207. 

Lewbel, A. (2004), ‘Simple Estimators for Hard Problems: Endogeneity and Dependence 
in Binary Choice Related Models’, Working Paper. Boston College.   

Louviere, J., K. Train, M. Ben-Akiva,  C. Bhat, D. Brownstone, T.A. Cameron, R. 
Carson, J.R. Deshazo, D. Fiebig, W. Green, D. Hensher, D. Waldman, (2005), 
‘Recent Progress on Endogeneity in Choice Modeling’, Marketing Letters 
16(3/4), 255-265. 

Manski, C. and S. Lerman, (1977), ‘The Estimation of Choice Probabilities from Choice 
Based Samples’, Econometrica 45, 1977–1988. 

Manski C.F. and D. McFadden, (1981), ‘Alternative Estimators and Sample Designs for 
Discrete Choice Analysis’, in C.R. Manski and D. McFadden, eds., Structural 
Analysis of Discrete Data. Cambridge, Massachusetts: MIT Press. 

Matzkin, R.  (2004), ‘Unobservable Instruments’, Working paper. Northwestern 
University. 

McConnell, K. and V. Duff, (1976), ‘Estimating Net Benefits of Recreation Under 
Conditions of Excess Demand’, Journal of Environmental Economics and 
Management 2, 224-230. 

McConnell, K. (1977), ‘Congestion and Willingness to Pay: A Study of Beach Use’, 
Land Economics 53(2), 185–195. 

McConnell, K. E. (1988), ‘Heterogeneous Preferences for Congestion’, Journal of 
Environmental Economics and Management 15, 251–258. 

McConnell, K. E., I. E. Strand and L. Blake-Hedges, (1995), ‘Random Utility Models of 
Recreational Fishing: Catching Fish using a Poisson Process’, Marine Resource 
Economics 10(3), 247–261. 

McFadden, D. (1974), ‘Conditional Logit Analysis of Qualitative Choice Behavior’ in P. 
Zarembka, ed., Frontiers of Econometrics. Academic Press. 

Michael, J. and S. Reiling, (1997). ‘The Role of Expectations and Heterogeneous 
Preferences for Congestion in the Valuation of Recreational Benefits’, 
Agricultural and Resource Economics Review October, 166-173. 

Murdock, J. (2006),’ Handling Unobserved Site Characteristics in Random Utility 
Models of Recreation Demand’, Journal of Environmental Economics and 
Management 51(1), 1-25. 

Petrin, A. and K. Train, (2006), ‘Control Function Corrections for Omitted Attributes in 
Differentiated Product Markets’, Working Paper, University of Chicago GSB. 

Schuhmann, P.W. and K.A. Schwabe, (2004), ‘An Analysis of Congestion Measures and 
Heterogeneous Angler Preferences in a Random Utility Model of Recreational 
Fishing’, Environmental and Resource Economics 27, 429-450. 



Shelby, B. and T. A.Heberlein, (1986), Social carrying capacity in recreation settings.  
Corvallis, OR: Oregon State University Press. 

Staiger, D. and J.H. Stock, (1997), ‘Instrumental variables regression with weak 
instruments’, Econometrica  65(3), 557-586. 

Timmins, C. and J. Murdoch, (2007), ‘A Revealed Preference Approach to the 
Measurement of Congestion in Travel Cost Models’, Journal of Environmental 
Economics and Management 53(2),  230-249. 

Train, K.  (2003), Discrete Choice Methods with Simulation. Cambridge, UK: Cambridge 
University Press. 

Train, K. and C. Winston, ‘Vehicle Choice Behavior and the Declining Market Share of 
U.S. Automakers’, forthcoming International Economic Review.  

Villas-Boas, J. and R. Winer, (1999), ‘Endogeneity in Brand Choice Models’, 
Management Science  45, 1324-1338. 

Walsh, R.G., N.P. Miller and L.O. Gilliam, (1983), ‘Congestion and Willingness to Pay 
for Expansion of Skiing Capacity’, Land Economics 59(2), 195–210. 

