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Abstract 

Independent experts and politicians have criticized statistical analyses of recreation 
behavior that rely upon onsite samples due to their potential for biased inference, 
prompting some to suggest support for these efforts should be curtailed.  The use of 
onsite sampling usually reflects data or budgetary constraints but can lead to two primary 
forms of bias in site choice models.  First, the strategy entails sampling site choices rather 
than sampling anglers– a form of bias called endogenous stratification.  Under these 
conditions, sample choices may not reflect the site choices of the true population.  
Second, the exogenous attributes of the recreational users sampled onsite may differ from 
the attributes of users in the population – the most common form in recreation demand is 
avidity bias.  We propose addressing these biases by combining two existing methods, 
Weighted Exogenous Stratification Maximum Likelihood Estimation (WESMLE) and 
propensity score estimation.  We use the National Marine Fisheries Service’s (NMFS) 
Marine Recreational Fishing Statistics Survey (MRFSS) to illustrate methods of bias 
reduction employing both simulation and empirical applications.  We find that propensity 
score based weights can significantly reduce bias in estimation.  Our results indicate that 
failure to account for these biases can overstate anglers’ willingness to pay for additional 
fishing catch.  
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Addressing Onsite Sampling in Recreation Site Choice Models 

Introduction 

Independent experts (CIE 2006; NRC 2006) and politicians (Sergeant 2010) have 

noted the inherent bias associated with onsite sampling, leading some to conclude that 

federal expenditures should be curtailed until unbiased methods can be devised.  Senator 

Charles Schumer’s recent criticism of the NOAA’s MRFSS is a noteworthy example.  In 

studies of recreation behavior, budgetary constraints and data availability often influence 

analysts’ choice of sampling strategy.  Ideally, samples of recreational users would be 

drawn from either simple random samples or exogenously stratified random samples.  In 

the both cases, common problems, such as non-response bias, can be relatively easy to 

address using existing econometric procedures.  Unfortunately, it is not always feasible to 

use these sampling strategies.  Sometimes budgetary or other practical constraints 

necessitate the use of inherently biased sampling procedures.  In the case of recreation 

site choice models, researchers often utilize sampling strategies which target users onsite 

through the implementation of intercept surveys.  Onsite sampling strategies can entail 

lower implementation costs, allow researchers to target resource users, and permit over-

sampling of rare choice patterns that may be of interest. 

Statistical methods which utilize onsite samples must account for bias stemming 

from non-random sampling (i.e. sample selection bias).  In the application of random 

utility models (RUMs) to recreation choice, respondents in onsite samples often represent 

users with different characteristics than what is found in the “true” recreation population.  

This difference can stem from two sources.  First, when a sample is collected onsite, the 

sample suffers from a type of non-ignorable sample selection bias, where the probability 
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of inclusion in the sample is simultaneously determined with the probability an individual 

chooses a site – a process commonly termed endogenous stratification.1  This occurs 

because the endogenously stratified sample draws observations from potential choices 

and then observes the individuals that make those choices.  The second type of bias is 

directly connected to size-biased sampling – a type of bias previously identified in 

ecology (Patil and Rao 1978) and single-site recreation demand models (Shaw 1988; 

Englin and Shonkwiler 1996).  When a sample is collected onsite, more avid recreational 

users have a higher probability of being sampled than less avid recreational users.2  When 

avidity bias occurs in a sample, statistical inferences are more heavily influenced by avid 

users, thus failing to meet the requirements of randomness in the sample.   

The primary objective of this paper is to provide a clear explanation of the 

potential consequences of onsite sampling in site choice models and to convey an 

approach for consistent estimation with maximum likelihood methods.  We do this by 

combining two existing econometric methods, Weighted Exogenous Stratification 

Maximum Likelihood (WESML) estimation and propensity score estimation.  The 

propensity score procedure used herein is more commonly applied in balancing equations 

for matching estimation; we use an auxiliary sample, which represents our angler 

population, to develop a weight which “quasi-randomizes” the onsite sample.  We apply 

this joint weighting strategy to address sample selection bias in the National Marine 

Fisheries Service’s (NMFS) Marine Recreational Fishing Statistics Survey (MRFSS).  

We begin by creating a sample from an existing MRFSS dataset where we simulate an 

onsite sampling procedure.  We then compare weighted estimation routines using the 

                                                 
1 In RUMs, a sample with endogenous stratification is often called a choice-based sample. 
2 Avidity refers to trip frequency.  A more avid user has a higher trip frequency than a less avid user. 
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simulated data to routines using the original dataset.  We follow this approach by again 

estimating a site choice model using the MRFSS data, but now using weights estimated 

from a random digit dial (RDD) sample of coastal households.    

Our empirical results indicate that onsite sample selection within the MRFSS 

leads to upward bias for estimates of anglers’ marginal willingness-to-pay for changes in 

catch rates.  The bias is not due simply to endogenous stratification, as estimates improve 

with the application of propensity-score based weights that are devised to address avidity 

bias, as well as differences in other exogenous attributes, in the onsite sample.  While 

propensity score estimation has been previously applied to weight estimation (Nevo 

2002), we are unaware of any similar applications with Random Utility Models.  Our 

findings indicate that this method provides empirical researchers a viable option for bias 

reduction when suitable auxiliary information is available. 

 

Identifying and Correcting Bias from Onsite Sampling 

The following description of sampling design for studies of recreation demand 

draws heavily from a wide variety of previous works which focus on endogenous 

stratification in discrete choice models (Manski and Lerman 1977; Manski and 

McFadden 1981; Cosslett 1981a; Hsieh, Manski, and McFadden 1985; and Bierlaire, 

Bolduc, and McFadden 2008) and onsite sampling in recreation demand models (Shaw 

1988; Englin and Shonkwiler 1996; and Moeltner and Shonkwiler 2005).  A rich 

literature exists in relation to these topics, but the recreation demand literature lacks a 

well defined explanation of the implications of sample selection bias as it relates to the 

estimation of site choice models. 
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Onsite samples, otherwise known as intercept samples, suffer from two separate 

types of sample selection bias, endogenous stratification and size-biased sampling.  

Endogenous stratification occurs when an endogenous variable is part of a stratified 

sample selection process.  Size-biased sampling occurs when the probability of selection 

is a function of the size of one or more exogenous sample characteristics.  In recreation 

demand, size-biased sampling confounds estimates in the form of avidity bias.  Other 

works in the recreation demand literature either address bias resulting from just 

endogenous stratification in site choice models (Haab and McConnell 2003) or address 

endogenous stratification in choice models indirectly by accounting for size-based 

sampling bias in a multivariate setting via recreation users’ repeated choices (Moeltner  

and Shonkwiler 2005).  In this study, we describe these potential biases from the 

perspective of general stratified sampling strategies (Manski and McFadden 1981; 

Bierlaire, Bolduc, McFadden 2008) and propose one potential method which reduces this 

bias in a cross-sectional setting through the use of auxiliary information.   

