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A Semi-Parametric Estimator for Revealed and Stated Preference Data  

An Application to Recreational Beach Visitation 

 

Abstract 

We present a semi-parametric approach for jointly estimating revealed and stated 

preference recreation demand models.  The discrete factor method (DFM) allows for 

correlation across revealed preference and stated preference and incorporates unobserved 

heterogeneity into the conditional expectation of recreation demand.  Our model is a 

generalized negative binomial with random effects, in which the random effect is 

composed of a discrete representation of unobserved heterogeneity and a rescaling 

coefficient that translates the heterogeneity measure into a demand effect.  Our empirical 

application is to beach recreation demand in North Carolina.  Statistical evidence 

supports our DFM specification, which imposes less restriction on model dispersion and 

incorporates unobserved heterogeneity in a more flexible manner.  We find more 

predictive accuracy and smaller consumer surplus estimate with the DFM method in 

comparison with the standard random effects negative binomial.  The structure of DFM 

allows for estimation of welfare by unobserved heterogeneity type. 

 

JEL: C81, D12, Q51 

Key words: beach recreation demand, revealed and stated preference, unobserved 

heterogeneity 
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Introduction 

Resource economists are increasingly gathering revealed preference (RP) data in 

conjunction with information on stated preference (SP).1  Adamowicz, Louviere, and 

Williams (1994) note the potential for combining RP and SP data so that one can explore 

behavior associated with levels of environmental quality that are not observed.  Aside 

from changes in environmental quality (Niklitschek and León 1996; Huang, Haab, and 

Whitehead 1997; Loomis 1997; Whitehead et al. 2006), others have used SP data to 

examine behavioral changes stemming from variations in travel cost (Cameron 1992; 

Azevedo, Herriges, and Kling, 2003; Egan and Herriges 2006), in access to resources 

(Grijalva et al. 2002; Whitehead et al. 2006), and in management conditions (Layman, 

Boyce, and Criddle 1996).  Through combining information on revealed and stated 

behavior, the analyst can learn more about underlying preferences and test for various 

restrictions.  In addition, information on real behavior may be helpful in calibrating or 

validating stated preference data (Huang, Haab, and Whitehead 1997; Whitehead, Haab, 

and Huang 2000).     

In this paper we estimate parameters of revealed and stated recreation demand 

using a semi-parametric technique—discrete factor method (DFM) (also known as 

discrete factor approximation)—to account for unobserved heterogeneity and allow for 

correlation across demand equations.  This flexible and computationally simplistic 

approach has not, to our knowledge, been applied to recreation demand data.  We 

condition the joint distribution of demand on a factor that represents unobserved 

heterogeneity, which is approximated by a step function, and integrate out over the 

distribution of the unobserved factor.  Due to the use of a discrete distribution for 
                                                 
1 For the travel cost model, one might also use the terms “observed” and “contingent behavior”.  
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unobserved heterogeneity the estimator falls in the class of finite mixture distributions. 

One of the most attractive characteristics of this approximation is that a small number of 

discrete factors (e.g., three or four) has been shown to perform quite well under various 

distributional assumptions (Mroz 1999).2   

Our econometric approach makes use of a generalized negative binomial model 

with individual heterogeneity modeled as discrete points, whose location and probability 

mass are estimated empirically.  Model parameters are estimated via semi-parametric 

maximum likelihood.  The data pertain to beach recreation demand in North Carolina.  A 

random telephone survey provides estimates of current (revealed) demand for site trips.  

The survey also elicits stated demand under current conditions and hypothetical 

improvements in both access and beach quality.   

 Our DFM generalized negative binomial specification performs significantly 

better with the data than a standard random effects negative binomial model that is 

implemented in commercial statistical packages such as Stata and LIMDEP.  While both 

models account for unobserved heterogeneity, the standard random effects negative 

binomial models imposed much more restrictive correlation structures on unobserved 

heterogeneity for a given individual.  The DFM approach implemented in this paper 

relaxes the parametric form that the standard random effects negative binomial estimator 

imposes on the distribution of unobservables across individuals.  For our North Carolina 

beach demand data, DFM estimates produce more accurate visitation predictions and 

smaller consumer surplus measures than the random effects negative binomial.  We 

interpret the heterogeneity in our model as reflecting demand intensity, and illustrate how 

the structure of DFM allows for estimation of welfare by heterogeneity type.  
                                                 
2 See Blau and Hagy (1998), Hu (1999), and Mocan and Tekin (2003) for applications of DFM. 
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Combining Stated and Revealed Preference Data 

Cameron (1992) was the first, to our knowledge, to propose combining revealed and 

stated preference data to improve valuation estimates.  She notes the potential for using 

RP and SP data to glean more information about the underlying structure of preferences.  

Combining these different kinds of data allows one to impose consistency across 

preference data, which could possibly attenuate hypothetical bias in stated preference 

data.  In addition, the SP data can be used to “fill in” holes in the observed data by 

providing additional information about demand other than that exhibited under current 

market conditions.  As resource economists are often interested in value stemming from 

alternate levels of environmental quality, a natural extension of the use of SP data is to 

market conditions associated with unobserved levels of public goods (Adamowicz, 

Louviere, and Williams 1994), and a number of researchers have made such an 

examination (Niklitschek and León 1996; Huang, Haab, and Whitehead 1997; Loomis 

1997; Whitehead et al. 2006).   

