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Abstract

It is well known that externalities can cause fundamental nonconvexity problems

in the production sets (Baumol 1972, Starett 1972). We use the di¤erentiable ap-

proach to establish existence without requiring aggregate convexity in consumption

nor production. Our model also allows price dependent externalities and individual

preferences that are not convex in externalities.
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1 Introduction

Externalities prevail in the real world, yet they are di¢ cult to deal with in general equi-

librium models. Baumol (1972) �rst points out that the aggregate production possibility

set of the polluter�s activity and the pollutee�s activity may present itself a nonconvex

set when the external damages are strong. For example, when a laundry (pollutee) and

a steel mill (polluter) locate side by side, the production frontier becomes L-shaped with

only the production of either of the two commodities possible. Even though individ-

ual production and consumption sets are convex, externalities create nonconvexity in

the aggregate, which presents a problem for the conventional convex analysis approach

to �nite economies. Moreover, the price hyperplane needs to separate each �rm�s and

�Department of Economics, Brewster A-427, Tenth Street, Greenville, NC 27858. Phone: 252-

3286006. Fax: 252-3286743. E-mail: ericsonr@ecu.edu
yDepartment of Economics, Brewster A-438, Tenth Street, Greenville, NC 27858. Phone: 252-

3282488. Fax: 252-3286743. E-mail: kungf@ecu.edu.

1



consumer�s production sets independently, yet with externalities, these sets are not inde-

pendent. Another type of fundamental nonconvexity is pointed out by Starrett (1972).

When a positive price for pollution rights is determined in the Arrovian externalities

market, the pollutee may want to sell an in�nite amount of rights. Boyd and Conley

(1997) argue that this type of nonconvexity can be resolved by specifying an endowment

bound for pollution rights. On the other hand, the Baumol type of nonconvexity still

persists.

Our paper presents a di¤erentiable approach to externalities where convexity in the

aggregate production or consumption is not required. Externalities are allowed to in�u-

ence production and consumption in arbitrary ways. As long as consumer preferences

and �rms�production sets are convex in own activities, being demand or net output,

for �xed levels of externalities, a competitive equilibrium exists under standard assump-

tions. Our approach studies equilibrium of an economy as the intersection of manifolds,

in line with Mas-Colell (1985), Balasko (1988), and Geanakoplos and Shafer (1990).

A nonempty intersection obtains if these manifolds are transversal and the �xed point

mapping needs not to be convex valued.

The following authors address issues of externalities in competitive equilibrium. Bon-

nisseau and del Mercato (2010) study externalities when consumer have consumption

constraints. Kung (2008) presents a public goods model with externalities in consump-

tion (but not in production). Noguchi and Zame (2006) use a continuous model of

a distribution of consumptions on indivisible goods, convexity is not required though.

Cornet and Topuzu (2005) study a two-period temporary equilibrium model as a re-

duced Walrasian economy with price dependency externalities. Balder (2003) demon-

strates that equilibrium exists if the externalities enter into preferences of each indi-

vidual in the same way (which seems to exclude local externalities, externalities that

diminish with distance, and externalities that have directional e¤ects). Greenberg and

Shitovitz�s (1979) approach models an abstract economy that allows price dependency

and consumption externalities (though there is aggregate production but no individual

�rms.) In contrast to the literature, our model allows for production set and individual

preferences that are not convex in externalities, and general externalities that �rms and

consumers experiences in unrestricted ways.

The problem of convexity associated with externalities is illustrated in Figure 1

(Baumol 1972, p.317). As the degree of external damages are getting stronger, the

production frontier of x1 and x2 moves from C1, C2, ..., to CS+1 with AOB as its limit.
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Figure 1: Nonconvexity in the joint production set.

How this convexity problem can be handled by the di¤erentiable approach is illus-

trated in Figure 2 (Geanakoplos and Shafer 1990, p.71, � (p) � ẑ (p) = 0 being the

solution). The middle panel has a convex-valued � (p) map and admits a �xed point.