The distribution of recreation choices can be represented via a joint probability 

density function, , where each user makes a choice (i) from a finite  and exhaustive 

set of recreation sites ( ).  The exogenous attributes of these choices (z) are 

composed of the demographic characteristics of the decision makers and the attributes of 

alternatives.  The exogenous attributes are elements of an exhaustive set that occurs in the 

population (

),( zif

i C∈

Zz∈ ).  This joint distribution is the set of all possible combinations of 

endogenous and exogenous attributes, which can be depicted as ZCzif ×∈),( . 

In the model of interest, we have two important processes: 1) the probability that 

an individual is sampled from the population, and 2) the probability that an individual 
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makes a choice, given exogenous attributes.  Ideally, sample selection is exogenous to the 

choice process.  When the probability of selection is endogenous to the choice process, 

the estimation procedure will suffer from a form of non-ignorable sample selection bias 

(Little and Rubin 1987).  When this type of bias occurs as part of a stratified sampling 

strategy, it is referred to as endogenous stratification (Manski and McFadden 1981). 

 For our purposes, it is useful to represent the joint density of site choices as: 

 )(),|(),Pr( zpziPzi β=                                  (1) 

where ),|( βziP  represents the choice model of interest - probability of site choice 

conditional on exogenous attributes and a vector of unknown parametersβ , and  

represents the marginal distribution of exogenous attributes in the population.  If a simple 

random sample is drawn from , the kernel in equation (1) 

)(zp

),( zif ),|( βziP , provides a 

basis for estimation of the unknown parameters, β .3   Under a stratified sampling 

strategy, the population is partitioned into groups or strata ( S,...,s 1= ) according to either 

exogenous or endogenous factors.  Let Rs(i, z) be the qualification probability, 

determining whether an element of may be included in strata s.  Note that Rs(i, z) 

can be a function of exogenous attributes, endogenous attributes, or both.  If the 

endogenous attributes affect the qualification probability, then the unknown parameters 

do as well. 

), zi(f

The conditional site choice distribution given qualification is: 

∫∑
∈

=

z Cj
s

s

dzzpzjPzjR
zpziPziR

sziG
)(),|(),(

)(),|(),(
)|,(

β
β

,     (2) 

                                                 
3 The marginal distribution of exogenous attributes, , is ancillary and can be conditioned out of the 
likelihood function. 

)(zp
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where the denominator is the qualification factor that identifies the proportion of the 

population qualifying for stratum s.  Unlike a simple random sample, the generalized 

conditional distribution in (2) depends upon the unknown parameter vector β and the 

distribution of exogenous explanatory variables p(z) (McFadden 1999).  If the sample is 

only exogenously stratified, the qualification factor simplifies to , which is 

independent of β.  In this case, the kernel is independent of the stratification structure, 

and the sampling strategy can be ignored in estimation of β, but must be taken into 

account in estimation of asymptotic standard errors.  With an onsite sample, stratification 

can be influenced by both endogenous and exogenous factors, in which case there is no 

such simplification.   

∫
z

s dzzpzR )()(

Let n(i, z | s) represent the number of observations in stratum s with observed 

variables (i, z).  The log-likelihood function for the stratified sample is then: 

∑∑∑
=

=
S

s z i
sziGszinLL

1
)|,(ln)|,()(β .     (3) 

Consistent estimation can be achieved with a pseudo-maximum likelihood approach.  

Weighted Exogenous Sample Maximum Likelihood (WESML) estimation utilizes the 

log-likelihood function: 

∑∑∑
=

=
S

s z i

ziPsziwszinLL
1

),|(ln),,()|,()( ββ ,    (4) 

where w(i, z, s) is a weight that adjusts for stratification.4  With a sample that is only 

endogenously stratified (i.e. pure choice-based sample – so that s = i), the appropriate 

weight is the ratio of the population to the sample frequency: 

                                                 
4 An alternative approach to address endogenous stratification in RUM is Conditional Maximum 
Likelihood (CML) (Manski and McFadden 1981). CML involves pooling observations across strata, and 
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 )         (5) (/)(),( iHiQsiw ss=

where the weight, ,equals the population proportion of recreational choices i for 

strata s, , divided by the sample proportion of recreational choices, i, for each strata 

s, .  This estimator can be applied if the sample is collected onsite, but the 

researcher can be sure that the sample is randomized within a particular site.  In this case, 

a specific choice may be oversampled, but the individuals making that choice would be 

representative of the larger population.

),( siw

)(iQs

)(is

)(iH s

ˆ

5  While Manski and Lerman’s (1977) application 

of this weight obtains the sample share, , via the sampling process, it is assumed 

that the population share, , is known by the analyst a priori.  In Cosslett’s (1981) 

application, the weight, , utilizes an estimate of the population share in a given 

strata,Q , which replaces the known population share, , in the the pseudo-

likelihood estimator.  

)(iH s

)(iQs

),( siw

)(iQs

With both endogenous and exogenous stratification, one can reweight 

observations for both factors, producing the weight: 

),(/),(),,( ziHziQsziw ss= ,       (6) 

where is the joint probability of choices and exogenous attributes within a given 

strata for the population and is the joint probability of choices and exogenous 

),( ziQs

),( ziH s

                                                                                                                                                 
then forming the likelihood of i conditional on z in the pool, which conditions out p(z).  Hsieh, Manski, and 
McFadden (1985) show that CML is a more efficient estimator than WESML, but in recreation demand 
modeling this added efficiency may come at the expense of additional computational burden.  When 
individuals are faced with a high number of alternative choices, the CML model suffers from the burden of 
dimensionality.  Under these conditions, the decreased computational burden of WESML often outweighs 
any loss of efficiency.   
5 For example, consider the case of a discrete support for z.  On a contingency table for f(i, z), with C 
columns and  Z  rows, pure choice-based sampling implies that a specific column is over-sampled, but the 
proportion of cells in that column, which represent all the exogenous characteristics of individuals making 
that choice, match the proportion found in the population (Manski and McFadden 1981). 
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attributes within a given strata for the sample.  The expressions in equations (5) and (6) 

are inverse-probability weights that reweight observations in inverse proportion to the 

probability with which they qualify from the population.  Wooldridge (2002) shows that 

inverse probability weights can be used to address sample selection bias within the 

general class of M-estimators (which includes linear and nonlinear regression, count data 

models, and discrete choice models).  In most scenarios, the joint probability of choices 

and exogenous attributes for the population, , will be unknown, necessitating an 

estimate, .  