In this paper, we formulate a recreation demand model that incorporates revealed 

demand under current conditions and stated demand under both current conditions and 

hypothetical improvements in resource quality.  Collecting stated demand under current 

conditions is recommended in order to ensure that the underlying preference structure is 

comparable across revealed and stated behavior, and such data provides a heuristic in 

testing for hypothetical bias (Huang, Haab, and Whitehead 1997; Whitehead, Huang, and 

Haab 2000).  Since we have multiple observations on each individual, we account for 

unobserved heterogeneity at the individual level in a way very similar to the standard 
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random effects model for panel data.  Our econometric specification is a generalized 

negative binomial model, in which we use a semi-parametric technique—the discrete 

factor method (DFM)—to account for unobserved heterogeneity and permit correlation 

across RP and SP demand.   

Our analysis of recreation demand is based to on the following negative binomial 

model (Cameron and Trivedi 1998):  
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where i indexes recreators, t = 1, 2, …, T, represents revealed or stated demand under 

quality conditions qt, vit is recreation demand for recreator i under conditions t, 

)'exp( βλ itit x= is individual i’s expected recreation demand for case t, with  xit being a 

matrix of covariates and β denoting a vector of unknown parameters.  The variance for an 

individual’s demand under conditions t is given by Var[vit | xit] = λit + αitλit
2, where αit 

=α0/λit and α0
 is a parameter to be estimated.  With a panel specification, the effects of 

covariates xit can be decomposed into within-group effects, which relate to different 

conditions of demand for the same individual, and between-group effects, which relate to 

a cross-section of different individuals.  Note that the within-group dispersion (variance 

divided by the mean)3 of vit for individual i is 1+α0 (i.e. constant within-group 

dispersion). 

In the standard random effects negative binomial model the restriction on α0 being 

constant is relaxed and it is allowed to vary randomly across groups; specifically, 1/(1+ 

αi) is assumed to follow a parametric form. 1/(1+αi)~Beta(r, s) is one of the most 

commonly used distributions (Liang and Zeger 1986; Hausman and Griliches 1984; Stata 
                                                 
3 This is also known as the “variance-mean ratio” (Winkelmann 1995; Mullahy 1997). 
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Manual 2005).  The joint probability of observing a given set of trips demanded for 

individual i is given by: 
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Note that this specification of the negative binomial model does not relax the restriction 

on the constant within-group dispersion.  Moreover, given that the random effects only 

apply to the distribution of the dispersion parameter αi, instead of expected demand λit, 

the within-group and between-group variations of λit are attributed only to observables, 

xit.  In other words, unobserved heterogeneity—such as idiosyncratic preferences or 

unobserved portions of budget constraints, each of which could affect demand intensity—

has no impact on the central tendency of expected demand for recreation activities.  

In this paper, we propose an alternative approach to introducing random effects 

into a negative binomial model for panel data.  We use the generalized version of the 

negative binomial model in equation (1): 
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where p is an additional parameter to be estimated.4  The conditional variance for vit is 

now Var[vit | xit] = λit + αitλit
p and the within-group dispersion in this generalized model 

becomes αitλit
p-1=α0λit

p-2, which in general varies across individuals i and conditions t as 

long as the maximum likelihood estimate of p is not (approximately) 2.  Secondly, we 

allow an unobserved demand intensity component to enter expected recreation demand.  

We introduce a semi-parametric random effects component ( iμ ) to each demand 

                                                 
4 Note that given p=2, this model reduces to what many consider a “standard” negative binomial, which is 
referred to as NB2 by Cameron and Trivedi (1998). 
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equation, and utilize a discrete factors method (DFM) to approximate the distribution of 

unobserved heterogeneity ( iμ ), which governs both RP and SP demand under conditions 

qt.  Conditional on an unobserved heterogeneity type,  

)exp()exp()exp()exp(),|( ititititititiitit xxxx μγβμγβρβμβλ =+=+= ,              (4) 

where tγ  is a condition-specific loading factor, allowing for 0],cov[ ≠imij ρρ  for any two 

demands j ≠ m, and μi takes K discrete values.  The loading factors rescale unobserved 

heterogeneity into a random recreation demand effect that can vary across demand types 

(revealed and stated preference and quality conditions qt).  

 

Discrete Factors Method and Likelihood Function 

The discrete factors method (DFM) is proposed by Heckman and Singer (1984) as an 

approach for modeling unobserved heterogeneity.  This method has two distinct 

advantages in the class of mixture distribution estimators.  First, DFM does not impose a 

priori arbitrary distributional forms for unobserved heterogeneity ( iμ ), while maintaining 

the asymptotic efficiency of maximum likelihood estimators (Mroz 1999).  The 

distribution of the heterogeneity type is approximated with a step function and integrated 

out through a weighted sum of step levels (Heckman and Singer 1984), where the 

weights are given by empirically estimated probabilities.  Mroz (1999) demonstrates that 

when the true correlation of the error terms is multivariate normal, DFM performs well in 

comparison with estimators which assume multivariate normality; and DFM performs 

better than normality based estimators when the underlying distribution is non-normal.  

Second, DFM is computationally simplistic.  For instance, the MPLN model adopted by 

Egan and Herriges (2006) requires evaluating multivariate lognormal integrals based on 
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the assumption that the random effects components across equations follow a 

multivariate lognormal distribution.  Although simulation methods are typically adopted 

to make these evaluations feasible, the computations are somewhat cumbersome.  Using 

DFM, the likelihood function conditional on unobserved heterogeneity ( iμ ) can be 

constructed as follows.  

We do not know a priori to which class of heterogeneity each individual belongs.  

