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Abstract

We conduct an empirical study of risk-return tradeoff in fourteen Pacific basin equity markets using

several volatility estimators, including three variants of GARCH class, equally weighted rolling window

volatility, and mixed data sampling (MIDAS), as well as binormal GARCH (BiN-GARCH) model which

allows for non-zero conditional skewness in returns. Our findings imply that the BiN-GARCH model,

which allows for time-variation in the conditional skewness and market price of risk, captures the

expected positive risk-return relationship for more than half of the markets studied. In comparison,

symmetric skewness models such as MIDAS or GARCH variants fail to capture positive and statistically

significant market price of risk estimates. These results provide support for the growing literature on

the necessity of modeling conditional higher moments in financial research.
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1 Introduction

In the past twenty years, many studies in empirical asset pricing have devoted considerable energy

in testing the systematic trade-off between expected returns and risk, characterized by Merton

(1973) intertemporal capital asset pricing (ICAPM). The majority of empirical studies postulate a

positive and linear relation between the conditional variance and expected excess market returns,

with time-invariant market price of risk. Moreover, the majority of studies assume symmetry in

the conditional distribution of excess returns. These assumptions essentially translate into a race

to come up with the best model for the conditional volatility.

However, there is no consensus on even the most basic theoretical properties of the risk-return

relationship; see Rossi and Timmermann (2009). In this study, we show that the problem is not

the volatility model used, but failure to account for conditional higher moments and their role in

the risk-return relationship. We use several variants of existing empirical methodologies to test the

risk-return relationship in 14 Pacific rim financial markets. We find that the model that does not

require symmetry in the conditional distribution of excess returns outperforms those that require

this restriction.

We find empirical supporting evidence in favor of a positive risk-return relationship in eight

markets studied, using binormal GARCH (henceforth, BiN-GARCH) methodology of Feunou et al.

(2010). Other methods, including rolling estimator of French et al. (1987), various GARCH speci-

fications, or mixed data sampling (henceforth, MIDAS) of Ghysels et al. (2005, 2006, 2007), deliver

significantly weaker results.

We believe that our results provide empirical support for the idea that to build reliable risk

management measures in the Pacific basin markets, one needs to consider modeling conditional

higher moments such as conditional skewness, in addition to the traditional modeling of the first two

conditional moments. This paper contributes to the existing literature in two important directions.

First, it provides an empirical assessment for the ability of several traditional and more recent

econometric methodologies in gauging the elusive risk-return trade-off relationship, in the context

of non-U.S. markets.

Second, this paper empirically demonstrates the impact of asymmetry in conditional distribution

of returns, non-linearity in the risk-return trade-off relation, and time-variation in the conditional

skewness across the most important region in the world economy in the 21st century.

In general, empirical evidence on risk-return trade-off is quite inconclusive. Campbell (1987),

Nelson (1991), and more recently Brandt and Kang (2004), find a significantly negative conditional

relationship. Harvey (1989) and Glosten et al. (1993) find both a positive and a negative relation

depending on the method used. On the other hand, French et al. (1987), Baillie and DeGennaro

(1990), and Campbell and Hentschel (1992) find a positive but mostly insignificant relation between

the conditional variance and the conditional expected returns. Ghysels et al. (2005) and Ludvigson



and Ng (2007) find a positive and significant relationship in the U.S. data. In particular, Ghysels

et al. (2005) report success in capturing a time-invariant, positive, and statistically significant

market price of risk for monthly market returns data from 1928 to 2000. They use daily data for

the same period and mixed data sampling (MIDAS) regression methodology to perform statistical

assessment of ICAPM. More recently, Rossi and Timmermann (2009) use regression trees to show

that the risk-return relationship is state dependent and nonlinear. Feunou et al. (2010) show that

the risk-return relationship is nonlinear, time-varying, and crucially depends on the dynamics of

conditional skewness of returns. They show that inclusion of conditional skewness in estimation

delivers robust, positive risk-return tradeoff in S&P500 and international data.