),( ziQs

),(ˆ ziQs

 

Methods 

We propose to use propensity score based weights to address biases resulting from 

exogenous and endogenous stratification in recreation site choice models.  The propensity 

score refers to the conditional probability of assignment to a particular treatment given a 

vector of covariates (Rosenbaum and Rubin 1983).  This can either be known a priori or 

estimated using auxiliary information.  Recent studies have shown that propensity scores 

can be used in both matching and selection models to address choice-based sampling.6  In 

an empirical application, Nevo (2003) adjusts for non-ignorable sample selection using 

inverse probability weights estimated from an auxiliary sample. 

The propensity score acts as a balancing factor, b(i,z,s), which renders the 

conditional distribution of choices, i, and observed covariates, z, the same for treated (t = 

1) and control (t = 0) groups: g(i,z,s | b(i,z,s), t = 1) =  g(i,z,s| b(i,z,s) , t = 0) (Rosenbaum 

and Rubin 1983).  The weighting procedure allows the onsite sample to be treated as 

                                                 
6 See Heckman and Navarro 2004 for a discussion of the different roles for propensity scores. 
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‘quasi-randomized’.7  Previous studies have shown that estimated weights may improve 

efficiency relative to estimation procedures using known weights (Cosslett 1981; Hirano, 

Imbens, and Ridder 2003).  Because our sample selection bias is of a non-ignorable form, 

the propensity score must reflect endogenous choice, i , and exogenous characteristics, z , 

for each individual.  We assign our onsite sample to the control group (t = 0) and our 

random sample to the treatment group (t = 1).  We then estimate a weight which will 

randomize our control group.  This method attempts to alter the distribution of strata, 

which are based on choices and exogenous factors, so that the joint distribution of onsite 

observations matches the joint distribution of the random sample.  Ridgeway (2006) 

describes the basic decomposition of the weight as follows: 

)0|,,(),,()1|,,( === tszigsziwtszig        (7) 

where  is a weight that equilibrates the joint distributions of for the two 

samples.  Ridgeway shows that by solving for  and applying Bayes’ Theorem to 

the conditional distributions of , one obtains:  

),,( sziw ),,( szi

),,( sziw

),,( szi

),,|1(1
),,|1(),,(
szitg

szitgKsziw
=−

=
= .                (8) 

In this weight, the constant K cancels out in the estimation of the choice model.  This 

weight has the form: 

),,Pr(1
),,Pr(

szi
sziw −= ,                (9) 

and represents the odds that that an angler sampled onsite with features  would be a 

member of the random sample (the treatment).  McCaffrey, Ridgeway, and Morral (2004) 

),( zi

                                                 
7 It is quasi-randomized instead of randomized because the process only accounts for observed differences.  
There is always the risk that unobserved differences exist. 
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describe the denominator of this weight as accounting for the over sampling of 

individuals in the onsite sample and weighting the pooled sample into a collection of 

anglers sampled both randomly and onsite.  The numerator of this equation weights the 

joint distribution of the choices, exogenous factors and strata , in this pooled 

sample to match the joint distribution of  in the random sample, represented by 

.  We interpret this as an inverse probability weight because the probability of 

inclusion in the onsite sample, depicted by

),,( szi

),,( szi

Pr(1(

),,Pr( szi

)),, szi− , occurs in the denominator of 

the weight while inclusion in the population,  , occurs in the numerator.    ),, szi

)),, szi

Pr(

Pr(1log(

For estimation purposes, we utilize a form of the Bernoulli log-likelihood 

function: 

 )1(),,Pr(log(Pr) tszitLL −−+= .        (10) 

We take a logistic transformation of so that each estimated probability is 

confined to the unit interval.  The logistic transformation is: 

),, sziPr(

,,(exp(1
1),,|1

zig
szit

−+
==Pr(

(ig

,                (11) 
))s

where  represents some functional form for .  When  is a linear 

combination of choices, i , exogenous factors,

),, sz )s,,( zi ),,( szig

z , and strata, s,  equation (11) is a linear 

logistic regression.   

We propose using equation (11) as a first stage regression that estimates 

propensity scores via equation (9) that feed into the likelihood function in (4).  We let 

include a combination of linear, higher-order, and interacted covariates so to 

obtain an ignorable treatment assignment (Dehejia and Wahba 2002).  The linear, higher-

),,( szig
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order, and interacted covariates account for non-linear differences in endogenous and 

exogenous attributes between the sample and the population.  

One issue that must be addressed involves the selection of variables for the 

estimation of the propensity score.  In practice, the functional form of the propensity 

score model is not known, necessitating a decision rule for variable selection.  The 

propensity score has no behavioral assumptions, as it only acts to reduce the dimensions 

of conditioning.  There are numerous estimators and variable selection methods available 

for propensity score estimation.  The logit and probit models are the most commonly 

applied method for propensity score estimation but both require a method for variable 

selection.  Dehejia and Wahba (2002) and Hirano and Imbens (2001) provide methods for 

variable selection when using parametric estimation procedures such as the probit and 

logit regression models.  We choose to focus on a flexible, nonparametric application 

proposed by McCaffrey, Ridgeway, and Morral (2004) called the generalized boosted 

model (GBM).8   

McCaffrey, Ridgeway, and Morral (2004) describe the GBM as an algorithm that 

is general, automated, and adaptive in prediction.  GBM allows models to be specified 

with large numbers of covariates in a nonlinear fashion.  In a more general discussion, 

Friedman, Hastie, and Tibshirani (2000) define boosting models as committee methods 

which combine numerous simple functions (weak classifiers) to estimate one smooth 

function.9  Each of the simple functions may lack the necessary characteristics to 

                                                 
8 We estimated numerous propensity score models, including those proposed by Dehejia and Wahba (2002) 
and Hirano and Imbens (2001).  In our applications we found GBM outperformed the alternative choices.  
We choose this estimator not only because of its precision, but because it is also readily available in the 
open-source software package R (R Core Development, 2009). 
9 Hastie et al. define a weak classifier as a classifier that has an error rate only slightly better than random 
guessing. 
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adequately approximate the function of interest, but when combined as a committee, the 

combination of simple functions “can approximate a smooth function just like a sequence 

of line segments can approximate a smooth curve” (McCaffrey, Ridgeway, and Morral 

2004).10    

Using GBM, we estimate the propensity score by maximizing the Bernoulli 

likelihood from equation (10), where the joint distribution of endogenous and exogenous 

factors, as well as strata ( ), are represented by a probability model with a logistic 

functional form, as seen in equation (11).