The likelihood function for individual i is thus: 
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where )Pr( kμ  is the probability of individual i having heterogeneity level k.  Since cross-

equation correlation is captured by the random effect term ρkt = γtμk, the joint probability 

of vector vi conditional on μk and observables xi is equal to the product of their univariate 

densities conditional on μk and xi, as indicated in equation (5). 

Given the mixture of generalized negative binomial model (equation 3) and semi-

parametric random effects (equation 4), our parameterization of the mean and dispersion 

parameter allows for systematic variation by heterogeneity type and across RP and SP 

demand equations.  Note that the generalized negative binomial nests other specifications 

of the variance, including Cameron and Trivedi’s NB1 and NB2 (1998).  We further 

specify
itk

t
itk λ

αα 0= , where t0α is a condition-specific parameter, so that within-group 

dispersion could vary by quality condition qt across individuals even in the case of NB2.  
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Using this specification for the distribution of demand, individual i’s contribution to the 

likelihood function, , can be rewritten as: iL

∑ ∏
=

−−

+−−−−−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ+Γ
++Γ

−−K

k t
p

itkitkitk

vp
itkitk

vpv
itk

v
itk

p
itkitkitk

k v
v

p
itkitkitkitkitkitk

1
21

)(1)2(21

)()1(
)1()()Pr(

21

λα
λαλαλαμ

λα

. (6) 

The sample likelihood function is derived as the product of (6) over all N 

individuals:  
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We refer to this model as the DFM generalized negative binomial (DFM-GNB) 

specification. The semi-parametric specification of the unobserved heterogeneity term μ 

allows unrestricted correlations across RP and SP demand equations for the same 

individual i. This approach should be advantageous in controlling for unobserved 

heterogeneity in data sets with information on revealed and stated preference and in 

relaxing the constant within-group dispersion restriction. 

Take, for instance, our data set of recreational beach visitation, which includes 

both past visits and stated visits under current conditions as well as under hypothetical 

improvements in access and beach quality.  Ceteris paribus, an individual who has 

frequented the beach in the past may be more likely to visit in the future, and may be 

more likely to visit conditional on improvements in access or beach quality, creating a 

positive correlation between RP and SP visitation.  Our specification imposes a semi-

parametric restriction that all heterogeneity and correlation among the individual demand 

equations enters the full model through the coefficients γt and the factor μi, which is 
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approximated by a discrete distribution.  In particular, ,,...,1,0)Pr( Kkk =∀>μ  where K is 

the total number of points support.  Without loss of generality, μ is confined to the unit 

interval: 
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The transformed probability weights are given as follows: 
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Note that μ ’s and θ ’s are parameters to be estimated, along with α’s, β’s, and γ’s.  The 

support points, μk, and the transformed probabilities, Pr(μk), can be calculated from the 

parameter estimates. 

 One practical complication in model specification is the comparison of the semi-

parametric DFM-GNB model with that of the standard parametric random effects count 

data model characterized in equation (2).  The two models are based on different 

formulations of the heterogeneity component and are therefore not nested.  In order to 

examine the performance of alternative non-nested models with sample data, we adopt 
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“rho-bar squared” (
2

ρ ) (Horowitz 1980; Ben-Akiva and Lerman 1985) and Akaike’s 

Information Criterion (AIC) (Akaike 1973), which are two widely applied statistics for 

comparing mutually non-nested model specifications.  Rho-bar squared is defined as 

)0(/)(12 LL sss ζρ −−= , where Ls is the log-likelihood of model specification s and sζ is 

the number of parameters to be estimated in specification s, and L(0) is the log-likelihood 

function value of the null model, which for our application is a Poisson model containing 

a constant term only (Cameron and Trivedi 1998).  The rho-bar squared test is analogous 

to the likelihood ratio test for non-nested models and the model with a higher 
2

ρ  score 

implies a better fit to the data.  To test statistical significance of the difference in 
2

ρ  

scores between two non-nested specifications s1 and s2, one can use the following 

property to calculate a p-value (Horowitz 1980; Ben-Akiva and Lerman 1985): 

[ ]{ }≤−+−−Φ≤>− 2/1
12

2
1

2
2 )()0(2)Pr( ssss L ζζυυρρ , for any υ≥0,          (10) 

where Φ (·) indicates the normal cumulative distribution function. 

Similarly, AIC can also be used to compare the performance of different models 

after accounting for the degree of freedom and sample size (N): NLAIC ss /][ ζ−= . If the 

AIC value for a model is higher than that of others, then the former model specification is 

construed as more informative. 

 

Beach Recreation Demand, Access, and Erosion 

Empirical estimates suggest that recreation days at coastal beaches are of considerable 

economic value (Silberman and Klock 1988; Bell and Leeworthy 1990; Bin et al. 2005; 

Dumas et al. 2005; Landry and McConnell 2007).  Rising incomes and employment have 
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increased demand for coastal recreation and leisure, leading to widespread tourism and 

development on the coastal margin (Cordes and Yezer 1998).  At the same time, natural 

forces—primarily coastal storms and sea level rise—threaten to erode beach sand, 

reducing the amount of space available for leisure and recreation activities.   Beach 

replenishment—adding sand to the beach face—is a common tool to combat erosion; it 

is, nonetheless, expensive and controversial.  In order for local communities to receive 

federal assistance for beach replenishment, public beach access must be maintained at 

specified levels (Dumas et al. 2006).   