The left panel has a discontinuous � (p) map and there is no �xed point. The right

panel has a continuous map which is not convex-valued, yet it admits a �xed point.

The right panel shows � (p) as a di¤erentiable manifold, where a �xed point obtains

without convexity.

Figure 2: Fixed point in a nonconvex-valued map.
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We extend this di¤erentiable approach to include production and externalities. Sec-

tion 2 introduces the model and main result. Section 3 concludes.

2 The Production Economy

There are N private goods, I consumers, and J �rms. The prices of private goods

are denoted by p 2 SN where SN =
n
p 2 <N++ j

PN
n=1 pn = 1

o
is the interior of the

(N � 1)-dimensional simplex.1 Let xi 2 <N++ denote the consumption bundle of con-
sumer i, and yj 2 <N denote net output of �rm j. The activities of all consumer and

�rms enter into the utility functions of every consumer and the production technology

of every �rm. Each of consumer i and �rm j is in�uenced by a pro�le of externali-

ties including equilibrium prices. Let Ti =
�
(xh)

I
h=1;h 6=i ; (yj)

J
j=1

�
for consumer i, and

Tj =
�
(xi)

I
i=1 ; (yh)

J
h=1;h 6=j

�
for �rm j. All external activities are recorded as positive

amounts. This model keeps track of the amount of the original activities such as the

consumption of cigarettes, instead of the external by-products of these activities such

as the amount of second-hand smoke.

The production technology of �rm j is represented by a C2 transformation function

fj (yj ; Tj ; p) : <IN++�<JN�SN ! <, which follows standard assumptions: fj is di¤eren-
tiably strictly decreasing in yj , i.e., Dyjfj � 0. fj is di¤erentiably strictly quasiconcave

in yj , i.e., if Dyjfjv = 0, then vD
2
yjfjv < 0 for all v 2 <

Nn f0g.
Firm j taking prices and externalities as given maximizes pro�t pyj over yj 2 <N

subject to fj (yj ; Tj ; p) = 0. With �j 2 < as the multiplier, the �rst order conditions
are

p� �jDyjfj (yj ; Tj ; p) = 0;
fj (yj ; Tj ; p) = 0:

Each consumer i is endowed with private goods ei 2 <N++ and a share sij 2
[0; 1] of �rm j. Preferences of consumer i are represented by a C2 utility function

ui (xi; Ti; p) : <IN++ � <JN � SN ! <, which follows standard assumptions: ui is di¤er-
entiably strictly increasing in xi, i.e., Dxiui � 0. ui is di¤erentiably strictly quasiconcave

in xi, i.e., if Dxiuiv = 0 then vD
2
xiuiv < 0 for all v 2 <

Nn f0g. ui satis�es the bound-
ary condition2: for all Ti such that for any bundle x0i 2 <N++, the upper contour set�
xi 2 <N++ j ui (xi; Ti; p) � ui (x0i; Ti; p)

	
is closed in <N++.

Consumer imaximizes utility ui (xi; Ti; p) over xi 2 <N++ subject to budget p (xi � ei)�
1We can safely exclude zero prices because of assumed quasiconcavity.
2This guarantees an interior solution with positive demands for all good (Mas-Colell 1985).
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PJ
j=1 sijpyj = 0. The �rst order conditions are

Dxiui (xi;Ti; p)� �ip = 0;
p (xi � ei)�

PJ
j=1 sijpyj = 0;

with �i 2 < being the multiplier. The markets clear with

IX
i=1

(xi � ei)�
JX
j=1

yj = 0:

De�nition 1. An equilibrium of the benchmark economy (e; s) is a list�
(xi)

I
i=1 ; (�i)

I
i=1 ; (yj)

J
j=1 ; (�j)

J
j=1 ; p

�
that satis�es the following C1 equations, where

(xi)
I
i=1 2 <IN++ are consumption bundles, (yj)

J
j=1 2 <JN are production plans, p 2 SN

is the price vector, (�i)
I
i=1 2 <I and (�j)

J
j=1 2 <J are multipliers.