),,( szig

11  The GBM algorithm adaptively fits the form 

of , thus taking advantage of the boosting procedures’ bias and variance 

reduction properties while still employing a common logistic functional form.  

),,( szig

The GBM algorithm initiates by setting the log odds to a constant value, which, in 

our application, is equal to the log of the average number of observations in the RDD 

sample divided by the average number in the intercept sample, represented by 

( )t
t
−1log .  The algorithm then iteratively works to improve upon this baseline estimate 

by adjusting the logit functional form by a factor ),,( szihλ such that:   

 ))),,(ˆ(())),,(),,(ˆ(( szigLLEszihszigLLE >+ λ ,    (12) 

Each iteration contributes a small adjustment, ),,( szihλ  which updates the current 

estimate of such that  ),,(ˆ szigk

),,(),,(ˆ),,(ˆ 1 szihszigszig kkk λ+←+      (13) 

where k represents the current iteration, and k + 1 represents the updated estimate.   

                                                 
10 For a more thorough introduction to boosting, see Hastie, Tibshirani, and Friedman (2001) or McCaffrey, 
Ridgeway, and Morral (2004).  This description relies heavily on those works. 
11 GBM estimates this probability through a generalized iteratively reweighted least squares algorithm.  
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GBM iteratively improves estimation by finding a local improvement in the likelihood 

function, based on its gradient.  Friedman (2001) found that the residual of the expected 

log-likelihood contains information on this improvement.  The residual is simply the 

difference between the treatment indicator and the probability of treatment.  GBM then 

uses a regression tree algorithm (Breiman et al 1984) to find a piecewise constant 

function of the covariates, , that captures correlations with the residuals.  The 

adjustment contains information pertaining to those values of i , 

),,( szih

z  and s which 

adequately fit the model.  The GBM algorithm then uses the adjustment to update the log 

likelihood function, as seen in equation 12.  Each iteration of the algorithm then utilizes a 

line search to find the coefficientλ  with the greatest increase in the log likelihood.   

As the number of iterations rise, the complexity of the model also increases.  

Ridgeway (2006) describes this as a bias/variance tradeoff where, with additional 

iterations, the reduction of bias comes at the expense of increasing variance.  The GBM 

catalogs a set of propensity scores - one for each iteration.  Before running the algorithm, 

the analyst determines the total number of iterations to run.  After running all the 

iterations, the optimal set of propensity scores are chosen using a predetermined set of 

selection rules.  For the GBM package, one such guideline is finding the smallest average 

effect size difference across covariates between the treatment and comparison groups 

(Ridgeway 2007a).  

We represent saltwater recreational angler choice through the application of the 

Random Utility Maximization (RUM) model.  Under the assumption that saltwater 

recreational anglers engage in utility maximizing behavior, random utility models allow 
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us to dissect choice behavior as related to recreation site choice, where the probability of 

a choice is as follows: 

     

)P(                               

)P(                               

)P(i)  site chooses(

ijVV

ijVV

ijUUnP

ninjnjni

njnjnini

njni

≠∀−>−=

≠∀+>+=

≠∀>=

εε

εε           (14) 

 
where  U  represents utility,  the systematic portion of utility, and ε  represents the 

unobserved portions of utility.  In our RUM specification, we assume that the systematic 

portion of utility, , is linear in attributes such that: 

ni niV ni

niV

nnni XXTCV ββγ +++= ...1111          (15) 

where TC represents travel costs and X represents other site or choice characteristics. 

For analysis, we chose the conditional logit model, which has a random 

component assumed to be independently and identically distributed Type I extreme value 

(McFadden 1974).  Among discrete choice models, the conditional logit’s appeal lies 

largely in its closed-form expression and its availability in most econometric software.  

The conditional logit’s limitations result from its strict assumptions.12, 13 

We incorporate our weighting strategy to address bias in the conditional logit 

model using Weighted Exogenous Sample Maximum Likelihood Estimation 

(WESMLE).  The WESML estimator is a pseudo-likelihood estimator, which necessitates 

                                                 
12 Train (2003) identifies these limitations as 1) an inability to represent random taste variation, 2) 
restrictive substitution patterns due to the IIA property, and 3) an inability to be used with panel data when 
unobserved factors are correlated over time for each decision maker.   
13 In our application, we felt these limitations were outweighed by the benefits resulting from the 
simplicity of estimation.  Our main objective involves a comparing welfare estimates for weighted and non-
weighted estimation procedures.  Future attempts could investigate methods which relax the IIA property, 
but at this time relaxing IIA is beyond the scope of this study.  The IIA property is likely to influence 
estimation because, as specified, our model does not account for correlation between choices which differ 
by fishing mode, but share the same site choice.   
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a robust sandwich estimator to calculate the variance-covariance matrix.  The corrected 

asymptotic covariance structure is:  

11 −− ΔΩΩ=V         (16) 

where 
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Without this correction, the standard errors are biased downwards.  

We compare welfare estimates for our weighting procedures by evaluating the 

impact of an increase in catch by one fish.  We evaluate this welfare impact using the 

following formula 

( ) ( )[ ]
γ

βγβγ

−

−
=Δ ∑∑ ++ *lnln

)(
xTCxTC ee

CatchWTP     (17) 

where βγ xTC +  represents the indirect utility of a given choice without a change, 

βγ xTC +  represents the indirect utility after the change, and γ  represents the travel cost 

parameter.  We first calculate the WTP for a one fish increase in catch rate and then 

calculate confidence intervals to compare the accuracy of our weights.  We take 1500 

random draws of the model coefficients from an asymptotic multivariate normal 

distribution of the parameter estimates using the Krinsky-Robb procedure (Krinsky and 

Robb, 1986).  We then determine confidence intervals for the WTP for each historic 

catch measure.  These measures are developed to compare the distribution of WTP within 

species groupings.   
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Data 

In this paper, our primary interest lies in determining the effectiveness of 

propensity score based weights which address onsite sample selection biases.  First, we 

create a dataset which simulates the onsite sampling process.  This allows us to compare 

estimates of various weighting schemes using the simulated onsite sample to a model 

estimated using the true population dataset.  We follow this simulation with an empirical 

application that focuses on the recreation site choice of anglers living in coastal counties 

in the southeastern and Gulf regions of U.S. 