The survey data utilized herein, originally analyzed in Whitehead et al. (2006), 

record information on recreation demand that can be used to assess benefits of visitation 

for beach sites in southeastern North Carolina, and how benefits would change with 

improvements in access and beach width.  In addition to revealed preference visitation 

behavior, the survey data include stated preference responses, describing intended 

visitation in the subsequent year assuming that conditions remain the same, as well as 

how beachgoers would change their visitation behavior in the subsequent year in 

response to hypothetical improvement in available parking spaces and beach width.  The 

data are used to estimate recreation demand using the DFM-GNB model. 

The study area encompasses seventeen beaches in five southeastern North 

Carolina counties.  The data were gathered via random telephone survey of North 

Carolina counties within 120 miles of the study site in spring of 2004.  The response rate 

was 52 percent, with a final sample size of 664.  The interested reader is referred to 

Whitehead et al. (2006) for more information on the survey. 
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Descriptive statistics are included in table 1.  The average number of observed 

trips is 11, while planned trips under current conditions is slightly higher at 13.  

Respondents were offered a hypothetical scenario for improved parking.  The scenario 

was as follows: 

Suppose that parking facilities and beach access at southeastern North 
Carolina oceanfront beaches were improved so that you would not have to 
spend time searching for a parking space or access area, the parking space 
and access area would be located within reasonable walking distance of 
the oceanfront beach, and parking was free or reasonably priced. Also 
suppose that the number of beach users at the oceanfront beaches does not 
change. 
 

The average number of contingent trips under the scenario of improved parking was 17.  

Respondents were also offered a scenario on improved beach width.  The scenario was as 

follows: 

Suppose a beach nourishment policy is implemented for all southeastern 
North Carolina oceanfront beaches. Beach nourishment would be 
performed in each county periodically, at least once every 3 to 5 years, for 
the 50-year life of the project. Periodic nourishment is done to maintain an 
increased beach width to provide shore protection and recreation benefit. 
The goal would be to make the average beach width increase by 100 feet. 
 

The average number of contingent trips under the scenario of improved beach width was 

14. 

Travel distance is measured as distance between population centers at the home 

ZIP code and the nearest beach county ZIP code.  Travel costs are measured as the sum 

of pecuniary ($0.37/mile) and time (33% of wage) costs, assuming an average speed of 

50 miles per hour.  Average trip cost to southeaster NC beaches is $89, while average 

cost to the Outer Banks (a substitute site) is $202.  Average income is $59 thousand per 

year. 

We thus focus on the demand for recreational beach trips: 
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)exp( 3210 itiiiiit Zmcpopv ρβββββ +++++=     (11)  

where opi is the own price travel cost to southeastern North Carolina beaches for 

individual i, cpi represents cross price travel cost to the Outer Banks, North Carolina—a 

substitute beach recreation site for individual i, mi is income, Z is a vector of indicators 

for stated preference responses and access and beach width scenario indicators and 

relevant interactions, and ρit is a random effect.  The random effect can be decomposed: 

ρit = γtμi, where γt are loading factors, with 0],cov[ ≠mj γγ  for demands j ≠ m, and μi 

represents unobserved heterogeneity common to both RP and SP demand.  Both γt and μi 

are unobserved; we cannot identify them individually.  A step function with K partitions 

is used to approximate the distribution of μi, while γt are parameters to be estimated.5   

 

Results 

We turn now to parameter estimates for our DFM-GNB model (7-9).  The parameters are 

estimated using a quasi-maximum likelihood method with discrete factors to account for 

unobserved agent heterogeneity.  The random effects estimator with discrete factor 

approximation imposes a semi-parametric restriction that all heterogeneity and 

correlation among the random effects from individual equations enters the full model 

through the discrete factorμ .6 The unconditional sample likelihood function (equation 7) 

                                                 
5 Our dataset includes both visitors that made day trips to the beach and visitors that stayed overnight.  
Many empirical applications of recreation demand focus on a single user type or estimate separate 
equations across user types due to possible differences in onsite costs incurred or differences in 
preferences.  Whitehead et al. (2006) find no evidence of bias with these data in pooling different user 
types.  Thus, we ignore differences in user type. 
6 Given a finite sample size, econometric theory does not provide the optimal number of points of support 
in DFM.  In general, researchers add points of support until the likelihood function value fails to improve 
significantly, based on a likelihood ratio test (Mroz 1999; Picone et al. 2003; Mocan and Tekin 2003; 
Holmes 2005).  The results presented in this paper are based on four points of support.  A specification with 
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is programmed into FORTRAN and all parameters are obtained by maximizing the 

likelihood function using Davidson-Fletcher-Powell (DFP) optimization algorithm.  

The parameter estimates for two specifications of the DFM-GNB model are 

presented in table 2.  The first specification includes own-price (op), cross-price (cp), 

income (m), an indicator for stated preference (sp) (t = 2, 3, or 4), an indicator for the 

access treatment (t = 3), and an indicator for the beach width improvement treatment (t = 

4).  The second specification includes the same covariates as the first, but also 

interactions for sp with prices and income.  We conduct a series of likelihood ratio tests 

to explore specifications.  We find joint significance for each model at conventional 

levels (p < 0.0001). The generalized negative binomial is preferred over the NB2 

specification (in which the p term in equations (3, 6, and 7) is restricted to be 2) (p < 

0.0001).  We explored using four separate parameters for the γ term in equation (4)—

essentially allowing for the rescaling coefficient to vary across all four scenarios—but the 

unrestricted model did not significantly improve the log-likelihood.  Our final model 

includes only two γ terms, corresponding with RP and SP demand.  In comparing the 

displayed DFM-GNB specifications in table 1, the likelihood ratio test supports the 

restricted model in column 1 (p=0.1519). 