The rest of the paper is organized as follows. In Section 2, we introduce the data used in this

paper. Section 3 introduces the various methodologies used in the paper and discusses the empirical

results. Section 4 concludes.

2 Data

We construct market index returns by taking the first difference of logarithm of MSCI (formerly

known as Morgan Stanley Capital International) country specific and U.S. dollar denominated

indices downloaded from Thomson Reuters’ Datastream. In order to obtain excess returns, we

follow the common practice in the finance literature and subtract the three month US Treasury

Bill returns from the country specific index returns. T-Bill rates act as the proxy for the risk free

rate. Thus, we are analyzing data from the point of view of an international investor that has

access to the international fixed income market.

We collected data based on the availability and length of data sets maintained by Datastream. In

order to maintain uniformity of results, we use U.S. dollar denominated returns for all the markets.

Our sample includes 14 markets from the Pacific rim. Canada and Japan represent the G7 markets.

Hong Kong and Singapore are small, rich city-states with highly developed financial markets. Two

other “Asian Tigers”, Korea and Taiwan, are also in the sample. Indonesia, Malaysia, and the

Philippines are three emerging markets which complete our Asian representatives. An OECD

member, Mexico, and Colombia represent Latin America. Australia and New Zealand round up

our sample.

As is seen in Table 1, there is wide variation in the behavior of these markets. Most markets

have annualized returns in the neighborhood of 2-3% a year. Five markets, Korea, New Zealand,

the Philippines, Taiwan, and Thailand have negative excess returns for the sample period of 1988-

2009. Reported standard deviations are comparable with what is reported in other empirical

studies. All but three markets, Indonesia, Japan, and Korea, demonstrate significant negative

skewness. Indonesia and Korea excess returns have positive skewness. Japanese data, on the

other hand, do not demonstrate significant departure from unconditional symmetry in returns. All
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markets in sample except Colombia seem to have significant excess kurtosis, thus they demonstrate

leptokurtotic behavior. We conclude that none of these excess returns series are unconditionally

normally distributed.1

3 Intertemporal Capital Asset Pricing Model

Following Merton (1973),

Et−1[rt] = µ+ γV art−1[rt], (1)

where the value of µ is expected to be equal to zero and γ is the time-invariant market price of

risk. The size and sign of γ dictate the size and direction of risk-return trade-off.2 Traditionally, we

measure the returns as log differences in total return indices. Unfortunately, measuring volatility is

considerably more complicated, since volatility is not observable. A vast literature in finance and

econometrics is devoted to measurement and assessment of volatility.

To a large extent, the empirical risk-return trade off literature is an exercise finding the “right”

volatility measure for V art−1[rt] term in equation (1). Over years, empirical finance community

has studied numerous parametric, non-parametric, and hybrid volatility measures. In this paper,

we study a relatively large sample of these volatility measures. They include representatives of

parametric, non-parametric, and hybrid classes. We find that while this choice of measure is

important in capturing the positive market price of risk, it is not sufficient. A successful model of

market price of risk seems to require modeling conditional mean, volatility, and skewness of returns.

The empirical evidence supporting this claim follows.

3.1 Zero Conditional Skewness in Returns

3.1.1 GARCH Models

We study the risk-return trade-off dynamics in the context of three GARCH-in-Mean models. All

the models studied in the section share a common underlying assumption. All these models assume

that conditional distribution of returns are symmetric. They may allow for asymmetry in the

conditional volatility of the returns, but they maintain that returns themselves are conditionally

symmetrically distributed.

The workhorse of this literature remains Bollerslev (1986) GARCH model. In this study, we

first posit that the conditional volatility of excess returns follows a simple GARCH(1,1) dynamics.

1We conducted the Jarque-Bera normality test on these series. The null hypothesis of normality is rejected at 1%
or better confidence level for all series. For the sake of brevity, these results are not reported.