Our simulated and empirical applications utilize data from the National Marine 

Fisheries Service’s Marine Recreational Fishery Statistics Survey (MRFSS).  Since 1994, 

NMFS has used the Marine Recreational Fishing Statistics Survey (MRFSS) as its 

primary vehicle for revealed preference studies.  In addition to information on 

recreational fish catch, the MRFSS has been used to gather the travel cost data necessary 

to estimate the values of access and changes in catch rates.   

The MRFSS, which is designed to estimate recreational fishing catch and effort, 

has two primary components, an intercept survey and a RDD telephone survey.  The 

MRFSS also includes an economic add-on.  The simulation and empirical portions of this 

study investigate the implications of intercept based sampling procedures in the 

estimation of discrete choice models of recreation site choice.  Our simulation treats the 

intercept data as if it were the true angler population.  We then take a sample from the 

intercept data by simulating a stratified onsite sampling process.  The empirical portion of 

this study uses both the intercept and RDD data.  The MRFSS employs a choice-based 
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sample (i.e. endogenously stratified) of intercept sites; however, sampling intensity is 

proportional to the fishing pressure at each site.   

The southeastern and Gulf states sampled by the MRFSS include North Carolina, 

South Carolina, Georgia, Florida, Alabama, Mississippi, and Louisiana.   The MRFSS 

data were stratified by state, fishing mode (private/rental, party/charter, shore), and 2 

month wave.  Sampling was conducted between the beginning of September 2003 and the 

end of August 2004.  We limit observations to those anglers fishing by private and rental 

boat who were on single day trips.  Multiple day trips were eliminated because these 

anglers may also be participating in multi-purpose trips and may exhibit different 

preferences and single-trip takers.   

Because we assume each fisherman in the sample takes a single day trip, we also 

chose to limit all angler choice sets using geographic bounds.  Our model eliminates all 

site choices beyond a 200 mile one way distance.  Parsons and Hauber (1998) show that 

choice sets can be limited by the number of choices, using distance as an inclusion 

threshold.  Whitehead and Haab (2000) apply this method to the MRFSS, finding that 

limiting choice sets to all sites within 180 miles has minimal impact on welfare estimates.   

In our empirical application, we further truncate the intercept survey to meet the 

classification of a coastal county population, as sampled in the RDD survey.  The 

truncation of the intercept sample shrinks the angler population to those anglers residing 

in coastal counties who targeted specific species types.14  These forms of sample 

truncation were performed for the convenience of comparison and, as a result, we do not 

expect our empirical results to represent the larger population of saltwater anglers.  

                                                 
14 An indirect consequence of only including individuals who targeted specific species seems to have led to 
more avid users within both samples.   
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Because our efforts focus on the role weighting strategies play on correcting non-random 

sample selection biases, we felt the need to minimize geographic and non-sampling 

related behavioral differences.  As such, future studies should focus on obtaining 

estimates which cover a more complete portion of the saltwater recreational angler 

population.  Our simulated datasets are not limited to the coastal county population, but, 

as discussed earlier, they are limited by distance.  As a result there are differences 

between the intercept data used in the simulation exercise and the intercept data used in 

the empirical application.  

In regional recreation demand models, it is often necessary to aggregate 

characteristics of the choice occasion because of limitations in coverage across the data 

set.  County level site aggregations are necessary due to a lack of RDD data for smaller 

geographic scales of site visitation.  These site aggregations lead to 67 coastal counties in 

the choice set.  We also assume recreational anglers target fish among four different 

species groupings (Off-Shore Species, In-Shore Species, Reef Species, and Pelagic 

Species).   These species groupings account for the majority of fish species targeted by 

recreational users in the Southeastern and Gulf regions.15  We represent fishing quality at 

each site by the 5-year average historical catch (both kept & released fish) for each site.  

This proxy measure represents fishing stock quality at each site, specific to the particular 

fishing mode.  A rationally consistent angler should seek out sites they perceive allow 

access to higher quality stocks.16  

                                                 
15 Off-Shore species include individual species such as Amberjack, King Mackerel, and Spanish Mackerel.  
In-Shore species account for species such as various types of Flounder, Tarpon, Croaker, and Red Drum.  
Reef species includes Grouper, Red Snapper, Black Seabass, and others.  Pelagic species include various 
species such as Tuna, Wahoo, and Swordfish.   
16 We also assume that anglers use information on released fish at a site to estimate site quality in addition 
to kept fish.  Also, some fish, such as Tarpon, are largely catch and release species.  Without information 
on released fish, these species would not be adequately represented in the model.  
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Table 1 provides unweighted descriptive statistics for relevant variables from the 

intercept and simulated datasets.  For the simulation, we treat the intercept data as the 

true population and perform our onsite sampling process using the sample command, 

which is a base function within the statistical software system R (R Core Development 

Team 2009).  In our sampling process, we first stratify the intercept sample by site and 

then choose anglers, without replacement, from each site according to fishing pressure at 

the site.  We make sure to oversample less frequented sites and under-sample more 

frequented sites, thus guaranteeing an endogenously stratified sample.17  Within each 

strata or site, the random selection of anglers was altered through the use of a vector of 

probability weights.  The probability weights were calculated by taking the number of 

trips taken by an individual angler in the previous year divided by the total number of 

days in the year.  This weight guarantees a size-biased sampling process.   

Table 1 also includes test statistics for t-tests of significance of the differences in 

the variable means,18and the standardized effect sizes, which are the difference between 

the treatment group mean values and the control group mean values divided by the 

treatment group standard deviation.  Cohen (1988) states that, when using the 

standardized effect size, a rule of thumb generally applies where values up to 0.2 

represent small differences in means, values around 0.5 represents medium sized 

differences, and values over 0.8 represent large differences.19   

                                                 
17 The MRFSS intercept survey also samples according to fishing pressure.  When estimates of fishing 
pressure match fishing pressure in the general population, this can address endogenous stratification in the 
discrete choice setting.  Endogenous stratification can occur, however, when estimates deviate from the true 
fishing pressure. 
18 When we evaluate the t statistics testing differences in means for all available variables, which include 
variables in table 1 as well as site specific constants, we find that 33 means are statistically different than 
zero at the .1 significance level.  
19 Using Cohen’s rule of thumb only one variable, 12 month avidity, classifies as a medium sized absolute 
difference.  All other variables represent small absolute differences. 
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Our intercept data set accounts for usable data from anglers that were first 

intercepted at fishing sites and then agreed to participate in the Add-On MRFSS 

Economic Survey (AMES).  The AMES survey collects additional economic information, 

such as travel costs and expenditures.  In the simulation exercise, our intercept sample 

uses 11,821 surveys of anglers in the Southeast and Gulf regions.  Of the anglers in this 

sample, 73 % targeted inshore species, 10% targeted offshore species, 13% targeted reef 

species, and 4% targeted pelagic species.  The average intercepted angler has fished for 

23.71 years and fished 39 times in the 12 previous months.  They traveled 34 miles on 

average and fished for 4.48 hours.   