Dxiui (xi; Ti; p)� �ip = 0;8i;

p (xi � ei)�
JX
j=1

sijpyj = 0;8i;

p� �jDyjfj (yj ; Ti; p) = 0;8j;
fj (yj ; Ti; p) = 0;8j;

IX
i=1

(xi � ei)�
JX
j=1

yj = 0:

Perturbing the economy
Take " small enough so that it does not alter the properties of ui and fj assumed

above. We perturb the utility function with �i 2 <N+ .

ui (xi; Ti; p) + "�ixi:

Firm speci�c parameters �j 2 <N and j 2 < (let  =
�
j
�J
j=1
) perturb around

transformation function fj .

fj (yj ; Tj ; p) + "
�
�jyj + j

�
:

Let s�1 = (si1)
I
i=1;i6=1; it is the pro�le of all consumers�shares of �rm j = 1 except for

i = 1. We will use the augmented parameter space � =
�
(�i)

I
i=1 ; s�1;

�
�j
�J
j=1

; ; e1

�
2

� � <IN+ � [0; 1]I�1 � <JN � <J � <N++. The benchmark model is parameterized at
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(0; s�1; 0; 0; e1). These parameters perturb the system orthogonally so that its Jacobian

matrix has full rank, which provides enough independent directions for it to be transver-

sal. This technique can disentangle the interdependency generated by externalities. .

De�nition 2. An equilibrium of the economy � in the augmented parameter space �

is a list
�
(xi)

I
i=1 ; (�i)

I
i=1 ; (yj)

J
j=1 ; (�j)

J
j=1 ; (p)

�
2 � = <IN++�<I�<JN �<J �SN , that

satisfy the following conditions:

Dxiui (xi; Ti; p) + "�i � �ip = 0;8i;

p (xi � ei)�
JX
j=1

sijpyj = 0;8i 6= 1:

p� �j
�
Dyjfj (yj ; Tj ; p) + "�j

�
= 0;8j;

fj (yj ; Tj ; p) + "
�
�jyj + j

�
= 0;8j; (1)

IX
i=1

(xi � ei)�
JX
j=1

yj = 0:

The budget constraint of i = 1 satis�es automatically by Walras�Law. Denote the

left-hand side of system (1) as a C1 map � : � � � ! <IN+I+JN+J+N�1. Let � 2 �
denote an element of �.

Theorem 1. Equilibrium exists for every economy � 2 �.

Proof. First, a simpli�ed seed economy without externalities is de�ned as follows. Let
û (xi) =

PI
i=1 lnxin=N ; consumers have preferences û (xi) + "�i. Firm 1 has linear

production technology �1y1 + 1 = 0. Take an di¤erentiably strictly decreasing and

quasiconcave function f̂ (yj), the transformation functions for other �rms j 6= 1 are

f̂ (yj) + "
�
�jyj + j

�
. Thus, the following C1 map �,

� (�; �) =

0BBBBBBBBBBBB@

Dxi û (xi) + "�i � �ip;8i
p (xi � ei) ;8i 6= 1

p� �1�1
p� �j

�
Dyj f̂j (yj) + "�j

�
;8j 6= 1

�1y1 + 1

f̂ (yj) + "
�
�jyj + j

�
;8j 6= 1PI

i=1 (xi � ei)�
PJ
j=1 yj

1CCCCCCCCCCCCA
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de�nes the equilibrium of the seed economy at � (�; �) = 0. There is a unique solution

�0 as follows: We can solve prices as p0 = � 01�1, then �
0
1 = 1=

PN
h=1 �1h. Prices p

0 then

uniquely determine the production plan y0j , multiplier �
0
j of �rm j 6= 1, consumer i�s

bundle x0i, and multiplier �
0
i due to strict quasiconcavity of the transformation functions

and utility functions. Finally, y01 =
PI
i=1 (x

0
i � ei)�

PJ
j=1 y

0
j .