Most of the demand parameter estimates of the DFM-GNB model are statistically 

significant at the 5% level, with the exception of the stated preference (sp) and width 

treatment variables.  All of the parameters associated with the distribution of unobserved 

heterogeneity are statistically significant at the 5% level. The estimates of μ  represent 

parameters of the mass points of our heterogeneity distribution in equations (8), while 

                                                                                                                                                 
five points of support did not improve the likelihood function value significantly or affect our main 
findings.  
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estimates of θ  correspond with parameters of the probability distribution for 

heterogeneity types in equations (9).  The support points, μk, and the transformed 

probabilities, Pr(μk), are calculated from the parameter estimates.   

Figure 1 displays the distribution of unobserved heterogeneity for the preferred 

DFM-GNB specification (column 1 of table 2).  Unobserved heterogeneity enters the 

exponential of the demand equation as an additive term with a rescaling coefficient γt, 

where t = 1, 2, 3, 4, but γ2 = γ3 = γ4 in our restricted model.  Thus, γt varies only across RP 

and SP.  The rescaling coefficients translate unobserved heterogeneity mass points 

(which are confined to the unit interval) into a recreation demand effect.  Each rescaling 

coefficient is positive and statistically significant at conventional levels.  Elasticities are 

calculated in the conventional manner and are displayed in the first column of table 3. 

For comparison purposes, we estimate a generalized negative binomial model that 

does not account for unobserved heterogeneity (“GNB (no hetero)”) as well as a standard 

random effects negative binomial (“RE-NB”) with Beta specification.  For the GNB 

model without heterogeneity, we restrict all DFM parameters to be zero, essentially 

assuming that there is only one type of unobserved heterogeneity.  Parameter estimates 

for the generalized negative binomial model without heterogeneity are presented in the 

column 3 of Table 2.  All coefficients are statistically significant at the 5% level, with the 

exception of the binary treatment indicators—sp, access, and width.  The log-likelihood 

value for the GNB model with a single type of heterogeneity is much smaller than the 

log-likelihood associated with the DFM-GNB model.  A likelihood ratio test supports the 

DFM-GNB specification at p < 0.0001 significance level.  We present elasticity estimates 
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for the generalized negative binomial model without heterogeneity in the second column 

of table 3.   

Parameter estimates for the RE-NB model are presented in the column 4 of Table 

2.  All coefficients are statistically significant at the 5% level, with the exception of cross 

price.  According to the AIC and 
2

ρ  scores, the DFM-GNB specification outperforms 

the standard RE-NB model.  In particular, we note from Table 2 that among the three 

random effects specifications, the DFM-GNB in column 1 has the largest 
2

ρ  value 

(=0.7564) and the difference between it and the 
2

ρ value for the standard RE-NB is 

0.0037.  The remaining issue is whether this difference is statistically significant. Using 

the property in equation (10), we obtain 

)15.438()0037.0Pr( 2
1

2
2 −Φ≤>− ss ρρ . 

The probability that this difference could have occurred by chance is less than 0.0001. 

Hence, we conclude that, taking the number of parameters into account, the DFM-GNB 

specification provides the best fit to the data. Elasticity estimates for the RE-NB model 

are presented in the last column of table 3.   

Recall that the conditional mean for the DFM specification is: 

)exp()exp()exp(),|( ititititiitit xxxvE μγβμγβμ =+=  

We assume that x and μ are independent, and we can thus express the conditional mean as 

product of expectations: 

)][exp()][exp()|( βμγ itititit xEExvE =  

Substituting our discrete representation for unobserved heterogeneity and integrating, we 

have: 
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where the first term represents the expected value of μ, which is independent of x.  

Annual consumer surplus for beach access under conditions t is the integral of equation 

(12) over travel cost (own-price—op) from the average price to infinity: 
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                         (13)         

where tβ
~  is the linear combination of coefficients and variable means—other than travel 

cost—in equation (11), and )~exp( 0
1optt ββλ +=  is the conditional mean of beach trips 

under conditions t in the absence of unobserved heterogeneity.  The summation term in 

the last line of equation (13) is the expected demand effect associated with unobserved 

heterogeneity.  For the RE-NB model, consumer surplus is calculated in the conventional 

manner: 

1β
λt

tCS −= ,         (14) 

which is equivalent to the last term on the last line of equation (13).  The conditional 

mean of beach trips and average annual consumer surplus measures for each model under 

current conditions RP and SP and improved conditions SP are presented in table 4.  To 

aid in interpretation, we divide CSt by the actual number of trips to produce per-trip 

measures.  We use the Krinsky-Robb (1985) procedure to produce confidence intervals 

for consumer surplus estimates. 
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Discussion 

Statistical evidence supports the DFM-GNB specification over the parametric random 

effects negative binomial (RE-NB).  The 
2

ρ test statistic that compares non-nested 

specifications for our data indicates that the DFM-GNB performs better than the RE-NB 

model, and the difference is statistically significant at p < 0.0001.  Parameters of the 

DFM-GNB model are more precisely estimated.  The demand parameters for the DFM-

GNB specification represent weighted average7 effects across heterogeneity types, in 

which the weights are endogenously determined by the data as shown in equations (9) 

and unobserved heterogeneity enters the exponential of conditional expectation of 

demand as an additive random term with non-zero mean as in equation (4).   