2In Merton’s formulation, γ is the coefficient of relative risk aversion for the representative agent.
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That is, we assume that the excess returns follow

rt = µ+ λht−1 + εt, (2)

where εt =
√
ht−1zt and zt is a white noise error term. In Bollerslev (1986) formulation, ht follows

ht = ω + αε2t + βht−1. (3)

These dynamics are stationary when α+ β ≤ 1. We refer to the combination of equations (2) and

(3) as GARCH-in-Mean.

Ghysels et al. (2005) analyze the U.S. “long data” (1928-2000) using the absolute GARCH

(Abs-GARCH) specification for robustness purposes. This model specifies the dynamics of the

conditional volatility as

h
1/2
t = ω + α|εt|+ βh

1/2
t−1. (4)

We refer to the combination of equations (2) and (4) as Abs-GARCH-in-Mean.

Nelson (1991) exponential GARCH (EGARCH) captures “the leverage effect”. Very concisely,

leverage effect is a negative correlation between past returns and future volatility. This model allows

for asymmetry in volatility. This means that the impact of a positive market outcome on the future

volatility is different from the impact of a negative outcome. Formally, this model parameterizes

the conditional variance process as

ln(ht) = ω + αg(z∗t−1) + β ln(ht−1) (5)

g(z∗t ) = θz∗t + δ[|z∗t | − E|z∗t |], (6)

where z∗t = εt/
√
ht and δ = 1. We refer to equations (2), (5), and (6) jointly as an EGARCH-M

model.

The results of fitting the data using the three variations of the GARCH-M model are reported

in Table 2. As is seen in Panel A, estimated GARCH parameters, namely ω, α and β, are gener-

ally statistically different from zero. This observation may be viewed as support for existence of

GARCH effects in the returns from Pacific basin markets, which is hardly surprising. However,

the parameters of interest tell a different story. We are interested in estimated µ and γs. Mer-

ton’s specification of the risk-return relation implies that estimated µs should not be significantly

different from zero. It is immediately obvious from Table 2 that is condition is met for almost

all markets studied here. The exception are Colombia and Thailand. On the other hand, we also

clearly observe that the second requirement of the theory, γ � 0, does not hold in the GARCH-M

model. Together, these two results imply that GARCH(1,1)-in-Mean is not a good specification for

measuring the risk-return trade-off in the Pacific basin markets.
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Panel B in Table 2 reports the estimated parameters from fitting the EGARCH-M model to

the data. Again, volatility parameters are generally statistically different from zero. Unlike the

GARCH-M case, the majority of estimated intercept parameters in the risk-return relation are

not statistically different from zero. Ten estimated intercepts are statistically non-zero, which

means that using the EGARCH-M implies that the majority of these market face mild ICAPM

inefficiency. The main problem with this specification is that while almost half of estimated γs

are statistically different from zero, all of them have a negative sign. In fact, only one market,

Korea, demonstrates evidence of positive market price of risk. But the estimated γ for Korea is

not statistically significant. Again, we conclude that EGARCH-M may not be the best method for

measuring risk-return relationship in the Pacific basin markets. Moreover, this conclusion implies

that failure of GARCH-M model is not due to ignoring the leverage effect. EGARCH specification

allows for leverage effect, but does not deliver a positive market price of risk.

Finally, Panel C of Table 2 reports the estimated parameters from fitting the Abs-GARCH-M

model to the data. Similar to the two previous cases reported above, this specification fails to find

a positive and statistically significant risk-return trade off in these markets.3 We conclude that

symmetric GARCH models can not detect a positive risk-return relationship in the equity markets

studied in this paper.