This seed economy � (�; �) will be deformed continuously into � via a homotopy

while its topological properties are preserved. De�ne a homotopy � : � � [0; 1] � � !
<IN+I+JN+J+N�1 where � (�; 0; �) = � (�; �) and � (�; 1; �) = � (�; �).

� (�; �; �) =

0BBBBBBBBBBBB@

�Dxiui (xi; Ti; p) + (1� �)Dxi û (xi) + "�i � �ip;8i
p (xi � ei)� �

PJ
j=1 sijpyj ;8i 6= 1

p� ��1 (Dy1f1 (y1; T1; p) + "�1)� (1� �) v1�1
p� �j

�
�Dyjfj (yj ; Tj ; p) + (1� �)Dyj f̂j (yj) + "�j

�
;8j 6= 1

�f1 (y1; T1; p) + (�"+ 1� �) (�1y1 + 1)
�fj (yj ; Tj ; p) + (1� �) f̂ (yj) + "

�
�jyj + j

�
;8j 6= 1PI

i=1 (xi � ei)�
PJ
j=1 yj

1CCCCCCCCCCCCA
:

The following lemma shows that the preimage of the homotopy is closed.

Lemma 1. ��1 (0) = f(�; �; �) 2 �� [0; 1]�� j � (�; �; �) = 0g is closed in <2(IN+I+JN+J+N�1)+1�
[0; 1]��.

Proof. Take a sequence (�k; �k; �k) !
�
��; ��; ��

�
such that (�k; �k; �k) 2 ��1 (0) for

every k. By continuity, �
�
��; ��; ��

�
= 0. Hence we are left to check that all �xi are

interior. Since utility functions are di¤erentiably strictly increasing, the left-hand side

of the �rst order condition �Dxiui (xi;Ti) + (1� �)Dxi û (xi) + "�i = �ip is strictly

positive and �p� 0. We show �xi =2 <N+n<N++ for all i in the following. Suppose there is
�x�{�n = 0 for some �{ and some �n. Let

vi (xi; �; �) = �ui (xi;Ti) + (1� �) û (xi) + "�ixi, and
Dxinvi (xi; �; �) = �Dxinui (xi;Ti) + (1� �)Dxin û (xi) + "�in:

The �rst order condition says, for all n 6= �n, Dx�{�nv�{
�
x�{; ��; ��

�
= Dx�{nv�{

�
x�{; ��; ��

�
�p�n=�pn.

By continuity, we can �nd n0 2 f1; : : : ; Ng n�n, a small �, and two points
�0 =

�
(x0i)

I
i=1 ;

�
��i
�I
i=1
; (yj)

J
j=1 ; (��j)

J
j=1 ; �p

�
and �00 =

�
(x00i )

I
i=1 ;

�
��i
�I
i=1
; (yj)

J
j=1 ; (��j)

J
j=1 ; �p

�
in the neighborhood of �, where for all i 6= �{, x0i = x00i = �xi, and for �{ we have

x0�{�n = �, x00�{�n = �x�{�n = 0, x00�{n0 > �x�{n0 , x0�{n = x00�{n = �x�{n for all n 6= �n; n0, such that

vi
�
x00i ; ��;

��
�
� vi

�
x0i; ��;

��
�
. This violates the boundary condition of utility function since

x00in 2 <N+n<N++.
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In the following, we show that 0 is a regular value for all these maps �, � and �.3

Lemma 2. 0 is a regular value for � (:; :; �) except for � in a closed set of measure

zero in �.

Proof. We need D(�;�;�)� to have full rank whenever � (�; �; �) = 0. And

D�� =

2666666666666666666664

"IN 0 � � � 0

0
. . . 0 � � �
0 ��py1IN�1 0

� � � 0 � ("�+ 1� �) �1IN 0 � � �
� � � 0 "�jIN 0 � � �

...
. . .

...

� � � 0 (�"+ 1� �) y1 0 0 "�+ 1� � 0 � � �
� � � 0 "yj 0 0 " 0

� � � 0
. . . 0

. . . 0

0 � � � 0 �IN

3777777777777777777775
�i s�1 �1 �j;j 6=1 1 j;j 6=1 e1

always has full rank. Therefore, D(�;�;�)� always has full rank.