In our simulated sample of 6429 anglers, 76% targeted inshore species, 10% 

targeted offshore species, 11% targeted reef species, and 4% targeted pelagic species.  

The average angler in this dataset has fished for 24.84 years and has fished 54.48 times in 

the last year (evidence of avidity bias when compared to the “population” estimate of 39).  

On their latest trip, the average angler traveled 33 miles and fished for 4.46 hours.   

Table 2 provides the descriptive statistics for coastal households in the intercept 

and RDD samples.20  We utilize 11,618 anglers from the intercept survey and 2202 

anglers from the RDD survey.  The average angler in the intercept survey has fished for 

24 years and fished 43 times in the previous year.  Of these anglers, 75% targeted inshore 

species, 10% targeted offshore species, 12% targeted reef species, and 3% targeted 

pelagic species.  The average angler in this sample traveled 38 miles to their fishing site.  

In the RDD sample, roughly 65% targeted inshore species, 7 % targeted offshore species, 

20% targeted reef species, and 8% targeted pelagic species.  The average angler in the 

                                                 
20 When we evaluate differences between the intercept and RDD surveys, 50 differences in means are 
statistically different than zero and three variables have medium sized absolute differences.  
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RDD sample has fished for almost 27 years and fished roughly 26 times in the 12 months 

before being interviewed.  They also traveled 38 miles on average.   

It is important to note that there are several differences in the scale of information 

between the MRFSS intercept and RDD samples.  The RDD survey collects information 

on the county in which an angler fishes, but does not collect information on the specific 

site.  In this way, the intercept distance estimates are more representative of the true 

distance traveled by an angler, since the RDD only reveals distances to the center of the 

county.  Also, individuals in the RDD sample may fish from sites not covered by the 

intercept sampling process.  These factors likely diminish the level of precision of an 

estimated weight within the choice model.  

 

Results 

Each of our analyses has two steps.  First, we calculate the propensity score based 

weight and then we utilize this weight during the estimation of the recreation site choice 

models.  The first analysis makes use of simulated data (using the intercept sample as the 

true population) and the second is an empirical application using MRFSS intercept and 

RDD data.   

Using simulated data, we compare four different estimation procedures so to 

illustrate the effect of onsite sample selection biases on estimation.  The estimation 

procedures differ according to assumptions defining the data generation process.  The 

first estimation procedure does not correct for endogenous stratification or size-biased 

sampling.  The unweighted estimator assumes the intercept data is collected at random.  

The second estimation procedure utilizes a variation of Cosslett’s (1981) weight within 
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WESMLE.  This second procedure, which we will call the basic WESMLE, assumes that 

the sample is a pure choice-based sample, meaning the data generating process within 

each sample strata occurs at random.  We estimate the basic WESMLE using a logistic 

regression with site specific constants to generate the weights.21  The third procedure, 

which we refer to as avidity-only WESMLE, only addresses avidity bias.  The weights 

are produced using a propensity score in which 12 month avidity is the only covariate.  

This approach assumes that all sampling bias results from the size biased sampling 

process (i.e. avidity bias) and no endogenous stratification exists.  The fourth and last 

weight, which we call the balanced WESMLE, does not assume random selection within 

strata, but rather accounts for both endogenous stratification and avidity bias.  This 

procedure utilizes the propensity-score weight, which is estimated using GBM 

(Ridgeway 2007a).22   

In the calculation of both the basic- and balanced-WESMLE weights, the 

propensity score based weight is an odds ratio, where the numerator of this ratio 

represents the probability of inclusion in the simulated sample conditional on relevant 

covariates and the denominator represents the probability of inclusion in the auxiliary 

dataset conditional on relevant covariates.  The estimation of the propensity score based 

weights for the balanced WESMLE requires some type of variable selection process for 

determining the proper model specification.  Beyond differences resulting from sampling 

                                                 
21 We found that when the odds ratio of this propensity score estimator is standardized by dividing it by its 
mean value, it is equivalent to the Cosslett estimator (i.e. estimated population shares divided by sample 
shares). 
22 While the GBM function does adaptively fit a model, an analyst is required to choose the relevant 
variables as well as the number of potential variable interactions and the size of a step in a given iteration.  
We include all available variables (site, wave, fish targeted, avidity, years fished, distance traveled, and 
hours fished (if available),) in the model.  We allow for up to 4 variable interactions and choose a step size 
of 0.0005.  The small step size can improve precision, but necessitates a higher number of iterations during 
estimation. 
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intensity between strata and size-biased sampling, there are no theories to drive the 

choice of covariates in the weight.  GBM uses an algorithm which adaptively selects 

variables according to improvements in the log likelihood.  Following estimation, we use 

the odds ratio, as seen in equation (9), to “quasi-randomize” the intercept data.   

Next, we need a method to evaluate the effectiveness of each weight.  We 

evaluate these weights using two graphical depictions of balance.  The first depiction of 

balance plots the p-values from t-tests, which compare the variable means in the control 

and treatment groups.  This graph also includes a 45-degree line, which represents a 

uniform cumulative distribution.  When p-values are larger than the points on this line, 

we can conclude that the differences in means are at least as small as what would be 

expected in a randomized study (Ridgeway 2006).  Each graph plots both weighted and 

unweighted p-values.  These graphs for the three weights can be found in figure 1.  Using 

this graphical depiction of balance, we see that the basic WESMLE weight (graph 1a.) 

and the balanced WESMLE weight (graph 1c) appear to improve the balance of most 

variables and also outperform the avidity-only WESMLE (graph 1b).   

Figure 2 shows the second graph for balance assessment, which Ridgeway (2006) 

calls the effect size plot.  This graph depicts the effect of the weighting procedure on the 

magnitude of differences in variables between the treatment and control groups.  More 

successful balancing procedures should decrease the magnitude of differences.  In this 

graph, the magnitude of differences for the unweighted procedure can be found on the 

left hand side.  This magnitude is compared to the weighted results, which are plotted on 

the right hand side.  For each variable, a line connects the weighted and unweighted 

procedure.  When the weighting procedure decreases (increases) the magnitude of the 
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difference between the means, the line has a negative (positive) slope.  We see in Figure 

2 that the balanced WESMLE weight (graph 2c) performs best, followed by the basic 

WESMLE weight (graph 2a).  According to this graph, the avidity-only WESMLE 

appears to perform the worst (graph 2b).   

