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1 Introduction

Driesprong et al. (2008) show that changes in oil prices can predict index returns of developed and

emerging international financial markets. They document the relatively short duration of this effect,

its independence from time-varying risk premia, and gains from an oil-based active trading strategy

in the presence of reasonable trading costs for developed markets.1 Driesprong et al. show that

this remarkable finding is due to delayed reaction by a significant number of market participants in

response to changes in oil prices. The fact that oil prices, which are widely and freely available and

are closely followed by market participants and scholars, contain information which can be used to

predict index returns and generate significant gains in active trading, is an interesting result for

both practitioners and financial researchers and hence deserves further investigation.

In our work, using industry-level returns data for US, we show that this predictability is statis-

tically significant for approximately one fifth of industry returns in our sample. A delayed reaction

of approximately two trading weeks, or between seven and eight trading days, is detectable in the

data, which confirms the findings of Driesprong et al. We also show that the negative impact of

oil price changes at industry-level can not be statistically ruled out for the cross section of these

returns. Based on this finding, we document the potential gains from an oil-based strategy in

comparison with buy and hold, in presence of reasonable trading costs. These results are robust to

inclusion of usual financial and economic factors, as well as various specifications of the estimated

models.

Since Driesprong et al. findings imply gains from active trading using oil-based strategies, it is

necessary to know which industry returns are predictable using oil price changes. This would isolate

the source of predictability at the aggregated, index-level returns studied by Driesprong et al. for

further research or decision making. Detailed industry-level data are not available for all markets

studied by Driesprong et al., but they are available for the US. We use forty nine US industry-level

return series to extend and re-examine Driesprong et al. ’s study to find the source of predictability

observed at the aggregate level.

Second, to exploit the oil effect in research or in practice, it is necessary to know which measure

of oil price changes has reasonable prediction power at the disaggregated level. The study by

Driesprong et al. focuses on two measures, percentage changes in spot oil prices and percentage

changes in futures prices for sweet crude oil. We find that spot oil price changes have significant

and superior prediction power compared to changes in oil future prices. Using measures of net oil

price changes along the lines of Hamilton (1996), we find additional supporting evidence in favor

of predictability. Moreover, using these measures as predictors, we can categorize industry returns

based on their predictive sensitivity to net price increase or decrease measures.

1Driesprong et al. (2008) find oil predictability effect to be in place for approximately one month. We find a

similar duration.



Third, Driesprong et al. justify their findings based on a variation of Hong and Stein (1996)’s

underreaction hypothesis. Specifically, they use an empirical testing procedure based on Hong

et al. (2007) delayed reaction to newly available information. We follow Driesprong et al. testing

procedure to show that our results are consistent with the underreaction hypothesis empirically.

In particular, we document evidence in support of an approximate eight day, or two trading week,

delay in reaction to changes in oil prices by a significant number of market participants.

Our findings contribute to the literature on equity return predictability. In general, models with

even modest predictability are studied seriously in the financial literature, since they can potentially

lead to significant profits. Our results provide additional support for Driesprong et al. “oil effect”

and the return predictability literature on one hand, and provide a link between two other strands

of literature, oil and macroeconomy and return predictability based on macroeconomic factors, on

the other hand.

Finance research devotes considerable energy to the study of returns predictability based on

business cycle variables. Many studies in macroeconomics investigate the power of changes in oil

prices in predicting business cycle fluctuations. Hence, it is natural to study whether an important

business cycle factor has meaningful and exploitable predictive power for equity returns.

Following the seminal work of Hamilton (1983) and the subsequent research that this study

generated, the economics profession accepts a link between oil prices, macroeconomic variables,

and business cycles. Examples include Lee and Ni (2002), Hamilton (2003), and Hamilton (2009),

among others.2 Moreover, macro-finance literature accepts a link between business cycles and

equity returns or equity premium at the aggregate level or at the cross-section of returns, see

Cochrane (2008) for a detailed discussion. As a result, it is important to study whether a variable

such as oil price, which has considerable power in explaining business cycles in in the post World

War II US data, has any prediction power for series such as equity returns which are very sensitive

to business cycles. Moreover, there is a strong presumption in the financial press that oil prices

strongly influence the stock market behavior. Yet, relatively few studies examine prediction power

of oil prices for equity returns.

In general, before Driesprong et al. (2008), the empirical evidence on the impact of oil price

fluctuations on stock prices was viewed as mixed. Chen et al. (1986) specifically include monthly

changes of the real price of oil in their analysis, but find no evidence of a statistically significant

relationship between unconditional returns and oil price changes.3 Jones and Kaul (1996) study

the reaction of stock prices to oil shocks, and find mixed evidence on the ability of the impact of

2Hooker (1996) argues that the oil price-macroeconomy relationship has changed and weakened in recent years.

3They use wholesale oil price data which is very smooth and actually remains constant for extended periods well

into the 1980s. This smoothness is misleading for empirical tests concerning monthly changes in oil prices and asset

returns. Thus their choice of oil price variable, in our opinion, has some problems.
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oil shocks on real cash flows to explain the behavior of stock prices. Kilian and Park (2009) find

that the response of aggregate U.S. real stock returns may differ greatly depending on whether the

increase in the price of crude oil is driven by demand or supply shocks in the crude market. In

a study similar to Driesprong et al. (2008) and ours, Hong et al. (2007) test the predictability of

aggregate market returns using returns for the previous month from a variety of industries. Among

other industries, they find that high returns for the petroleum industry predict lower returns for

the US stock market.

Appealing to the gradual diffusion of information, or underreaction, literature pioneered by

Hong and Stein (1996), Pollet (2004) investigates predictability of market returns and industry

performance based on forecastable oil price movements. He states that while predictability can be

compatible with market efficiency, it may be more readily explained by underreaction to information

about subsequent oil price changes. His study focuses on seemingly slow diffusion of information

about anticipated oil price movements. Driesprong et al. visit the underreaction issue too. They

claim that sectors in which the impact of oil prices is likely to be a dominant first-order effect,

show less predictability. On the other hand, they assert that sectors where oil impact seems to

be a second-order impact, demonstrate a more pronounced oil effect. But they do not explore

these claims any further. Documenting this latter assertion for the US data is at the heart of

our contribution. We show, in detail, which US industries show predictive sensitivity to oil price

changes, what is the nature and duration of this predictability, and the economic and financial

significance of these findings.

The rest of the paper proceeds as follows: in Section 2, we describe and discuss the data. In

Section 3, we introduce and discuss our empirical findings concerning predictability of industry-

level returns using oil prices, and perform robustness checks. We discuss underreaction of market

participants with respect to oil prices in Section 4. In Section 5, we discuss the returns of an oil-

based trading strategy and the relation between our findings and time varying risk premia. Section

6 concludes.