3.1.2 Rolling Window Measure of Volatility

An alternative to the parametric GARCH volatility measures studied in Section 3.1.1 is to construct

non-parametric measures for volatility. In an influential paper, French et al. (1987) propose a rolling

window estimator for market volatility. This method uses data sampled at the daily frequency to

construct monthly volatility estimates. Following a modified version of the rolling sample approach

in French et al. (1987), we estimate the conditional variance in equation (1) as:

V RW
t =

22

D

D∑
d=0

r2
t−d (7)

where D is the number of days we use in the estimation. French et al. (1987) set the value of D

equal to 22 to obtain within-the-month measures of risk. Ghysels et al. (2005) allow for significantly

longer windows, with D set to more than 120 or over five months of trading. However, Ghysels

et al. (2005) find that there seems to be an optimal D size corresponding to four months of trading.

We follow their example and set the value of D = 88. Thus, V RW
t corresponds to a scaled sum of

daily squared returns going back 88 days.

3We also estimated NGARCH-in-Mean results for each market’s excess returns, based on Engle and Ng (1993)
NGARCH specification. These results are not qualitatively different from what is reported in Table 2. Thus, they
are not reported. However, they are available upon request.
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Using this constructed measure of monthly volatility, we estimate the parameters µ and γ of

the risk-return trade-off in equation (1). This strategy requires a two step procedure. We first

construct the rolling window volatility measure, then we regress monthly excess returns on the

constructed volatility series.

Panel A in Table 2 reports the regression results for the markets in our sample. As is immediately

clear from this Table, most Pacific rim countries have either negative (nine markets) or positive

but insignificant (four) trade-off relationships. Only Korean data supports a significantly positive

risk-return trade-off.

3.1.3 MIDAS Measure of Volatility

Ghysels et al. (2005) examines the risk-return relationship using the mixed data sampling (MIDAS)

method. The MIDAS estimator of the conditional variance V art(rt+1) is based on historical squared

returns:

VMIDAS
t = 22

∞∑
d=0

wdr
2
t−d (8)

where wd is the weight assigned to the squared return r2
t−d.

For the sake of parsimony, all the weights wd are postulated in a flexible function of two

parameters κ1 and κ2 which control the speed of weights’ decay.

wd =
exp(κ1d+ κ2d

2)∑∞
i=0 exp(κ1i+ κ2i2)

(9)

The parameters κ1, κ2, µ, and γ are estimated by the maximum likelihood assuming that

the distribution of the disturbance term in equation (1) conditioning on the variance estimator is

normal.4

Ghysels et al. (2005) apply the MIDAS method on the CRSP value-weighted U.S. stock returns

and find empirical evidence supporting a robust, positive, and statistically significant market price

of risl; hence empirical support for the fixed-parameter, linear form of ICAPM. The varying weighs

in equation ( ??) yield considerable flexibility in estimation of conditional variance, so that the

risk-return relationship can be better assessed.

Panel B in Table 2 indicates a negative relationship between returns and volatility in case of

eleven out of fifteen markets. Market returns in Korea, the Philippines, and Thailand, support a

positive linear relationship with the MIDAS conditional variance. However, the estimated param-

eters are not statistically significant.

Figure ?? displays the MIDAS weights for all the Pacific-basin countries. We find that these

weights decay at a much faster rate compared to the weights estimated using U.S. data and reported

4In our estimation, we impose the linear restriction that κ2 = 0, following the instructions in Sinko et al. (2010).
MATLAB code used for estimation is available from Eric Ghysels’ personal website.
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by Ghysels et al. (2005). The exponential weights totally die out within two weeks in most of

the countries we examined in this paper. This rapid decline in the importance of past daily

squared returns is most likely responsible for the failure of the MIDAS method in capturing the

expected positive market price of risk. We conducted extensive search over different weight and

estimation configurations and feel confident that our results are robust to different estimation

procedure options.