In our analysis of angler choice between site and fishing mode, we model choice 

as a function of travel cost, travel time, the log transformation of the number of intercept 

sites in the county aggregation, and fishing quality measures represented by 5 year mean 

historic catch rates.  For each aggregated historic catch rate, we include the value as well 

as the squared value so to capture non-linear responses to catch.   

Travel costs are calculated as a combination of the explicit costs of travel and the 

anglers’ opportunity costs of time.  We estimate the explicit cost of travel as the round 

trip distance times 35 cents per mile.23  If anglers lost income by taking the trip, their 

opportunity cost of time was estimated as their wage rate multiplied by the average travel 

time, which was round trip distance divided by their average speed (40 mph).24 When 

anglers did not lose income by taking the trip, we set their opportunity cost of time to 

zero.  For these anglers, we capture their opportunity cost of time with a separate 

measure, travel time.  The travel time variable is set to zero for anglers who lost income 

and is equal to the travel distance divided by average travel speed (40 mph) for all other 

anglers.   

We control for site aggregation bias using the natural log transformation for the 

number of intercept sites within each county aggregation.  In RUMs, site aggregation can 

lead to biased coefficient estimates (Haener, Boxall, Adamowicz, and Kuhnke 2004).  

                                                 
23 Travel distances are calculated using the software package PCMiler. 
24 We assume that the average travel speed is 40 mph.  This measure was previously used with the MRFSS 
by Hicks et al. (1994). 
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Haener, Boxall, Adamowicz, and Kuhnke recommend including the log transformation of 

the site area to capture the size of aggregation.  They found that when recreation demand 

models of site choice account for the size of aggregates during estimation, model 

parameters can be equivalent across scales.   It should be noted, however, that our site 

aggregations do limit our ability to capture site specific characteristics that would be 

captured with finer scale site definitions.  These aggregations were the product of the 

overall sampling strategy. 

Table 3 provides the estimation results for all our models.  As expected, the travel 

cost measure has a negative sign, indicating the inverse relationship between the 

opportunity costs of travel and site choice.  The results also show a nonlinear, positive 

relationship between the 5-year historic catch rates and the probability of choice.  This 

coincides with the assumption that anglers seek out sites with higher quality fishing 

stocks.   In the simulated samples, inclusion of the weight leads to statistically 

insignificant coefficients on both offshore catch and squared offshore catch.   

Next we compare welfare estimates for our weighting procedures.  In each model, 

we evaluate the impact of an increase in catch by one fish.  These measures are 

developed to compare the distribution of WTP within species groupings.  Table 4 gives 

the results of the WTP point estimates as well as the 95% confidence intervals derived 

via the Krinsky-Robb procedure.   

Our first welfare measure for comparison represents the 5 year historic catch rate 

for inshore species.  For the simulated data, when we compare the estimates from our 

population to the unweighted and weighted procedures, the basic WESMLE weight 

performs best, with a difference in point estimates of 13%.  The point estimate for the 
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balanced WESMLE differs from the population measure by 15%.  It is interesting that the 

Avidity weight actually performs worse (35% difference), than the unweighted model 

(19% difference).  Figure 3a depicts boxplots of the 95% confidence intervals for this 

procedure.  We find significant overlap between the different procedures.  When we 

evaluate the influence of the balanced WESMLE procedure on an increase in inshore 

species catch, we find the WTP point estimate decreases by 31%.     

When we evaluate WTP for a one fish increase in offshore catch rates, we find 

that the only estimation procedures with statistically significant WTP measures are the 

results from the population estimator and the avidity weighted estimator for the simulated 

datasets.  When we evaluate point estimates only, we find the avidity weighted WTP 

measure to be 88% greater than the population measure.  Figure 3b illustrates the 

confidence distribution of the WTP for the different simulated dataset estimators.   

Next we compare WTP for an increase in reef species catch rates.  In the 

simulated dataset, we find the balanced WESMLE performs best with a 12% difference 

in point estimates.  The basic WESMLE performs second best with a difference of 20%.  

The unweighted estimator has a WTP value greater by 48% and the avidity weight has a 

WTP value greater by 34%.  Figure 3c depicts boxplots of the 95% confidence intervals 

for the WTP measures.   

Our last comparison utilizes estimates for WTP for pelagic species.  Here, the 

balanced WESMLE estimator performs much better than the other estimators with a 

difference of 43% in the point estimate.  The basic WESMLE estimator performs second 

best with a difference of 80%.  The avidity estimator performs the worst with a difference 
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of 198% and the unweighted estimator has a WTP point estimate 98% greater than the 

population dataset.  Figure 3d depicts the 95% confidence intervals for WTP.   

When we evaluate the overall effectiveness of the various weighting strategies 

using the point estimates of WTP, we find that, on average, the balanced WESMLE 

performs best with an average difference in WTP of 26%.  The second best performing 

weight is the basic WESMLE estimator with an average difference in WTP of 39%.  The 

avidity weight actually performs worse than the unweighted estimator with an average 

difference of 89% versus 45% for the unweighted estimator.   

We follow our analysis of the simulated data with an empirical application.  In 

our empirical application, we estimate weights using the RDD sample of coastal 

households.  Our primary objective involves a comparison of the balanced WESMLE 

procedure and the unweighted estimator since the balanced WESMLE outperformed the 

other weighting strategies in our simulated exercise.  First, we need to evaluate the 

performance of the balancing procedure.  Figure 4a depicts a graph evaluating the 

differences in means for the intercept and RDD samples using the propensity score based 

weight.  Much like the simulated exercise, we find improvement in the differences in 

means between the unweighted and weighted.  Figure 4b, which depicts the effect size 

plot for the RDD and intercept samples, shows that the propensity score based weight 

also reduces the effect size. 

Next, we estimate the recreation site choice model with the identical model 

specification as used in our simulated exercise. Results for the empirical models can be 

found in table 3.  Much like the simulated example, inclusion of the weight leads to 

statistically insignificant coefficients on both offshore catch and squared offshore catch.  
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The balanced WESMLE also leads to insignificant coefficients on both pelagic and 

squared pelagic catch.   