2 Data

2.1 Oil Price Data

The international oil market is the most active commodity market in the world. Driesprong et

al. provide a concise, yet highly informative discussion of the international oil market, pricing

conventions, contracts, and market characteristics. To save space we focus on results for West

Texas Intermediate (WTI) crude oil. Unlike Driesprong et al., we do not report the results based

on alternative spot prices such as North Sea Brent or Arab Light. WTI data is available for a longer

time period, it is highly correlated with other oil spot price measures, and is more pertinent for a

study of US industries. Nevertheless, our results are empirically robust across these different oil
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price series. We use WTI end of the month spot and contract number 1 Cushing, Oklahoma light

sweet crude oil future prices from New York Mercantile Exchange (NYMEX) and reported by the

US Department of Energy’s Energy Information Administration (EIA). This data is also available

from usual sources such as Rueters Thomson Datastream. The series for WTI spot prices spans

January 1979 to January 2009 period, or 360 observations. The available monthly data for light

sweet crude future prices is slightly shorter, spanning February 1986 to January 2009, containing

275 observations.

Summary statistics of these series are given in Table 1. Reported statistics pertain to “oil

returns” processes, i.e. log differences in oil spot or future prices between two subsequent months.

Average oil price changes and standard deviations are in percentages. These series demonstrate no

unconditional skewness. On the other hand, based on reported excess Kurtosis, there is moderate

unconditional leptokurtotic behavior present for both series.

Two influential papers, Hamilton (1983) and Chen et al. (1986), use wholesale oil price data

collected by the Bureau of Labor Statistics. While this data might be useful for examining the

relationship between quarterly changes in the price of oil and real GDP, it is very smooth and

actually remains constant for three, four, and even five month periods during the mid 1970s and

early 1980s (as late as 1984). This smoothness is misleading for empirical tests concerning monthly

changes in oil prices and asset returns.

We justify using both spot and future prices data thus: we believe that spot prices reflect

information available to the markets up to time t. This means that conditioning industry returns

on lagged oil returns provides a semi-strong efficient prediction for industry returns. We believe

that futures prices measure the sentiments of the market participants towards the short term future.

Since oil markets are highly liquid, differences between oil spot and future prices are small, but non-

negligible at each point in time. Thus we believe that conditioning industry returns on oil future

price changes, measures the predictability content of market participants’ sentiments towards the

short term future.

2.2 US Industry-Level Returns

Industry level returns data is taken from Kenneth R. French’s data bank.4 We use average monthly

value weighted returns on 49 industry level portfolios. The original data spans July 1926 to present.

We use a subset of this data, from January 1979 to January 2009. There are 360 observations in

each returns series.

According to the data definitions, each NYSE, AMEX, and NASDAQ stock is assigned to an

4This data set is available from http://mba.tuck.dartmouth.edu/pages/ken.french/data library.html. Un-

fortunately, such detailed industry-level data are not available for other markets, developed or emerging, studied in

Driesprong et al. Hence, we limit our study to the US industries.
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industry portfolio at the end of June of year t based on its four-digit SIC code at that time. The

data is constructed using Compustat SIC codes for the fiscal year ending in calendar year t − 1.

Whenever Compustat SIC codes are not available, CRSP SIC codes for June of year t are used.

The monthly returns are then computed. Construction of this data bank ignores transaction costs

and does not include a hold range.

Summary statistics are given in Table 2. Average sample returns and standard deviations are

in percentages. None of the returns series exhibits heavy unconditional skewness. We report excess

Kurtosis values in the table. Deviation from excess kurtosis greater than zero is seen in almost all

industry return series. Based on sample statistics, we conclude that monthly returns demonstrate

leptokurtotic behavior.

Welch and Goyal (2008) believe that many positive predictability results in the literature depend

on samples which contain the oil shock of 1974. Our data starts in 1979, hence our results do not

depend on, in the words of Welch and Goyal, this anomalous period.

3 Predictability of Industry-Level Returns

3.1 Basic Regression Model

We follow Driesprong et al. in testing the predictability of returns, instead of excess returns, for US

industry portfolios. To test for the existence of an oil effect we incorporate an oil variable, roil,spott

or roil,futuret , in the regression

rit = µi + αir
oil,·
t−1 + εit (1)

where rit represents the returns of industry i at time t, µi’s are real valued constants, roil,·t denotes

oil ‘spot’ or ‘future’ price changes, as discussed above. For simplicity, we do not indicate ‘spot’ or

‘future’ in the notation used for the parameters. The reported results in Tables are differentiated. εit
are the usual error terms for each industry. In the absence of the oil variable, this equation reduces

to the random walk model for logarithmic asset returns. We test whether the coefficient on roil,·t ,

αi, is significantly different from zero for each industry. When αi is significant, the null hypothesis

of no oil effect is rejected. We estimate these regressions individually, since our objective is a study

of prediction power of oil prices for each industry-level returns series. We estimate these regressions

using ordinary least squares (OLS). As discussed earlier, industry returns and oil price changes series

are leptokurtotic. Hence the possibility that standard errors of the parameter estimates may not be

heteroskedasticity-consistent exists. We address this potential problem by using Newey and West

(1987) heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators.5

5Driesprong et al. (2008) use the White (1980) estimator instead of the Newey-West estimator.
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3.2 Empirical Evidence

Estimated values of αi parameters in Eq. (1) are reported in Panel A of Table 3. We report

industry-returns which demonstrate statistically significant predictability for the sake of brevity.

Oil spot price changes have statistically significant prediction power for nine industry portfolio

returns series. This translates to slightly less than 20% of industry-level returns in our sample.

The null that these estimated parameters are not significantly different from zero is rejected at the

5% significance level for two industries, meals with oil spot price changes and retail with oil future

price changes, and at the 10% significance level for two industries (construction and meals) using oil

future price changes, and for eight industries (autos, boxes, business services, construction, personal

services, retail, rubber, and telecom) using oil spot price changes. All in all, oil spot price changes

can predict returns of nine out of forty nine industries in the US financial markets, or 18.36% of the

total. We find the fact that auto industry shows signs of predictability puzzling at the first glance.

But further investigation confirms this finding (see Table 4 and discussion of the results in Section

3.3), and we can attribute this result to our subsequent discussion of underreaction hypothesis in

Section 4.

Oil future price changes are far less powerful in predicting industry-level returns. Using oil

future price changes as predictor yields just three predictable industries, which is barely above

the variation that we expect to see in the cross-section of returns, under the null hypothesis of no

predictability. Hence, we claim that changes in oil futures prices have very limited predictive power

for US industry returns in the sample period.