3.1.4 Volatility Regimes

According to Rossi and Timmermann (2009), the shape of the risk-return relationship may differ

by the states of the economy. In order to explain this state dependent relationship between the

conditional variance and return, we split the time series of the computed variances through MIDAS

into two states:

rt = µ+ γ1V ar
+
t−1[rt] + γ2V ar

−
t−1[rt] + εt (10)

where

V ar+
t−1[rt] = V art−1[rt]1rt−1>0

V ar−t−1[rt] = V art−1[rt]1rt−1<0

Panel C in Table 2 shows that more countries display a significant and positive risk-return

tradeoff when there is a good realization of excess returns in the market (rt−1 > 0). More precisely,

Colombia, the Philippines, and Singapore show evidence of positive and significant response to

good news. When bad news arrive in a market, only Korea still exhibits strong positive risk-return

relationship. The response in Canada and Taiwan is statistically significant, but estimated λ2

is negative. We find additional evidences in support of the ICAPM as we sort the data in two

market conditions. In order to further investigate the point that the relationship between risk and

return may vary according to the market conditions, we also sorted the computed variances by

the return quantile and only estimate the slope coefficients (γ1 and γ2) with the 10th − percentile
and 90th − percentile of the returns. Empirically, these results confirm our previous findings that

Philippines and Singapore have a significant positive risk-return trade-off with the 10% best returns.

While Korea shows a very significant trade-off with the lowest 10% of the returns.However, due to

the sparsity of data, these results need to be treated with caution. Hence, they are not reported

here, but are available upon request.
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3.2 Non-Zero Conditional Skewness in Returns: BiN-GARCHMeasure of Volatil-

ity

In a recent paper, Feunou et al. (2010) question the two implicit underlying assumptions of the

empirical risk-return literature, namely constant market price of risk and conditional symmetry in

returns. As it is seen in Table 1, even unconditionally, the skewness of excess returns is significantly

different from what you expect in a symmetric distribution such as normal or Student’s-t. Jondeau

and Rockinger (2003) show that the existence of significant conditional negative skewness both in

major international equity market and in foreign exchange market returns can not be ruled out.

Thus, the assumption that conditional distribution of returns is symmetric, may be counterfactual.

On the other hand, Rossi and Timmermann (2009) question the assumption that market price

of risk is a constant. Feunou et al. (2010) push this argument further and posit that market price

of risk is not a constant parameter, but a time and state dependent process. They derive a closed

form expression for this process in an endowment equilibrium economy populated with ambiguity

averse agents.5

Feunou et al. (2010) estimation procedure is based on a variation of GARCH which they call

binormal GARCH (BiN-GARCH). This model assumes that excess returns are conditionally binor-

mally distributed.6 Binormal distribution can be parameterized by the mean µt, the variance σ2
t ,

and the Pearson mode skewness, pt as given by:7

µt = mt + σtpt (11)

σ2
t = (1− 2 /π ) (σ2,t − σ1,t)

2 + σ1,tσ2,t (12)

pt =
√

2/π.(σ2,t − σ1,t)/σt. (13)

It can be shown that the initial parameters σ1,t and σ2,t are expressed in terms of the total

variance and the Pearson mode skewness as follows:

σ1,t = σt

(
−
√
π /8pt +

√
1− (3π /8 − 1) p2

t

)
(14)

σ2,t = σt

(√
π /8pt +

√
1− (3π /8 − 1) p2

t

)
, (15)

Feunou et al. (2010) show that in their equilibrium model, the conditional mode is an implicit

nonlinear function of conditional downside and upside volatilities, mt = g (σ1,t, σ2,t). The implicit

5They use a recursive form of Gul (1991) disappointment aversion preferences. For examples and detailed discus-
sions of this recursive utility class, refer to Routledge and Zin (2010) and Bonomo et al. (2011).

6Binormal distribution has a history in natural sciences. It was first introduced by Gibbons and Mylroie (1973).
Feunou et al. (2010) are the first to use this distribution in a financial application. Examples from other branches of
science include Bangert et al. (1986), Kimber and Jeynes (1987), and Garvin and McClean (1997).