The standard RE-NB specification places equal weight on each observation in 

estimating parameters and incorporates unobserved heterogeneity as an additive term in 

the exponential of expected demand with zero mean.  As should be expected, the 

estimation procedures produce different elasticity estimates, with DFM-GNB indicating 

significantly more own-price responsiveness (εop = -0.50 versus εop = -0.25) and less 

responsiveness to income (εm = 0.08 versus εm = 0.29).  The cross-price elasticity from 

the RE-NB model is not different from zero.  The coefficient on sp is not different from 

zero in any of the DFM models.  Prima facie, our results do not appear to support the 

existence of hypothetical bias in the data (Huang, Haab, and Whitehead 1997; 

Whitehead, Huang, and Haab 2000) after conditioning on observable and unobservable 

characteristics. 

                                                 
7 The “weighted” nature of the parameters is due to the quasi-maximum likelihood estimation procedure. 
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A likelihood ratio test rejects the degenerate specification of the DFM model with 

only one type of unobserved heterogeneity (p < 0.0001).  All of the parameters of the 

DFM-GNB model associated with the distribution of unobserved heterogeneity are 

statistically significant at conventional levels.  Identification of these parameters derives 

from two sources.  The first is restrictions on the covariance between the disturbance 

terms in RP and SP equations.  Specifically, we only use one discrete factor (μ ) for all 

four demand equations.  We also use functional form restrictions on the distributions of 

the discrete factor as another identification source; both the location and probability 

weight for each value of μ  are given a logistic form, which is well-behaved, facilitating 

optimization procedures. 

 Figure 1 displays the empirical estimates of unobserved heterogeneity and the 

associated probabilities.  Equations (8) and (9) provide the basis for these estimates.  The 

lowest heterogeneity type (μ1 = 0) has the highest probability, and the larger values of μ— 

μ2 = 0.3272, μ3 = 0.6073, μ4 = 1.000—exhibit monotonically decreasing probabilities.  

Unobserved heterogeneity affects recreation demand in the DFM-GNB model as an 

additive term with a rescaling coefficient in the exponential of equation (4).  The 

rescaling coefficients differ across RP and SP, with γrp = 2.897 and γsp = 3.199.  While we 

test for differences in γt across all four demand equations, statistical evidence supports the 

specification with only two rescaling coefficients. 

The DFM-GNB model produces predicted trip levels that are closer to the 

observed levels.  For example, 8.57 trips per year for the RP baseline versus 6.42 trips per 

year from the RE-NB model—the observed level is 11.08.  This pattern holds for all 

conditions of demand (t = 1 – 4).   
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The last line of Equations (13) provides the formula for consumer surplus for the 

DFM-GNB specification, while welfare estimation for the RE-NB specification uses the 

conventional formulation in equation (14).  Consider first the DFM-GNB estimates.  

Annual consumer surplus for RP demand is $1521.35 (95% C.I. $1499 - $1560).  

Consumer surplus measures for SP demand are: $2076.84 (95% C.I. $1966 - $2199) for 

current conditions; $2738.03 (95% C.I. $2258 - $2896) for improved beach access; and  

$2279.83 (95% C.I. $2157 - $2412) for increased beach width.  Since neither the sp nor 

width treatment variables are statistically significant in the DFM-GNB estimates, we also 

calculate welfare measures that exclude the influence of these parameters in the 

estimation of expected demand (numerator of the last term in equation (13)).  Under these 

conditions, we find annual SP consumer surplus measures of $1871.17 (95% C.I. $1770 - 

$1979) for current conditions and increased beach width (since the width effect is not 

statistically significant) and $2466.88 (95% C.I. $2337 - $2612) for improved beach 

access.  Lastly, as it is conceivable that hypothetical bias could be expressed through the 

SP rescaling parameter (γsp - which is common to all SP demand equations) (Huang, 

Haab, and Whitehead 1997; Whitehead, Huang, and Haab 2000) we calculate SP welfare 

using the rescaling coefficient associate with RP demand.  Under these conditions, we 

find no difference in welfare associated with RP demand, the SP baseline, or increased 

beach width.  Annual consumer surplus for improved access is $2005.69 (95% C.I. $1902 

- $2125). 

DFM-GNB estimates suggest that SP consumer surplus under current conditions 

exceeds RP by 36% if the sp treatment variable is included in estimation of conditional 

demand and by 23% if it is not.  If we do not include the sp treatment variable and use the 
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RP rescaling coefficient (γrp) in place of the SP rescaling coefficient we obtain the same 

consumer surplus estimates under current beach conditions for RP and SP demand.  

Consumer surplus for improved access (increased beach width) exceeds RP by 80% 

(50%) if insignificant treatment variables (sp and width where appropriate) are included 

in estimation of conditional demand, and by 62% (23%) if they are not.  The most 

conservative estimates are produced by excluding insignificant treatment variables and 

using the RP rescaling coefficient in estimation of SP demand.  In this case, consumer 

surplus for improved access increases 32% over current conditions and increased beach 

width has no effect on welfare. 

Due to the smaller absolute value on parameter estimate of own-price, the RE-NB 

welfare estimates are considerably larger than those derived from the DFM-GNB model.  

However, one should bear in mind that the consumer surplus estimates from DFM-GNB 

represent a weighted average8 across unobserved heterogeneity types, as indicated in 

equations (13).  Moreover, the RE-NB model imposes constant within-group dispersion, 

which is fairly restrictive.  This is a major practical difference between the specifications.  