All estimated parameters have a negative sign, regardless of their statistical significance, which

is in line with the findings of Driesprong et al. This implies that a positive change in oil price

growth leads to a decline in industry-level returns in the subsequent month. The values of these

estimated parameters range between a low of -0.05 for telecom to a high of -0.088 for the automotive

industry, using oil spot price changes as predictor. If we use oil future price changes, these values

range between -0.075 (meals) to -0.095 (construction). The estimated parameter for US index

returns, using WTI price changes reported by Driesprong et al., is -0.086. In this respect, our

estimates are closely in line with their finding. We later show that the negative spot oil price

change impact is jointly statistically significant for the cross section of the returns in the sample.

One natural question to ask is whether these negative signs of estimated parameters are driven

by the positive loading on the stock market return in conjunction with the negative relationship

between oil price changes and market returns documented by Driesprong et al. Our answer to this

charge is that Driesprong et al. claim that oil price changes predict index returns. Index returns are
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almost equivalent to weighted averages of industry returns.6 Thus, basic econometric intuition im-

plies that predictability at the aggregate level follows from predictability at the disaggregated level.

Moreover, our estimations show that all estimated coefficients of the industry returns, regardless

of their statistical significance, have a negative sign. In other words, the direction of predictability

relationship between spot oil price changes and returns, at aggregated and disaggregated levels,

is the same. Under such conditions, we believe that the claim of negative signs for estimated pa-

rameters at the industry level due to positive loading of the market factor and the oil effect at the

aggregate level, is not statistically reasonable.

Besides, we extensively studied the impact of oil price changes, both spot and future prices, on

standard CAPM and three factor Fama and French settings. We included contemporaneous and

lagged oil price changes in standard CAPM and three factor Fama and French regressions. The

objective was to rule out the possibility that oil price change coefficients are statistically significant

since oil price changes are acting as a proxy for either the market excess returns or one of the

Fama-French factors. We found out that the statistical significance and the sign of lagged oil price

change coefficients are robust to inclusion of market excess returns or the Fama-French factors. As

a byproduct of this exercise, we can confidently rule out the interaction between positive market

loadings and oil effect at the aggregate level delivering the results reported in Table 3. These results

are available upon request, but are not reported to save space.

Since industry returns are correlated, we also estimate the model as a system of seemingly

unrelated regressions (SUR). Our interest is in testing jointly whether the hypothesis of αi = 0 is

rejected across industries. First, we find that the null hypothesis of no predictability is strongly

rejected at conventional statistical confidence levels. We find Wald test statistics which indicate

p-values smaller than 0.5%. Second, we find that joint estimation leads to a greater number of sta-

tistically significant prediction parameters for WTI spot price changes. Instead of nine predictable

industries, we now have nineteen, or approximately 39% of the industries in sample. All our ini-

tial predictable industries are in this subset. Moreover, banks, building materials, clothing, coal,

finance, hardware and software, lab equipment, machinery, and textiles show signs of predictabil-

ity using oil spot price changes as the predictor. All estimated parameters, whether statistically

significant or not, have the expected negative sign, and their sizes closely follow the estimations of

Driesprong et al. In fact, they range between -0.044 to -0.089.

We then test whether αis in the cross-section are equal, but not equal to zero. The objective

is to test for differential effects across industries. Again, we strongly reject the null hypothesis of

equal predictability effect across industries. The Wald test statistic indicates p-values smaller than

6This claim is naturally true for broad indices, such as S&P 500, Russell 3000, or MSCI indices. Driesprong et al.

study MSCI US Market Index, which represents approximately 99.5% of the US equity capitalization according to

MSCI-Barra index structure definitions.
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0.01%. These findings confirm the evidence reported in Table 3. Our estimation results are robust

to inclusion of returns from S&P 500 and Dow Jones Industrial Average indices.

Finally, we jointly test whether αis in the cross-section are all positive. The objective is to

test for statistically meaningful negative oil effects across industries. Again, we strongly reject the

null hypothesis of positive oil effect across industries in a one-sided test. The Wald test statistic

indicates p-values smaller than 0.01%. This result is particularly important, since we construct the

“oil strategy” of Section 5.1 based on this finding.

Following the influential paper by Stambaugh (1999), many financial scholars have studied the

problems of predictive regressions. A concise and lucidly written summary is given in Campbell

and Yogo (2006). They also provide a pre-testing procedure for predictive regressions. We carry

out these pre-tests and find that our formulation does not suffer from the overstatement of true

significance by t-statistics which is documented in their study. These results are available upon

request.

3.3 Robustness

In this section, we address the following concerns. First, we want to see whether predictability stems

from sensitivity of industry-level returns to increase or decrease in oil price changes. Second, we

want to know whether such sensitivity can provide a categorization of predictable industry returns.

As a byproduct, we also study whether different measures of oil price increase and decrease can

act as possible prediction tools. Third, we study robustness to different specifications for oil price

changes such as shocks in prices and non-linearities. Finally, we carry out testing procedures

to address questions about robustness of our reported results with respect to contemporaneous

correlation of oil price changes and equity returns, longevity of the oil effect, and non-synchronous

trading.

In construction of oil price increase measure, we follow Hamilton (1996) and his formulation

for “net oil price increase”. Very concisely, using quarterly data, Hamilton constructs this measure

as the maximum of zero, and the difference between the percentage change of the crude oil price

for quarter t and the maximum value for the percentage change achieved during the previous four

quarters. Since we are using monthly data, our measure is constructed in a slightly different fashion.

Also, we construct two measures, one for “net oil price increase” (nopit) and another for “net oil

price decrease” (nopdt).

In our investigation, net oil price increase (nopit) is defined as

nopijt =

{
roil,·t −Mj , if roil,·t > Mj ;

0, otherwise.
(2)

where Mj = max{roil,·t−τ }
j
τ=1 and j = {4, 6, 12}. We study Mj values that correspond to maximum
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value of returns in a quarter, six month, and one year, respectively. Hamilton (1996) considers

net oil price increases of quarterly data over the maximum of the preceding four quarters which is

equivalent in length to our j = 12 case.

In a similar fashion, we also construct a measure for net oil price decrease (nopdt), which follows

nopdjt =

{
roil,·t −Nj , if roil,·t < Nj ;

0, otherwise.
(3)

Here, Nj = min{roil,·t−τ }
j
τ=1 and j is as in Eq. (2). The difference is that instead of considering the

exceedence of oil returns over a maximal measure, Mj , we look at the difference between a negative

return and the minimal value attained over the last j-months, Nj .