Wooldridge, J. (2001), Econometric Analysis of Cross Section and Panel Data.  MIT 
Press. 

 
 
 
 



Table 1:  Descriptive Statistics 
 

Individual Characteristics:     

Variable Description Mean 
Std. 
Dev 

tc Travel Cost (Implicit Costs + Explicit Costs) 450.8 459.28 
nonwhite Non White Respondents (Dummy) 0.15 0.36 
age Age of Respondent 41.28 12.12 

hschool 
Highest Level of Education is High School 
(Dummy) 0.34 0.47 

married Marriage (Dummy) 0.6 0.49 
 mday Muliple Day Trip (Dummy) 0.67 0.47 
 local Local Resident (Dummy) 0.18 0.39 
 kids Kids in Group (Dummy) 0.4 0.49 
group Respondent Group Size 4.65 5.53 
 weekend Weekend Observation (Dummy) 0.6 0.49 

N = 476 observations 
Site Characteristics:     

Variable Description Mean 
Std. 
Dev 

 parkp # of  Access Points with Parking per mile 2.60 3.93 
 orv # of ORV Access Points per mile 0.08 0.16 
 ferry Ferry-only Access (Dummy) 0.24 0.43 
 housing Residential Housing Units 2025.88 2251.61
 slength Shore Length in miles 19.46 18.98 
 cong Actual (Observed) Congestion 54.51 75.54 

I = 7 sites 
Instruments    
 temp Site Temperature (Degrees Fahrenheit) 83.7 4.88 
 precip Precipitation in Inches 0.17 0.36 
 thstrm Thunderstorms Forecast (Dummy) 0.08 0.26 

 
 



Table 2: Sample and Population Proportions used in WESMLE 
 
Island Sample Proportion Population Proportion
Topsail Beach 0.1497 0.2457 
Wrightsville Beach 0.1559 0.2613 
Hatteras Island 0.1726 0.2233 
Pea Island 0.1310 0.0355 
Rachel Carson 0.0936 0.0032 
Cape Lookout 0.1497 0.1530 
Fort Macon 0.1476 0.0777 
  
 
 
 
 



Table 3: Instrumental Variables Congestion Equation Results 
 

  
 IV Test  

(no cluster) 
IV Test 

(clustered)  IV Regression 
Variables      
        
tc 0.00011** 0.00011** 0.00015** 
 (0.00008) (0.00008) (0.00010) 
mday -0.32361 -0.32609 -0.31984 
 (0.10726) (0.06217) (0.08007) 
parkp 0.18843 0.18840 0.18493 
 (0.01638) (0.02266) (0.01431) 
ferry -0.29328 -0.29298 -0.34754 
 (0.13521) (0.13870) (0.12707) 
orv 2.16495 2.14331 1.46203 
 (0.36443) (0.18717) (0.28457) 
housing 0.00016 0.00016 0.00015 
 (0.00003) (0.00003) (0.00003) 
slength 0.25317 0.25355 0.33841 
 (0.05647) (0.03976) (0.05042) 
weekend 0.26414 0.03976* 0.30606 
 (0.12469) (0.15795) (0.15640) 
 temp   0.04078 
   (0.00721) 
 thstrm  -0.79694 
  (0.24309) 
precip  -0.51663 
  (0.07915) 
constant 1.63716 1.63775 -1.7719 
 (0.17360) (0.17873) (0.64284) 
        
    
Obs 476 476 476 
R-squared 0.5583 0.5574 0.6114 
Adjusted R-
squared 0.5507 0.5498 0.6022 
P-value for Hansen 
C Test 0.0000 0.1443  
Cluster None   Group Size Group Size 

Dependent variable is natural log of observed congestion. 
Robust standard errors are included in parentheses. 

*  Indicates coefficients that fail statistical significance at the 0.05 level. 
** Indicates coefficients that fail statistical significance at the 0.1 level. 