Willingness-to-pay point estimates and confidence intervals can be found in table 

4.  As we found in the simulated exercise, the unweighted estimators appear to suffer 

from upward bias in the WTP measures for one additional caught fish.  We find that the 

weighting strategy leads to a 31% decrease in the WTP for an additional inshore species 

and a 6% decrease in the WTP for an additional reef species.  We do not find statistically 

significant WTP measures for changes in catch of offshore or pelagic species.  Figures 

5a-5c shows boxplots of the 95% confidence intervals for WTP from the unweighted and 

weighted procedures using the RDD weighted dataset.   

 

Discussion & Conclusions 

In November of 2006, the Center for Independent Experts (CIE), located in the 

Rosenstiel School of Marine and Atmospheric Science at University of Miami, solicited a 

review of recreational economic data at the NMFS.  The review addressed key questions 

dealing with the economic data used in the estimation of revealed preference models, 

conjoint analysis, and economic impact analysis (CIE 2006).  As one topic addressed by 

the CIE, the review discusses the implications of onsite sampling procedures in the 

estimation of discrete choice models of recreational site choice.   In addition to the 

potential bias resulting from endogenous stratified sampling (i.e. stratified by choice), 

past studies have indicated that the MRFSS data is also prone to size-biased sampling, 

specifically in the form of avidity bias (Thompson 1991).  
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Onsite samples provide a cost effective method of eliciting recreational users’ 

preferences.  For the National Marine Fisheries Service (NMFS), a separate revealed 

preference survey would cost more than two times the current costs of the MRFSS 

economic add-on (CIE 2006).  This dramatic difference in cost highlights the value of 

estimation procedures which allow for the utilization of existing data sources.  While the 

primary purpose of the MRFSS is to estimate fishing catch and effort for recreational 

anglers, the data brings additional value when utilized for economic analysis.  

Conducting RP studies using data collected from the MRFSS allows the NMFS to extend 

resources to other areas of need, including valuation via stated preference methods. 

The CIE report identifies onsite sampling as one of the primary sources of bias in 

estimating revealed preference studies that use the MRFSS.  If the sampling process leads 

to differences in the sampling intensity of site choices between the sample and the true 

population, this bias occurs in the form of both endogenous stratification and size-biased 

sampling.  If the MRFSS sampling procedure, which does account for fishing pressure at 

intercept sites, does not lead to differences in sampling intensity of site choices, then the 

relevant bias occurs in the form of size-biased sampling.  We propose utilizing propensity 

score based weights to address relevant biases.  In our empirical application, we develop 

this weight using auxiliary data from a RDD survey of coastal anglers.   

Past recreation demand studies have addressed truncation and avidity in single 

site recreational demand models.  Unlike the single site recreation demand literature, 

there have been few studies of recreation site choice which address bias from onsite 

sampling.  Moeltner and Shonkwiler (2005) utilize panel data to address onsite sampling 

for repeated recreation site choices.  Moeltner and Shonkwiler sample individual trips, 
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but also collect information on all other trips taken within a system of sites.  In their 

study, they adopt a Dirichlet-multinomial distribution rather than a multinomial 

distribution, which allows them to also address overdispersion in the sample.  A 

dispersion parameter picks up variability in trip counts, which allows them to control for 

size-biased sampling. Their model also accounts for onsite sampling biases by adjusting 

the likelihood function for observed trips divided by expected trip counts for the sampled 

sites.  To our knowledge, there are no studies of recreation site choice that address both 

avidity bias and endogenous stratification for single choice occasions in a multinomial 

setting.    

Our results indicate that failure to account for differences in angler attributes can 

lead to significant upward bias in the point estimates of welfare measures.  This result 

coincides with the well documented effect of avidity bias within other types of recreation 

demand models.  Utilizing our simulated dataset with an unweighted estimator, on 

average, we find point estimates of WTP for changes in fishing catch to be biased upward 

by 45%.  When we only account for endogenous stratification, the point estimates for 

WTP are still biased upward by 39% on average.  In the presence of both endogenous 

stratification and size-biased sampling, the avidity weight, which only accounts for size-

biased sampling, actually increases the bias in point estimates to an average of 89%.   

Our proposed method, the balanced WESMLE accounts for both size-biased 

sampling and endogenous stratification.  This weight proves to outperform the other 

weighting strategies for addressing bias in WTP point estimates.  We find significantly 

less bias in these WTP point estimates when compared to the other weighting strategies – 

upward bias is reduced to roughly 26% on average.  These results indicate that, when 
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using onsite samples with both endogenous stratification and size-biased sampling, 

analysts must account for differences in characteristics of the recreational user in addition 

to differences in sampling intensity.  Importantly, in the presence of both endogenous and 

size-biased sampling, the weight which only accounts for avidity bias consistently 

performs worse than the unweighted estimator. 

Our propensity score based weights offer a viable option for correcting bias due to 

onsite sampling.  One limiting factor involves finding adequate data to qualify as 

auxiliary data.  In our empirical application, the RDD survey of coastal households may 

address some of the relevant biases associated with onsite sampling, but differences in the 

scale of measurement likely limits the accuracy of these weights.  The RDD survey also 

fails to account for anglers who reside outside coastal regions.  As states begin to 

implement licensing requirements for recreational anglers, management agencies can 

periodically collect samples of anglers for weighting purposes.  These surveys could also 

be used to fine tune the sampling intensity at various intercept sites.  Researchers may 

also wish to utilize a mixed sampling strategy where they collect an initial RDD sample 

followed by a lower cost onsite sampling strategy.  The RDD sample could be first used 

to gauge the intensity of site choice for onsite sampling and later reweighting to account 

for other exogenous/endogenous differences in sample selection.   

It should be noted that, while our weights improve the consistency of RUM 

estimates, our simplified specification has only limited policy applications.  Fishery 

management decisions are more likely to focus on individual species, rather than species 

aggregations.  Unfortunately, the MRFSS does not have adequate coverage to address 

every key species on a regional basis.  A future extension to this research would apply 
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this method to individual species.  Up to this point, the NMFS has addressed some of 

these limitations which result from these coverage and flexibility issues with stated 

choice experiments.  In addition to the limitations associated with species and site 

aggregations, our empirical example is also limited to households in coastal counties.  

Among the numerous potential differences between anglers in coastal counties and the 

larger population, these coastal households are likely to be more avid users.  As a result, 

our sample is not representative of the larger saltwater angler population.   

Last, our method results in consistent estimates when using a conditional logit 

model, but does not lead to consistent results in other types of discrete choice models 

such as nested logit models, cross-nested logit models, and mixed logit models (Bierlaire, 

Bolduc, and McFadden 2008).  Future studies should investigate methods which can 

address non-random sample selection bias while relaxing the IIA property as well as 

incorporating preference heterogeneity. 
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