These measures can be interpreted as either surprise return movements over the “norm” of the

market over the last j-months period, or as corrections for a change in prices in the opposite direc-

tion over the past j-months, as in Hamilton (1996). Either way, they present a tool to disentangle

industry returns which are sensitive to oil price increases from those which are sensitive to oil price

decreases, which is one way of categorizing industry returns.

Both measures are defined for percentage changes in oil spot and future prices. We substitute oil

price change measures by their corresponding net oil price change measures in Eq. (1) and estimate

the resulting models. The estimated parameters are reported in Table 4. We report OLS coefficient

estimates and HAC-consistent standard errors. The number of predictable industry-level returns

for both reported spot oil price and future price-based measures is comparable or superior to plain

percentage changes in oil prices. The reported coefficients are relatively larger than those in Table

3, and more importantly, they have an opposite sign. That is, while our results and Driesprong et

al.’s findings both report a uniformly negative relationship between oil price changes and index or

industry returns, we generally find a positive relationship between industry returns and net price

changes. Notice that this result is not at odds with what is reported in Section 3.2 and findings

of Driesprong et al. Net price change measures do not have a linear relationship with spot price

or future price changes. Thus, it is not surprising that we find a different statistical relationship

between these measures and industry returns.

Panel A in Table 4 reports the reaction of nine industries to net price increases compared with

price changes in the preceding three months (a quarter) or six months (half a year) of WTI spot

prices. Of the industries reported in Table 3, four industries appear in this panel. Construction,

personal services, retail, and meals react positively to a net price increase over the preceding quarter.

Moreover, Food, clothing, and aerospace show positive sensitivity to a lag in net price increase over

the same period, while oil and gold industries react negatively with respect the same measure.

There are no representatives of Table 3 in the second row of Panel A, which reports industries

that show sensitivity to a lag price increase in WTI spot price compared with the preceding six
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months. Aerospace, oil and gold industries appear in this row, with the same sign as in the first row.

Moreover, tobacco, soft drink, hardware, building materials, and household products seem to be

sensitive to this measure. In each case, approximately 20% of industry-level returns show predictive

sensitivity with respect to three and six month net spot price increase. This is comparable to the

results from predictive power of spot price changes, reported in Panel A of Table 3.

Industry returns that demonstrate statistically significant predictive sensitivity to WTI spot

net price decrease, are reported in Panel B of Table 4. The number of predictable returns using

this measure of price changes is slightly lower than those reported in Panel A, ranging between

six and eight. The second row, corresponding to the results for six months net price decrease

measure, demonstrates predictive power for 12.25% of industry returns. This is slightly larger than

cross-sectional variation at 10% level under the null of no predictability and thus should be treated

cautiously. Three remaining industries from Panel A of Table 3 are present here. In particular,

automotive industry demonstrates predictive sensitivity to lagged WTI net spot price decreases

over both three and six month measures.

The two other industries mentioned, telecom and business services, are sensitive to net price

decreases over the preceding 12 months, as are tobacco, publishing (books), mining, banking, and

finance industries which do not appear in Table 3. Finance, steel, and lab equipment industry

returns are sensitive to more than one measure of net spot price decline.

Panels C and D in Table 4 present the results from study of predictive sensitivity of industry-level

returns to net future price changes. It is immediately clear that these measures have more predictive

power than plain changes in light sweet future prices discussed in Section 3.2. In particular, the

null hypothesis of α̂i = 0 is not rejected for many industries in Panel D. We interpret these results

as presence of predictive power in net future price changes, especially if there are large deviations

from market participants’ anticipated returns in future prices formed over longer periods, namely

six and twelve months.

Panel C of Table 4 reports industry returns which are sensitive to lagged net price increases for

light sweet future prices. First, notice that only net price increase measure in comparison with the

preceding 12 months is reported. Also note that the reported eight industries show both positive

and negative reaction to this measure. As a side issue, only telecom industry is present both in

this panel and in Panel B in Table 3.

In Panel D of Table 4, we see almost all industry returns reported in Panel B of Table 3, along

with many others. Twelve months net future price decrease measure seems to have prediction power

for 29 industry-level returns, or almost 60% of industry returns in our sample. Again, automotive

industry shows evidence of sensitivity to lagged net future price decreases, as do every industry in

Panel A of Table 3. We view these results as confirmation of presence of predictive sensitivity in

industry returns, using lagged net future price decrease measure.

The following net price change measures have very weak predictive power for industry returns,
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therefore we do not report their respective results. Net spot price increase over the preceding 12

months could predict three industries. Net oil future price increases for three and six months,

could predict just one and three industry returns respectively. These results are weaker than the

cross-sectional variation at 5% or 10% confidence level under the null of no prediction, hence we

conclude that these three measures can not predict industry returns.

We carried out robustness tests to ensure that predictive results reported here are not due

to omitted variables, or net price change measures acting as proxies for other factors. We found

that our results are essentially invariant to inclusion of market returns, Fama and French factors,

contemporaneous and lagged oil price changes, and contemporaneous net price changes, in different

permutations of possible linear relationships. These results are available upon request, but are not

reported here.

We believe that based on these findings, the automotive industry is sensitive to unanticipated

oil price drops. This industry is sensitive to the majority of net price decrease measures, whether

for spot or future prices. In conjunction with the predictability of automotive returns in Section

3.2, we are confident that oil prices can predict automotive industry’s returns. Similarly, telecom

and business services industry returns show sensitivity to net price decreases. On the other hand,

construction, personal services, retail, and meals returns react to net price increase measures, as do

aerospace, oil, and gold industries. We consider these results to yield a reasonable categorization

of the predictable industry-level returns, based on predictive sensitivity to oil price increase or

decrease.

A reasonable question is whether predictability is a results of anticipated component or unan-

ticipated news in oil returns. Pollet (2004) specifically studies anticipated oil price movements and

their prediction power. Here we study the predictability content of unanticipated news. We have

two measures for unanticipated news. The first measure is “oil shocks”, which we construct by

using the residuals of fitting the oil returns series using a first order autoregressive (AR(1)) pro-

cess.7 The intuition is to remove the easily predictable conditional mean component from oil spot

or future price changes. We do not want to filter out the potentially present time varying volatility

behavior, since we want to test whether these components convey news for the market. Second, we

use “oil price volatility” which we construct by squaring oil price shocks. Volatility is a proxy for

risk in these markets, and can also proxy for non-linearity in the oil-industry returns relationship.