By the transversality theorem (see Guillemin and Pollack 1974, p. 68, and Mas-

Colell 1985, p. 320).

Transversality Theorem. Suppose that � : X�S ! <m is a Cr map where X;S
are Cr boundariless manifolds with r > max f0;dim (X)�mg; let �s (x) = � (x; s),

�s : X ! <m. If y 2 <m is a regular value for �, then except for s in a set of measure
zero in S, y is a regular value for �s.

0 is a regular value for � (:; :; �) except for � in a set of measure zero. The set of crit-

ical � such that 0 is not a regular value is closed. Suppose there is a sequence of �k 2 �
with associated solutions (�k; �k; �k) 2 ��1 (0) such that �k ! �� and D(�;�)� (�k; �k; �k)

does not have full rank for all k. By Lemma 1, there is a limit point
�
��; ��; ��

�
2 �� [0; 1]

such that (�k; �k; �k) !
�
�; ��; ��

�
. By continuity, �

�
�; ��; ��

�
= 0 and D(�;�)�

�
�; ��; ��

�
does not have full rank.

3For a Cr map f : M ! N between manifolds, y 2 N is a regular value if Df (x) has full rank for

all x 2 f�1 (y).

8



Since the above result holds for all � 2 [0; 1], we have D(�;�)� having full rank

whenever � (�; �) = 0, and D(�;�)� having full rank whenever � (�; �) = 0. Thus 0 is a

regular value for both � and �. The following Corollary is immediate.

Corollary 1. 0 is a regular value for � (:; �) and � (:; �) except for � in a closed set

of measure zero in �.

Next we show that solutions to � (:; :; �) = 0 can be bounded by a manifold and there

is no sequence of solutions that approaches its boundary. LetBN (r) =
�
x 2 <N j x � r

	
denote the N -dimensional ball with radius r. <IN++ �<I �<JN �<J � SN

Lemma 3. For each � 2 � there is a manifold

� (�) =
�
BIN (�r�) \ <IN++

�
�BI+J(N+1) (�r�)� SN � �� [0; 1]

such that the following holds true:

(i) If � (�; �; �) = 0, then (�; �) 2 � (�).
(ii) If there is a sequence (�; �k) ! (�; ��) with � (�; �k; �) = 0, then � =2 @� (�) =

cl� (�) n� (�).

Proof. (i) The following de�nes the maximum amount of the n-good that can be

produced by �rms in an economy (�; �).

~yn (�; �) = max
yj2<N

JX
j=1

yjn

s:t:

�f1 (y1; T1; p) + (�"+ 1� �) (�1y1 + 1) = 0;
�fj (yj ; Tj ; p) + (1� �) f̂j (yj) + "

�
�jyj + j

�
= 0;8j 6= 1;PI

i=1 ein0 +
PJ
j=1 yjn0 � 0;8n0 6= n:

It has a unique solution by strict quasiconcavity. Next, let

~x (�) = max
n2f1;:::Ng;�2[0:1]

"
~yn (�; �) +

IX
i=1

ein

#
+ 1:

This is more than the maximum amount of the n-good potentially available in economy

� for all �. Thus, each xi is bounded by BN (~x (�)) \ <N++, and yj is bounded by
BN (~x (�)).

Since the values of all xi and yj are bounded, the multipliers �i and �j are bounded

by the �rst order conditions in � (�; �; �) = 0. Denote their bounds by ~�i (�; �) and
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~�j (�; �). Take

�r� = max

�
~x (�) ; max

i=1;:::;I;j=1;:::;J;�2[0:1]

h
~�i (�; �) ; ~�j (�; �)

i�
:

We have the manifold � (�).

(ii) At the limit (�; ��), we have � (�; ��; �) = 0. The boundary problem � 2 @� (�)
only happens when there is zero consumption in �xi or a zero price in �p. These are ruled

out by Lemma 1.