Thus, one might expect differences in welfare estimates.  The enhanced efficiency of the 

DFM-GNB estimator produces tighter confidence intervals on parameter transformations.  

This is true for elasticity and consumer surplus estimates. 

The distribution of unobserved heterogeneity and the rescaling coefficients have 

an intuitive interpretation that can assist in understanding the differences between 

consumer surplus estimates.  Since the rescaling coefficients are positive, conditional 

recreation demand is increasing in unobserved heterogeneity.  As such, the classes of 

unobserved heterogeneity can be thought of as demand-intensity types, with type μ1 = 0 
                                                 
8 Again, the weighted nature is due to quasi-maximum likelihood estimation. 
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representing low intensity demand, type μ4 = 1.000 representing high intensity type, and 

the remaining types (μ2 and μ3) being intermediate.  Moreover, given the structure of 

equations (11) we can produce welfare estimates for each class of heterogeneity and 

demand treatment by: 

1/)exp()exp( ββμγ tkttk xCS −=       (15) 

These estimates are displayed in table 5.  Insignificant treatment effects (sp and width) 

are not used in estimating conditional demand for the welfare measures in table 5.  The 

welfare estimates by heterogeneity type exhibit systematic differences in the conditional 

mean of trips with lower values of μ associated with lower recreational demand.  

Likewise, consumer surplus estimates are smaller for lower values of μ.  Given the 

probability estimates in figure 1, these welfare measures can be used to assess the impact 

of environmental quality changes on different user segments. 

 

Conclusions 

Information on revealed (RP) and stated preference (SP) is often gathered by those 

interested in valuing hypothetical changes in environmental quality or resource 

management regimes.  Cameron (1992) was the first to propose combining observed and 

contingent behavior data to improve model estimation and welfare calculations.  Joint 

estimation allows one to glean more information about the underlying structure of 

preferences by imposing cross-equation restrictions on model parameters and assessing 

behavior associated with unobserved levels of exogenous factors in a way that was 

consistent with the observed levels.   
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In this paper we estimate RP and SP beach recreation demand simultaneously 

using a semi-parametric technique—discrete factor approximation (also known as 

discrete factor method (DFM))—to permit correlation across equations and to account for 

unobserved heterogeneity.  This flexible and computationally simplistic approach has not, 

to our knowledge, been applied to recreation demand data.  DFM uses a discrete 

distribution to take account of unobserved heterogeneity, with distribution parameters 

and probabilities estimated empirically from the data.  We show how the DFM likelihood 

function is derived and how the specification is used to produce welfare measures.  We 

compare our results against those derived from a generalized negative binomial model 

without heterogeneity control and from a standard random effects negative binomial 

model. 

The degenerate DFM model that does not incorporate unobserved heterogeneity is 

outperformed by the DFM-GNB model (likelihood ratio test statistic, p < 0.0001).  The 

DFM-GNB parameter estimates differ from those attained by a standard random effects 

negative binomial model that assumes a parametric form for the dispersion term.  We 

interpret these differences as reflecting the more flexible form for incorporation of 

heterogeneity among and within individual recreators and the less restrictive specification 

of dispersion in the DFM model.  Given our empirical estimates of beach recreation 

under current and improved conditions, we are able to interpret heterogeneity types as 

reflecting demand intensity.  Since heterogeneity is approximated by a discrete 

distribution, we can use the support points to produce welfare estimates that vary by 

heterogeneity type.  This flexibility allows policymakers and analysts to explore welfare 

effects within the user population.   
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Table 1:  Descriptive Statistics 

Variable Mean 
Standard 

Deviation 

own-price (op) – travel cost to southeastern NC 

beaches 
89.489 61.094 

cross-price (cp) – travel cost to Outer Banks, NC 

beaches 
202.051 57.046 

income (m) – household income in thousands of 

US dollars 
58.75 26.897 

trips  for t=1 (v1) – revealed preference trips 11.082 23.004 

trips for t=2 (v2) – stated preference trips under 

current conditions 
13.049 24.838 

trips for t=3 (v3) – stated preference trips under 

improved access 
17.099 30.504 

trips for t=4 (v4) – stated preference trips under 

improved beach width 
14.173 26.396 
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Table 2: Beach Recreation Demand Models 

Dependent variable: annual beach trips (vit)  
Variable DFM-GNB GNB (no hetero) RE-NB 
own-price -0.00564 

(0.00019) 
-0.00536 
(0.00062) 

-0.01096 
(0.00023) 

-0.00274 
(0.00069) 

cross-price 0.00129 
(0.00020) 

0.00093* 
(0.00064) 

0.00467 
(0.00017) 

-0.00048* 
(0.00083) 

income 0.00137 
(0.00046) 

0.00335 
(0.00119) 

0.00495 
(0.00039) 

0.00486 
(0.00173) 

sp 0.10428* 
(0.06803) 

0.18676* 
(0.13514) 

0.20865* 
(0.16293) 

0.23755 
(0.03024) 

access 0.27639 
(0.04790) 

0.27723 
(0.04724) 

0.24057* 
(0.14936) 

0.28098 
(0.02652) 

width 0.09325* 
(0.06156) 

0.09351* 
(0.06101) 

0.07866* 
(0.28206) 

0.09512 
(0.02751) 

op×sp - 
 

-0.00049* 
(0.00070) 

- 
 

- 
 

cp×sp - 
 

0.00046* 
(0.00072) 