Under alternative formulations for oil price impact, we substitute roil,·t in Eq. (1) with measures

for oil shocks or volatility. Oil shocks are denoted as soil,·t = roil,·t − r̂oil,·t and r̂oil,·t is the fitted value

for oil price changes from an AR(1) process; oil volatility is denoted as voil,·t = (soil,·t )2. Values are

calculated for both spot and future prices.

7We fit the oil return series using an ARMA(1, 1) formulation too. Using the residuals from an ARMA(1, 1) fit

does not significantly change our findings.
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Estimated values of αi,s parameters are reported in Panel B of Table 3. A cursory look reveals

that using the shock measure instead of price changes does not alter estimated values of parameters

or their statistical significance. The same industry-level returns show evidence of predictability, and

estimated parameters and standard errors are also very close to what is seen in Panel A. On the

other hand, the prediction power of oil future price shocks is even less than that of oil future price

changes reported in Panel A, hence it is not reported. A single industry returns series, construction,

can be predicted and the size of the estimated parameter, -0.081, is different from what is seen in

Panel A. This predictively result is lower than what is expected under the null hypothesis of no

prediction in the variation of the cross-section of the returns. These findings reinforce our initial

conclusion that oil spot price changes have more prediction power than oil future price changes.

Moreover, we conclude that first, the prediction model is robust to use of price changes or shocks

to oil spot returns, and second, we find evidence suggestive that the predictability stems from the

unanticipated “news” contained in the oil price series.

The results from inclusion of the constructed volatility in prediction regression are very weak.

Hence, we do not report the results, but briefly discuss the findings. We find that using oil spot

volatility as the predictor, the null hypothesis that estimated αi parameters are equal to zero is

rejected at conventional confidence levels for only three industry-level series: agricultural products,

wholesale, and real estate. A similar analysis using oil future price volatility similarly yields three

predictable industry-level series. They are the aerospace, shipping, and insurance industries. All

these estimated parameters have the expected negative sign. Since, using this measure, we can

predict less than 10% of industry-level returns series in sample, we conclude that the constructed

volatility measure used here does not have much prediction power for industry-level returns. We

discuss time-varying risk premia in detail in Section 5.2.

We report the outcome of robustness tests for prediction results with respect to contemporane-

ous correlation of oil price changes and the duration of the oil effect. To this end, we estimate the

following regression model:

rit = µi + α1,ir
oil
t−1 + α2,ir

oil
t−2 + α3,ir

oil
t + α4,ir

i
t−1 + εit. (4)

In this model, inclusion of contemporaneous oil price changes controls for contemporaneous cor-

relation between oil prices and industry-level returns. Similarly, industry-level returns lagged one

month control for non-synchronous trading. By considering oil price changes lagged two months

in addition to oil price changes lagged one month, we test for how long predictability effects last.8

The results of regressing industry-level returns on individual variables besides oil price changes are

very similar, hence they are not reported.

8Lag lengths of three, six, and twelve months where also studied. Since the results are very similar, they are not

reported.
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Estimated results are reported in Table 5. We only report those industries which have at least

one statistically significant estimated parameter. Estimated parameters are the output of OLS

regression and all reported standard errors in are Newey-West HAC consistent estimates.

The top panel of Table 5 reports the results using changes in WTI spot prices. Eight industries

show statistically significant predictability. Two industries (retail and meals) lose predictability

in presence of these additional explanatory variables. On the other hand, the building materials

industry becomes predictable once lagged industry returns are included. Length of predictability

period is quite short. Only one industry, construction, demonstrates statistically significant pre-

dictability using oil price changes at a two-month lag. We conclude that for industry-level returns,

predictability does not extend beyond a one-month lag. Four industries, gold, mines, oil, and per-

sonal services, show evidence of contemporaneous correlation of oil and industry returns, through

statistically significant parameters for contemporaneous oil returns. This is still quite low, just

8.16% of industries show signs of statistically significant contemporaneous correlation between oil

and industry returns. This result is within the expected variation in the cross section of returns

under the null of no contemporaneous correlation of oil and industry returns at 10% significance.

Moreover, such a relationship is not quite surprising for oil and mining industries. We expect in-

formation of oil prices to have a significant impact on oil and related industries’ returns, but we

also expect this information to be quickly absorbed and incorporated in the market prices.

Our findings here differ from Driesprong et al. in one important dimension. They find weak

evidence of the importance of lagged index returns in their regression analysis. We, on the other

hand, find a significant number of industries where lagged industry-level returns are significant

predictors. This is suggestive, but is not conclusive evidence, of the presence of non-synchronous

trading. Except for two industries, meals and retail, the inclusion of additional regressors hardly

changes the value or significance of estimated one month lagged oil returns parameters. We conclude

that predictability is fairly robust to inclusion of other factors.

The bottom panel of Table 5 reports the results using price changes in NYMEX light sweet crude

future prices. These results are consistent with the conclusion in Section 3.2 that oil future price

changes have weak prediction power for industry-level returns. By introducing new variables in the

prediction regression, we find that just two industries, hardware and personal services, show some

level of predictability. The length of prediction period is still very short. The coefficient of future

price changes lagged two months is statistically significant for a single industry, oil. This result,

especially for the oil industry where contemporaneous future price changes and lagged industry

returns are also significant, is rather puzzling. We attribute this to cross-sectional variation that can

happen under the null hypothesis of no prediction, and view the result as statistically insignificant.

Contemporaneous correlation between future price changes and industry-level returns are sig-

nificant for six industries: food, drugs, gold, oil, personal services, retail, and meals. Similar to

our findings using oil spot price changes, these results provide suggestive but inconclusive evidence
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of the presence of non-synchronous trading. Since introducing new factors does not change pa-

rameter estimates much, we conclude that, while future price changes are not good predictors, the

estimation results are reasonably robust to inclusion of other factors. We believe that month to

month changes future prices do not posses much prediction power.9 In other words, expectations

of market participants seem to have little ability for predicting industry-level returns in the near

future; all their relevant information is already incorporated in the stock prices.

Moreover, we study the model with excess returns, that is industry-level returns minus short

term rates. We use the four week (one month) T-Bill rate as the short term risk free rate. We

observe that the results are almost identical to using returns instead of excess returns. Based on

this evidence, we conclude that the formulation in Eq. (1) is robust to the use of either returns or

excess returns.

4 Underreaction to Oil Prices

Oil price information is both publicly available at no cost almost in real time and widely followed by

the investors. Hence, it is rather surprising that such widely available information has predictability

for a significant portion of US industry-level returns. At first glance, this observation may even be

at odds with market efficiency. However, a rationality-consistent explanation is available through

the gradual diffusion of information hypothesis of Hong and Stein (1996). We present the evidence

supporting this hypothesis in our sample in the subsequent sections.