7Pearson mode skewness is defined as (µt −mt)/σt.
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function g is parameterized by the preference parameters. They provide a detailed discussion in

their paper and an external appendix. The equation mt = g (σ1,t, σ2,t) defines a new risk-return

relation that relates the conditional mode to the conditional downside and upside volatilities. To be

able to deal with this new trade-off between risk and reward, they first-order linearize the nonlinear

model around the steady state values (σ̄1, σ̄2) to obtain

mt = g (σ1,t, σ2,t) ≈ λ0 + λ1σ1,t + λ2σ2,t. (16)

Given the expression (16), the traditional risk-return trade-off that relates expected returns to

the total variance may be expressed as:

µt = mt + σt (17)

Et[rt+1] = λ0 + λ∗tσt (18)

where

λ∗t =
(

1− (λ1 − λ2)
√
π /8

)
pt + (λ1 + λ2)

√
1− (3π /8 − 1) p2

t . (19)

The first equality in Eq. (17) follows by the definition of mean in binormal distribution, Eq. (11).

The second equality in Eq. (17) and Eq. (19) follow from Eq. (14) and Eq. (16). Eq. (17) charac-

terizes the traditional risk-return trade-off in this model, and shows that the price of risk depends

on the asymmetry in returns.

In equilibrium, expression (16) holds exactly:

mt = λ0 + λ1σ1,t + λ2σ2,t. (20)

If λ2 ≈ −λ1, then the mode is a function of the relative downside volatility, σ1,t − σ2,t, that is

mt ≈ λ0 + λ1 (σ1,t − σ2,t) (21)

and the price of risk in the traditional risk-return trade-off simplifies to:

λ∗t =
(

1− λ1

√
π /2

)
pt. (22)

Feunou et al. (2010) show that the coefficients λ0, λ1 and λ2 all depend on preference param-

eters. There are three main model implications for the risk-return trade-off. First, the loading of

the conditional mode on downside volatility, λ1, is positive, implying that the conditional mode

increases to compensate for an increase in downside volatility. Second, the loading of the condi-

tional mode on upside volatility, λ2, is negative, which implies that the conditional mode increases
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to compensate for a decrease in upside volatility. Third, λ2 is very close to −λ1. We have dis-

cussed this case in a previous paragraph and subsequently show that this restriction is statistically

supported by the data. Thus, only the relative downside volatility, σ1,t − σ2,t, seems to matter

in equilibrium. An increase in relative downside volatility is compensated with an increase in the

conditional mode, mt.

To close the model, we need to characterize the dynamics of Pearson mode skewness, pt, and

total volatility, σt. We follow Feunou et al. (2010) and assume that σt follows the nonlinear GARCH

(NGARCH) dynamics of Engle and Ng (1993). This assumption implies that

σ2
t+1 = β0 + β1σ

2
t + β2σ

2
t (zt+1 − θ)2 , (23)

where zt+1 = (rt+1 − Et [rt+1]) /σt are standardized residuals. BiN-GARCH model nests NGARCH.

The only requirement is σ1,t = σ2,t.

We directly follow Feunou et al. (2010) and assume that Pearson mode skewness dynamics are

characterized by:

pt+1 =

√
2

π − 2
tanh

(
κ0 + κ1z

∗
t+1I

(
z∗t+1 ≥ 0

)
+ κ2z

∗
t+1I

(
z∗t+1 < 0

)
+ κ3pt

)
, (24)

where z∗t+1 = (rt+1 −mt) /σt. This nonlinear GARCH-type dynamics of the conditional Pearson

mode skewness also features asymmetry in asymmetry. Asymmetries in the Pearson mode skewness

are generated by deviations of realized returns from the conditional mode. This formulation is based

on the autoregressive conditional skewness of Harvey and Siddique (1999, 2000).