In the following, we can safely restrict the domain of � (:; :; �) to the manifold � (�),

and show that there is a solution to � (:; �) = 0 for almost all �.

Lemma 4. If 0 is a regular value for � (:; :; �), � (:; �) and � (:; �) at � 2 �, then
� (:; �) = 0 has a solution.

Proof. We apply the following version of the preimage theorem (Guillemin and Pollack

1974, p. 60, also Mas-Colell 1985, p. 38).

Theorem Let � be a smooth map of a manifold X with boundary onto a boundariless

manifold Y , and suppose that both � : X ! Y and @� : @X ! Y are transversal with

respect to a boundariless submanifold Z in Y . Then the preimage ��1 (Z) is a manifold

with boundary @
�
��1 (Z)

	
= ��1 (Z) \ @X , and the codimension of ��1 (Z) in X

equals the codimension of Z in Y .

We apply this theorem to � (:; :; �) with � (�)� [0; 1] as X, � (�)�f0g [� (�)�f1g
as @X, <IN+I+J(N+1)+N�1 as Y , and the combination of � (:; 0; �) and � (:; 1; �) as
@� (:; :; �). Note that map � is transversal to a point z means that z is a regular value

for �. Therefore, we have � (:; :; �) and @� (:; :; �) both transversal to 0.

So, ��1 (0; �) is a 1-dimensional C1 manifold with boundary, whose boundary is on

the boundary of the domain � (�) � f0g [ � (�) � f1g. We know that there is already
a unique boundary point (�0; 0) 2 � (�)� f0g where � (�0; �) = 0. By the classi�cation
theorem of 1-dimesional manifolds (Hirsch 1976, p.32 and Guillemin and Pollack 1974,

p.64), this boundary point of � (:; �) = 0 is either part of a closed curve di¤eomorphic

to [0; 1], or a half-open curve di¤eomorphic to [0; 1). Suppose it is a half-open curve.

Then, its open end cannot approach the boundary @� (�) by Lemma 4 (ii), and this

open end cannot be in � (�) since this violates continuity of �. Thus, ��1 (0; �) is a

closed C1 curve with another end point (��; 1) 2 � (�)� f1g where � (��; �) = 0.4

4This result can also be obtained from the mod 2 intersection (or degree) theorem, but it requires a
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Therefore, generic in �, there is a solution to � = 0. Moreover, all critical � values in

Lemma 4, such that 0 is not a regular value, are in a nowhere dense set of � (Corollary

1). For a critical �� 2 �, we can �nd a sequence �k ! �� such that 0 is a regular value for

those maps in Lemma 4 at each �k, and each �k has an associated equilibrium �k. Since

Lemma 1 shows that ��1 (0) is closed, (�k; 1; �k) converges to an ��, and by continuity

�
�
��; ��

�
= 0 and �� is an equilibrium for ��.

3 Conclusion

Our paper presents a di¤erentiable approach to externalities, where convexity in the

aggregate is not required. Externalities are allowed to in�uence consumers and �rms

in arbitrary ways. Utility and production functions can be nonconvex in externalities,

and externalities can be price dependent. As long as preferences and production are

convex in own activities for �xed levels of externalities, existence of competitive equi-

librium obtains. Our approach is in line with Mas-Colell (1985), Balasko (1988), and

Geanakoplos and Shafer (1990), which study equilibria of an economy as the intersec-

tion of manifolds. A nonempty intersection obtains if these manifolds are transversal.

The �xed point mapping needs not to be convex valued. As long as utility and pro-

duction functions are convex in own activities, standard assumptions are su¢ cient for

equilibrium.

References

[1] Allen, B. (1981) Utility perturbations and the equilibrium price set. Journal of

Mathematical Economics 8, 277�307.

[2] Balasko, Y., 1988. Foundations of the theory of general equilibrium. In: Economic

Theory, Econometrics, and Mathematical Economics. Academic Press, Boston,

MA

[3] Balder, E. (2004), Existence of Competitive Equilibria in Economies with a Mea-

sure Space of Consumers and Consumption Externalities, Mimeo, University of

Utrecht.