4.1 Underreaction and Oil Prices

The main assumption driving the Hong and Stein (1996) underreaction hypothesis is decision

making by investors who are endowed with bounded rationality in presence of private information.

As a result, and based on the additional assumption that private information diffuses gradually

across investors who do not extract information from prices,10 market prices react to information

about fundamentals with a delay. The Hong and Stein (1996) framework can be extended to include

underreaction in presence of publicly available information.

Hong et al. (2007) consider the scenario where the gradual diffusion of information across asset

markets leads to cross-asset return predictability. The basic idea in their study is that some

investors, for example those who specialize in trading the broad market index, receive information

originating from certain industries, such as commercial real estate or commodities, with a lag.

9Introduction of these factors rendered three predictable industries unpredictable. Point and standard errors

estimates for the rest, while statistically not significant, do not change much. These results are available upon

request, but are not reported.

10They call them “newswatchers”.
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We may infer that underreaction is possible in at least two cases in the presence of publicly

and freely available data. The first case may occur when some investors find it difficult to evaluate

the ramifications of existing or new information on equity values. Since market response to public

information driven by the sum of private signals, lags in response, or inaction, may result in

underreaction. The second case which, according to Hong et al. (2007), may lead to underreaction

is when investors react to information at different points in time after it becomes available.

Information needs to have a meaningful impact on economic activity before it is captured by

empirical analysis, as pointed out by both Hong et al. and Driesprong et al. Oil prices clearly have

an impact on economic activity. It is reasonable to believe that industries such as petroleum or

transportation have very accurate assessments of the first order effects of oil price changes. But as

Hamilton (2003) shows, the precise second order effects of oil price changes on the economy are not

well understood. As a result, the effects of changes in oil prices on stock prices are not quite clear.

There may even be confusion about which source of information should be trusted. As we noted

earlier (and as is discussed in Driesprong et al. as an example), many academic articles, including

Chen et al. (1986) and more recently Hamilton (2003), are based on the U.S. wholesale oil price. Oil

price changes based on wholesale price demonstrate up to three-month lags in movements compared

to WTI spot price changes. Hence, if investors use different measures for oil price information,

their actions will have very different outcomes which compare favorably with predictions of the

underreaction hypothesis.

In our study, we find evidence in favor of the hypothesis that investors may find it hard to

analyze the information contained in oil price changes in industries which seem to be less oil-

dependent, such as telecom or construction. As discussed earlier, we do have a the puzzling case

of the automotive industry in our results. Based on our empirical findings in Sections 3.2 and 3.3,

we have compelling evidence that automotive industry returns show oil price change predictability.

But intuitively, one expects this industry to closely follow and immediately incorporate information

contained in oil price data. As it turns out, this is not the case. We believe that this outcome is

due to difficulty of accurate assessment of secondary oil effects on profitability of the automotive

industry. Thus, we believe that oil prices satisfy the criteria of Hong and Stein (1996) model, and

then proceed to empirically test the underreaction hypothesis, following Driesprong et al. steps.

4.2 Empirical Evidence

In this section, we carry out and report the results of Driesprong et al. “delayed reaction” test. The

fundamental idea in this test is the Hong et al. assertion that investors may react to information

with a delay, leading to underreaction. The test is developed through the following intuition: if

investors “wake up” to new information with a delay, then the predictability effect should become

stronger if one introduces small enough lags between monthly stock and lagged oil price changes. We

expect the explanatory power of this regression to increase, due to capturing the delayed response
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up to a certain number of lags, and then to decline.

Since the duration of this delayed reaction to oil price changes is unknown, we try several lag

lengths. In the first step, we assume that investors react to oil price changes a week (five trading

days) after a price movement.11 As a result, we expect that introducing a five trading day lag

between monthly industry returns and oil price changes should increase the explanatory power of

our regressions.

To carry out the testing process empirically, we construct a new monthly oil price series with

delays of one and five trading days. WTI data is available on daily frequency from March 1986.

Our sample is constructed by dropping the oil price changes of the last trading day (trading week)

of the month (t− 1) and adding the oil price returns of the last trading day (trading week) of the

previous month (t− 2). If the delayed reaction hypothesis holds, then the last price changes of the

t − 2 month should have more information content for predicting industry returns than the price

changes on the last trading day (trading week) of the t− 1 month.

The results are reported in Table 6. The top panel reports the regression results with no lags

between the monthly industry-level returns and the monthly spot oil price changes of WTI. The

middle and bottom panels in the table report the results for 1- and 5-trading day lags. Our findings

are mixed, and resemble the results reported for Emerging Markets in the lower panel of Table 7 in

Driesprong et al. We find that while the prediction of higher R2 associated with longer lags holds

for the construction industry, it does not hold for any other industry with statistically significant

oil price change estimated parameters. However, we note that these drops in R2 are negligible.

The choice of 1-trading day or one trading week (5-trading days) is arbitrary. We repeat the

procedure for up to 11 trading days to avoid overlapping sample problems in estimation. A pattern

emerges: after an initial drop, the R2 rises at around the 7th or 8th trading day lag, and then

drops quickly again. With different magnitudes, this pattern is repeated across all industries. We

believe that this pattern is supportive of a delayed reaction period of around 7 to 8 days long for

a relatively large group of investors.

We also carry out weekly regressions to document the possibility of delayed reaction among

investors using a different sampling frequency. The regression model used in this analysis is:

rit = µi +αi,1r
oil
t−1 +αi,2r

oil
t−2 +αi,3r

oil
t−3 +αi,4r

oil
t−4 +αi,5r

oil
t−5 +αi,6r

oil
t−6 +αi,7r

oil
t−7 +αi,8r

oil
t−8 + εit. (5)

In this model, rit represents returns of industry i portfolio, and roilt−j represents changes in the

WTI spot price, lagged j weeks. Naturally, the αi,js represent the coefficient of changes in j-

lagged oil prices for industry i. The reported standard errors are the Newey-West HAC consistent

estimates. The regression analysis results are reported in Table 7. As is seen in the column Oil(t−1),

11The choice of a trading week as the delayed reaction duration is arbitrary. The true duration may be shorter or

longer. We test other lag lengths for robustness; see below.
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representative of a one-week lag in oil price changes, there is no predictability detectable. On the

other hand, the column Oil(t−2) reports almost universal predictability. This period corresponds to

the 7 to 8 trading day delayed reaction in the market. We find this result particularly encouraging.

Predictability disappears quickly. For lags of three to seven, evidence of predictability is very weak

and it totally vanishes for Oil(t − 8). We take these results to be supportive of delayed reaction

hypothesis.