Table 4 reports maximum likelihood estimation results for fitting the unrestricted BiN-GARCH

model in Eq. (20) to excess returns data.8 Returns data from eight markets supports statistically

significant and positive λ1 and negative λ2. Two markets, Taiwan and Thailand, deliver estimated

parameters that have the expected sign, but are not statistically significant. The remaining four

markets, Canada, Colombia, Mexico, and Malaysia do not support the positive loading on downside

and negative loading on upside volatility.

For the majority of markets that support positive λ1 and negative λ2, the following regularities

are noticeable: First, absolute values of the estimated λ1 and λ2 are very close, generally less

than one standard error apart. Second, unconditional expected values of Pearson mode skewness,

E(pt), are negative and thus lend additional credibility to negative conditional skewness in excess

returns. Third, for all markets studied, BiN-GARCH is preferable to NGARCH model, based on

the reported likelihood ratio (LR) test statistics reported in the last row of the table.

Based on what is observed in Table 4, we find it reasonable to impose the linear restriction λ1 =

8In general, estimated total volatility and Pearson mode skewness parameters are statistically significant. Thus
we do not report them to save space. These results are available upon request.

10



−λ2 and estimate the relationship between the conditional mode and the relative downside risk,

Eq. (21). Maximum likelihood estimation results from fitting this equation to data are presented

in Table 5. It is immediately obvious that estimated λ1 parameter is statistically significant and

positive for nine markets studied in this paper. It is negative, but statistically significant for

Colombia. Given this restricted formulation, we can compute the expected traditional market

price of risk, Eq. (22), easily. These results, denoted E(λ∗t ), imply that in eight markets in the

sample, data supports a positive market price of risk. This observation translates into over 50%

success in capturing positive risk-return tradeoff in the cross section of the sample. This ratio is

larger than any reasonable assumption about observed variation in the cross section under the null

of no positive risk-return tradeoff. Notice that by this measure, BiN-GARCH is far more successful

than all the other models discussed in the paper in capturing the positive market price of risk in

the Pacific basin markets. Similar to what is observed for the unrestricted BiN-GARCH model, the

restricted version is preferable to NAGRCH benchmark model, as attested by the LR test statistics

in the last row of the table.

4 Conclusions

We study risk-return tradeoff relationship in fourteen Pacific basin financial markets. The main

question addressed in the paper is whether modeling, and pricing the premia, for the first two

moments is adequate for capturing the dynamics of risk-return tradeoff relationship. We empirically

demonstrate that in addition to conditional mean and volatility, one needs to model the conditional

skewness.

We show that regardless of the returns volatility model used, assuming zero conditional skewness

which means symmetry in returns, leads to failure in capturing the expected positive market price

of risk. We also empirically demonstrate that allowing for time-varying and non-zero conditional

skewness in BiN-GARCH model, we successfully capture a positive market price of risk in over half

of the markets studies.

These findings have an important impact on the way we study risk-reward relationship. We

show that market price of risk modeled as a time-varying process, and not a constant parameter,

is better supported by the data in Pacific basin markets. This implies that the level of effective

risk tolerance, following Merton (1973) formulation, is time-varying. In turn, this observation

has profound implications for financial activities such as portfolio choice and option pricing that

make implicit or explicit assumptions regarding risk tolerance of market participants. On the

other hand, we show that ignoring conditional skewness leads to considerable misspecification in

the econometric models of risk. Thus, to construct more accurate risk management tools such as

Value-at-Risk (VaR) or expected shortfall (ES), a careful modeling of conditional higher moments,

such as conditional skewness, is crucial.
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Figure 1: MIDAS Weights for Individual Equity Market.
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This figure plots the MIDAS weights in 15 markets investigated in this study. The figure displays the weights
estimated from the entire sample, and based on daily data used for construction of monthly MIDAS volatilities.
The weights are calculated by substituting the estimated values of κ1 (we impose the linear restriction κ2 = 1−κ1)
from daily MIDAS into the weight function Equation (9). The estimates of κ1 are shown in Table 3.
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