 
 



Table 4: Mean Forecasted Congestion Measures by Site 
 

Island Weekday 
Congestion  Range 

Weekend - 
Holiday 

Congestion  
Range 

Topsail Beach 55.84 14.83 - 108.12 73.79 22.70 - 170.42 
Wrightsville Beach 97.77 25.83 - 189.01 129.44 39.74 - 296.65 
Hatteras Island 55.78  3.32 - 99.43 69.31  3.44 - 144.30 
Pea Island 11.32   .68 - 19.95  14.08   .70 - 29.04 
Rachel Carson 4.52  1.27 - 7.46  5.80  2.18 - 13.52 
Cape Lookout 12.75  3.59 - 21.04  16.35  6.14 - 38.12 
Fort Macon 6.78  1.91 - 11.18 8.69  3.26 - 20.26 

 
 
 
 
 



Table 5: Random Utility Site Choice Model Results 
 

  Model 1 Model 2 Model 3 Model 4 
      
Travel Cost -0.00668 -0.00663 -0.00677 -0.00675 
 (0.00098) (0.00095) (0.00103) (0.00101) 
Multiple Day Trip 
(Dummy) 0.70097 0.56312 0.70055 0.56859 

 (0.10522) (0.11297) (0.10524) (0.11308) 
Access Points with 
Parking/mile 0.13947 0.15924   

 (0.00230) (0.02884)   
Ferry only Access 
(Dummy) -0.47948 -0.38591   

 (0.04951) (0.05233)   
ORV Access/mile 1.58271 1.45777   
 (0.17450) (0.32059)   
Housing 0.00004 -0.00002**   
 (0.00001) (0.00004)   
Ln(Shorelength) 0.57371 0.51809   
 (0.00741) (0.02547)   
Expected Congestion  0.02082  0.02205 
  (0.00967)  (0.00970) 
Exp Congestion Squared  -0.00017  -0.00018 
  (0.00005)  (0.00005) 
Topsail Island (Dummy)   0.98066** 0.54095* 
   (0.02628) (0.34380) 
Wrightsville Beach 
(Dummy)   1.07049** 1.02406 

   (0.03031) (0.43214) 
Hatteras Island (Dummy)   1.50500 1.03635 
   (0.06706) (0.33444) 
Pea Island (Dummy)   -0.72284 -0.82656 
   (0.05246) (0.06475) 
Rachel Carson  (Dummy)   -3.17189 -3.12336 
   (0.01295) (0.02571) 
Cape Lookout (Dummy)   0.68249 0.56525 
   (0.00153) (0.05715) 
LL -1056.7968 -1040.5734 -1034.44 -1017.8708 
LL(Null) -1253.5522 -1253.5522 -1253.5522 -1253.5522 
LR chi2(7) 393.51 425.96 438.22 471.36 
Rho Squared 0.157 0.1699 0.1748 0.188 
Standard Errors in parentheses 
*   Indicates coefficients that fail statistical significance at the 0.05 level. 
** Indicates coefficients that fail statistical significance at the 0.1 level. 

 



Table 6: Welfare Measures - Changes in Consumer Surplus 
 

  Model 1 Model 2 Model 4 
A 25% decrease in 
Access Points with 
Parking Per Mile 

-$19.10 
(-$25.27,-$12.92) 

-$22.69 
(-$33.66,-$11.73)  

A 25% decrease in 
ORV Access Points  
Per Mile 

-$4.50 
(-$5.75,-$3.25) 

-$4.08 
(-$5.93,-$2.23)  

A 10% increase in  
Congestion on site  -$5.40 

(-$10.44,-$0.36) 
-$4.90 

(-$9.75,-$0.06) 
*  Bootstrapped 95% 
confidence interval in 
parentheses.    

 
 
 
 
 
 
 



Figure 1 
Map of the Seven Beach Areas in North Carolina 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 2 
Graphical Relationship between Congestion and Utility 
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