5 Financial and Economic Significance

Our findings are statistically significant. But do they convey any exploitable financial and economic

information? Many anomalies documented in the financial literature can not be exploited, since

they are “uncovered” through assuming away trading costs. Once trading costs are incorporated

in empirical assessment, they dominate any potential gains from active trading strategies based on

the alleged anomaly. We carry out a simple exercise to compare the gains from an “oil strategy”

and the benchmark “buy and hold” strategy in the presence of reasonable levels of trading costs.

Another issue is whether these predictability results are due to time varying risk premia. The

risk premium varies over time. The fact that some economic variables predict stock returns might

be related to the predictable variation of the risk premium over the business cycle. Thus, this

predictability may not necessarily indicate an anomaly. We address the time-varying risk premium

issue in this section. We verify that oil effect is statistically unrelated to time-varying risk premia.

5.1 Economic Significance

We compare the performance of buy and hold and oil-based trading strategies returns in the presence

of reasonable trading costs. Unless the oil-based trading strategy delivers a better performance than

buy and hold strategy outcomes, after subtraction of trading costs, it has no practical value. Based

on our results in Section 3.2, particularly the Wald test for presence of statistically significant

negative oil effects in the cross-section of the industry-level returns, we find that a negative oil

effect can not be ruled out. Hence, we can construct oil based strategies for all industries in

our sample, although just 20% of these returns are oil-predictable at the conventional 5% or 10%

confidence levels. We find that the oil strategy indeed delivers superior performance for almost all

industries in the sample.

We take the following steps to construct the returns of the oil trading strategy. First, we

take sixty observations from January 1979 to December 1983 for each industry. Thus, the sample

period of comparison is January 1984 to December 2008. We estimate Eq. (1) using the initial 60

observations, then use the estimated parameters and the last observed oil price change to form a

prediction for industry returns in the coming month.

We re-estimate the model every month using a sliding window of length sixty, and form one
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month ahead forecasts of industry returns as described above. We compare these forecast values

with four week (one month) US T-Bill rates. If the expected return is higher than the T-Bill rate,

we invest fully in the industry, otherwise we invest fully in T-Bills. We repeat this investment

rule for every month. We assume switching costs equal to 0.10%. In this respect, we follow Solnik

(1993) and Driesprong et al.

We thus construct oil strategy trading outcomes for each industry. These results are reported

in Table 8. It is immediately obvious that the oil strategy delivers higher Sharpe ratios than the

buy and hold strategy. Across all industries, the buy and hold strategy generates a return average

of 10.67%.12 These returns on average have standard deviation equal to 22.26%, with a maximum

return obtained for smoke (tobacco industry) equal to 17.83%, and a minimum return of -0.583

for real estate in this sample period. The average Sharpe ratio for this strategy is 0.478, with a

maximum value of 0.845 for food and minimum value of -0.047 for real estate.

In contrast, the oil strategy delivers average returns of 12.92%. This translates to an improve-

ment in returns equal to 2.25% compared with the buy and hold across all industries in our sample.

The best return of the oil strategy is the software industry with 19.26% annual returns. The worst

performance belongs to the real estate with 5.53% in annual returns. Notice that using the oil

strategy, we could improve real estate’s returns by 6.12%. The average standard deviation of re-

turns of this strategy is 18.89% or an average risk reduction equal to 3.37%. In particular, the risk

associated with the gold industry is reduced by 9.85% which we consider quite impressive. Even the

smallest risk reduction, utilities, is still a respectable 1.05%. Average Sharpe ratio for oil strategy

is 0.67 which translates to an average 0.19 improvement over buy and hold. As it is evident, this

result is achieved through combined risk reduction and improved returns performance.

For the nine industries with strong evidence of oil-predictability in Table 3, average returns

performance increases by 2.85%, average risk is reduced by 2.87%, and the average Sharpe ratio as

a result increases from 0.487 to 0.721.

Our results are somewhat different from what Driesprong et al. report for the US. In their study,

for a shorter sample and for MSCI index returns, the oil strategy outperforms buy and hold by

1.2% in average returns, reduces risk by 5.3%, and improves the Sharpe ratio from 0.39 to 0.72. In

our exercise, the oil strategy delivers better average performance, but does not reduce risk as much.

Still, it is clear that the oil strategy returns are superior to those of the buy and hold strategy.

An important issue which deserves attention is whether the risk free rate and market portfolio

span the results of the oil strategy. Formally, we calculate Jensen’s alpha from estimating the

following model:

ros,it − rft = αi + βi(rmt − r
f
t ) + εit. (6)

Here, ros,it are the returns from the oil strategy for industry i, rmt are market returns, and rft is the

12This value is almost identical to the reported value in Driesprong et al.
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risk-free rate. We use the four-week (one month) Treasury Bill rate as the risk-free rate and S&P

500 returns as the market returns proxies. Columns 8, 9, 17, and 18 in Table 8 report parameter

estimates and t-statistics, in square brackets, based on Newey-West HAC consistent standard error

estimates. As it is clearly seen in the table, the null hypothesis that Jensen’s α (α̂i) is equal to zero

is frequently rejected. Since β̂is are almost universally significant and reasonable, we can say that

mean-variance efficiency is rejected across industry returns.13 These results suffer from a slight

look ahead bias: an oil effect exists and persists in the 1984 to 2008 period.

Again, our findings here differ from Driesprong et al. (2008) in one important dimension. We

find that on average, a switch occurs every three to four months. Estimated Jensen’s α for the US

in Driesprong et al. (2008) is equal to 4.58% per year. Our estimated α’s are much smaller; they

range between 0.299% to 1.103%. Hence, while this strategy is profitable at transaction costs equal

to 0.10%, profitability vanishes as transaction costs increase. This is contrary to what Driesprong

et al. claim. Their results are said to be robust to transaction costs up to 0.5%.

In conclusion, we can say that first, the evidence for index market returns and risk-free rates

spanning of oil-strategy returns is weak, and second, oil strategy appears to be a reasonable trading

rule for practitioners.

5.2 Time Varying Risk Premia

We have already shown that oil price change related predictability is short-lived. As seen in Tables

5, 6, and 7, and contrary to Fama and French (1989), the oil effect does not last more than a month.

This results is in line with findings of Driesprong et al. Fama and French (1989) argue that dividend

yields, the term spread, and the default spread are reasonable variables for forecasting stock returns

since they contain information about expected business conditions. Similarly, Chen et al. (1986)

argue in favor of default spread as a good indicator for future business conditions. More recent

examples include Ang and Bekaert (2007) who favor interest rates as predictors for equity returns,

and Campbell and Thompson (2008) who favor a wide range of pricing ratios, among them interest

rates, as well as term and default spreads.