[4] Baumol, W. (1972), On taxation and the control of externalities, American Eco-

nomic Review 62, 307-322.

more involved operation that extends domain D̂ (A) into a compact manifold without boundary.

11



[5] Bonnisseau, J.-M. and E. L. del Mercato (2010), Externalities, consumption con-

straints and regular economies," Economic Theory 44(1), 123-147.

[6] Boyd, J. H. and Conley, J. P. (1997), Fundamental Nonconvexities in Arrovian

Markets and a Coasian Solution to the Problem of Externalities, Journal of

Economic Theory 72, 388-407.

[7] Coase, R. (1960), The Problem of Social Cost, Journal of Law and Economics 3,

1-44.

[8] Cornet, B. and M. Topuzu (2005), Existence of Equilibria for economies with Ex-

ternalities and a Measure Space of Consumers, Economic Theory 26, 397-421.

[9] Debreu, G. (1952), A Social Equilibrium Existence Theorem, Proceedings of the

National Academy of Sciences of the United States of America 38, 886-893.

[10] � � � � - (1970), Economies with a Finite Set of Equilibria, Econometrica 38,

387-392.

[11] del Mercato, E. L. (2006), Existence of Competitive Equilibria with Externalities:

A Di¤erentiable Viewpoint, Journal of Mathematical Economics 42, 525-543.

[12] Dierker, E. (1974), Topological Methods in Walrasian Economics, in Lecture Notes

in Economics and Mathematical Systems, Springer-Verlag, New York, NY.

[13] Dierker, H. (1975), Smooth Preferences and the Regularity of Equilibria, Journal

of Mathematical Economics 2, 43-62.

[14] Geanakoplos, J. and W. Shafer (1990), Solving Systems of Simultaneous Equations

in Economics, Journal of Mathematical Economics 19, 69-93.

[15] Guillemin, V. and A. Pollack (1974), Di¤erential Topology, Prentice-Hall, Engle-

wood Cli¤s, NJ.

[16] Hammond, P. J., M. Kaneko and M. H. Wooders (1989), Continuum Economies

with Finite Coalitions: Core, Equilibria, and Widespread Externalities, Journal

of Economic Theory 49, 113-134.

[17] Kung, F-C. (2008), Voluntary contributions to multiple public goods in a pro-

duction economy with widespread externalities, Journal of Mathematical Eco-

nomics 44, 1364�1378.

[18] Ledyard, J. (1971), The Relation of Optima and Market Equilibria with External-

ities, Journal of Economic Theory 3, 54-65.

[19] Malinvaud, E. (1985), Lectures on Microeconomic Theory, 2nd ed., North-Holland,

New York, NY.

12



[20] Mas-Colell, A. (1985), The Theory of General Economic Equilibrium: A Di¤erential

Approach, Cambridge University Press, Cambridge, MA.

[21] Mas-Colell, A. and J. H. Nachbar (1991), On the Finiteness of the Number of Crit-

ical Equilibria, with an Application to Random Selections, Journal of Mathe-

matical Economics 20, 397-409.

[22] Milleron, J-C. (1972), Theory of Value with Public Goods: A Survey Article, Jour-

nal of Economic Theory 5, 419-477.

[23] Noguchi, M. and W. R. Zame (2006), Competitive Markets with Externalities,

Theoretical Economics 1, 143-166.

[24] Shafer, A. and H. Sonnenschein (1975), Equilibrium in Abstract Economies without

Ordered Preferences, Journal of Mathematical Economics 2, 345-348.

[25] Smale, S. (1974), Global analysis and economics IV: �niteness and stability of equi-

libria with general consumption sets and production, Journal of Mathematical

Economics 1, 119-127.

[26] Starrett, D. A. (1972), Fundamental Nonconvexities in the Theory of Externalities,

Journal of Economic Theory 4, 180-199.

13