- 
 

- 
 

income×sp - 
 

-0.00231 
(0.00128) 

- 
 

- 
 

constant 0.93733 
(0.04943) 

0.86979 
(0.10913) 

1.93820 
(0.07847) 

1.91666 
(0.14553) 

α0rp 0.01962 
(0.00355) 

0.01789 
(0.00338) 

1.24385 
(0.14374) 

- 
 

α0sp 0.00255 
(0.00072) 

0.00226 
(0.00066) 

0.94258 
(0.08797) 

- 
 

p 4.16307 
(0.06431) 

4.19674 
(0.06620) 

3.07842 
(0.03489) 

- 
 

γrp 2.89731 
(0.13117) 

2.87113 
(0.13468) 

- 
 

- 
 

γsp 3.19901 
(0.03336) 

3.19488 
(0.03407) 

- 
 

- 
 

2μ  -0.43612 
(0.02993) 

0.72957 
(0.02914) 

- 
 

- 
 

3μ  0.72091 
(0.02848) 

-0.41942 
(0.02980) 

- 
 

- 
 

1θ  1.51159 
(0.15093) 

1.48100 
0.14926 

- 
 

- 
 

2θ  0.47509 
(0.18435) 

0.99329 
(0.16134) 

- 
 

- 
 

3θ  1.02043 
(0.16300) 

0.46072 
(0.18230) 

- 
 

- 
 

r - 
 

- 
 

- 
 

2.25156 
(0.13958) 

s - 
 

- 
 

- 
 

1.75035 
(0.11847) 

Log Likelihood -7567.658 -7565.014 -9196.440 -7690.427 
LRT (df) 47116.66(16) 47121.95(19) 43859.09(9) 46871.12 (8) 

2
ρ  0.7564 0.7563 0.7043 0.7527 
AIC -10.373 -11.422 -13.863 -11.594 
# unique persons 664 664 664 664 
* - not statistically significant at 5% level; Standard errors are provided in parentheses.  
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Figure 1: Unobserved Heterogeneity
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Table 3: Elasticity Estimates 

Elasticity DFM-GNB *
GNB 

(no hetero) 
 

RE-NB 

own-price -0.5043 
(-0.4776 – -0.5320) 

-0.9807 
(-0.9471 – -1.0154) 

-0.2452 
(-0.1435 – -0.3447) 

cross-price 0.2615 
(0.3218 – 0.4545) 

0.9436 
(0.8069 – 1.0014) 

0.0969 
(-0.1821 – 0.3768) 

income 0.0807 
(0.0364 – 0.1265) 

0.2908 
(0.0797 – 0.3146) 

0.2855 
(0.1239 – 0.4503) 

* - We present elasticity estimates for the restricted DFM-GNB model (column one in table 2), 
since this is the preferred specification. 
95% Confidence Intervals are indicated in parentheses (Krinsky and Robb 1986). 
 
 



Table 4: Predicted Trips and Consumer Surplus 

 DFM-GNB GNB (no hetero) RE-NB 

t Predicted 
Trips CS CS/trip Predicted 

Trips CS CS/trip Predicted 
Trips CS CS/trip 

RP 8.57 $1521.35 
($1499 - $1560) $137.30 8.95 $816.72 

($788 - $845) $73.71 6.42 $2344.42 
($1656 - $3899) $211.59 

SP – 
baseline  11.70 $2076.84 

($1966 - $2199) $159.15 11.02 $1006.20 
($972 - $1042) $77.11 8.14 $2973.05 

($2100 - $5095) $227.83 

SP – 
access 15.43 $2738.03 

($2589 - $2896) $160.12 14.02 $1279.87 
($1234 - $1325) $74.85 10.78 $3937.60 

($2783 - $6623) $230.28 

SP - width 12.84 $2279.83 
($2157 - $2412) $160.85 11.93 $1088.55 

($1050 - $1127) $76.80 8.95 $3269.74 
($2313 - $5544) $230.70 

SP – 
baseline/ 
width*  

10.54 $1871.17 
($1770 - $1979) $143.39 - - - - - - 

SP – 
access* 13.90 $2466.88 

($2337 - $2612) $144.27 - - - - - - 

SP – 
access** 11.30 $2005.69 

($1902 - $2125) $117.29 - - - - - - 

SP – 
width** 8.57 $1521.35 

($1499 - $1560) $107.34 - - - - - - 

 95% Confidence Intervals are provided in parentheses 
* SP excluding insignificant parameters in calculation of conditional demand; 
** SP excluding insignificant parameters and using RP rescaling coefficient 

 



Table 5: Consumer Surplus Measures by Heterogeneity Type 

k μk Treatment* Trips 
Consumer 

Surplus 

1 0.000 RP 2.17 $385.22 
1 0.000 SP 2.86 $507.87 
1 0.000 SP - access 2.17 $385.22 
2 0.3272 RP 5.60 $994.07 
2 0.3272 SP 6.18 $1,097.21 
2 0.3272 SP - access 8.15 $1,446.52 
3 0.6073 RP 12.61 $2,238.29 
3 0.6073 SP 15.15 $2,688.42 
3 0.6073 SP - access 19.97 $3,544.30 
4 1.000 RP 39.35 $6,982.36 
4 1.000 SP 53.20 $9,441.32 
4 1.000 SP - access 70.14 $12,447.06 

* SP – width treatment does not differ from SP;  
RP estimates are calculated using the RP rescaling coefficient (γrp);  
SP estimates are calculated using the SP rescaling coefficient (γsp) 

 

 