As it is seen in Table 9, sample correlations between changes in WTI spot or future prices and

US interest rates, term structure, or dividend yields are very close to zero. Correlation between

changes in spot prices and the default spread is not negligible, but it is within the same order

of magnitude as in Driesprong et al. (2008). These two sets of results are thus comparable and

consistent. One may comfortably conclude that oil prices are linearly independent from accepted

predicting variables for time-varying risk premia.

13Hardware, software, chip making, and finance industries have statistically significant estimated βs greater than

unity. But these parameter values are close enough to one to suggest almost perfect cyclicality, an empirically

acceptable regularity in these industries.
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Also, as Hamilton (2003) documents, oil price shocks increase systemic risk in the economy.

Such an event should be followed by increased expected (or average) returns across the industries.

Our results demonstrate a negative relationship between oil prices and industry-level returns across

the board, regardless of statistical significance. It can be argued that with time-varying risk premia,

the contemporaneous effect of an increase in oil prices can be negative, due to uncertainty about

short term profitability. But eventually, returns must rise if oil price changes are proxies for

this phenomenon. Our econometric evidence rejects this assertion. We believe that the oil effect

documented by Driesprong et al. (2008) and explored in our research does not proxy for time-varying

risk premia and is a salient feature of the market.

In a seminal paper, Merton (1980) argues that (excess) market returns should be directly and

proportionally related to the market’s systemic risk. Empirical study of this prediction underlies

the extensive application of (G)ARCH-in-Mean models, starting with Engle et al. (1987), in the

literature. We explore the issue of volatility further and formally study the consequences of the

inclusion of one month lagged oil price changes in risk-return trade-off at industry-level. Formally,

we fitted a GARCH(1,1)-in-Mean model with oil prices lagged one month as an exogenous variable

in the volatility process. In this respect, we follow French et al. (1987). This formulation allows us

to explicitly check whether a lagged oil price change increases future industry-level volatility. We

find out that the inclusion of oil price changes does not significantly alter the estimated parameters

of the GARCH process or the value of the GARCH-in-Mean coefficient. The real estate industry

has statistically significant estimated coefficients for both the GARCH-in-Mean term and the oil

returns. But the sign of the GARCH-in-Mean coefficient is negative (-0.0791), which is counter

intuitive, and only significant at the 10% significance level. This result implies that there is a

negative relationship between risk and return, while financial theory expects a positive relationship.

All other results are both statistically insignificant and have negative GARCH-in-Mean parameters,

hence we do not report them. We conclude that oil price changes do not alter the risk-return trade-

off in the sample. Based on these results, it is possible to claim that predictability is not related to

the time-varying risk premium. If predictability from oil price changes is indeed related to time-

varying risk premia, then we expect that inclusion of lagged oil price changes should improve the

performance of GARCH-in-Mean regressions. Notice that our industry-level returns are portfolio

returns, most of them consist of many companies. Hence application of Merton’s approach is, in

our opinion, valid.14

We find that first, there is no statistical evidence of improvement of fit. And second, the esti-

14Industry portfolio returns are the weighted average of returns from a large number of companies in the relevant

sector. Since the number of company returns is large enough, running a regression on measures of (industry) systemic

risk is reasonable. If the number of companies in a typical industry portfolio is not sufficiently large, then portfolio

returns must be priced through their conditional correlation with some aggregate market return measure which

realistically reflects systemic, rather than idiosyncratic, risk.
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mated coefficients do not have economically meaningful interpretations. Our estimated parameters

for oil-in-volatility (exogenous parameter in GARCH process) are generally positive and indicative

of increased volatility due to oil price changes. But bar very few instances, they are not statisti-

cally significant. We could not justify the assertion that inclusion of oil price changes improves the

performance of the GARCH-in-Mean model based on econometric evidence. As a result, we believe

that the main issue is independence of oil related predictability from time varying-risk premia.

6 Conclusions

We use disaggregated data to take a closer look at the oil effect documented by Driesprong et al.

(2008). We use forty nine US industry-level return series and West Texas Intermediate spot and

NYMEX light sweet crude future prices to verify the existence of predictability of stock returns,

using oil price changes as predictors. Moreover, we study the predictive sensitivity of industry-level

returns to measures of net oil price increase or decrease. Our findings provide several important

refinements to the original results of Driesprong et al., both for the oil effect and the underreaction

hypothesis.

We find that industry-level returns in slightly less than twenty percent of the forty nine US

industries studied in this paper can be predicted using logarithmic differences in West Texas In-

termediate spot prices as predictor. Moreover, we find that this predictability almost disappears

when we use logarithmic differences of NYMEX light sweet crude future prices. Using net oil price

change measures, we can provide a categorization of predictable industry returns based on their

sensitivity to measures of net oil price increase or decrease. We find that net oil price changes in

futures market have significantly more predictive power than simple percentage changes in future

prices.

Based on various robustness checks, we conclude that predictability is rather short lived, it

is lost beyond a one-month lag. Less than 10% of industry-level returns demonstrate signs of

contemporaneous correlation with oil returns. We find suggestive, but inconclusive, evidence of the

presence of non-synchronous trading in a significant number of industry returns. Our results are

robust to the use of excess returns, instead of raw returns, in the regression analysis. We find that

the inclusion of oil price shock measures does not alter our findings, and that our measure of oil

price volatility does not have much prediction power. In addition, we find that the oil effect seems

to be independent of time-varying risk premia. Our findings differ in an important dimension from

Driesprong et al. We show that gains from trading based on an “oil strategy” are sensitive to the

size of trading costs. Existence of the oil effect seems to be a feature of US financial markets.

We find that our results are consistent with the delayed reaction hypothesis among investors.

In particular, by carrying out regression analysis between industry-level returns and lagged changes

in monthly oil prices, we find an increase in explanatory power of these regressions, after an initial
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drop, at around seven to eight trading day lags. We interpret this results as a seven to eight trading

day delay by a significant number of investors. The delayed reaction is negative. This is consistent

with the assertion that investors wake up to information at different points in time, as proposed by

Hong and Stein (1996) and refined by Hong et al. (2007). Based on our findings, we believe that

investors underestimate the indirect economic effects of oil price changes and take action with a

non-negligible delay. We find that our results are more pronounced in non-oil related sectors such

as construction and business services.

Comparison of predictability performance of oil price and valuation ratio based models is beyond

the scope of the present paper. We will address this issue in future research.
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7 Tables

Table 1: Basic Characteristics of Oil Price Changes.
Date No. of Obs. Mean (%) Std. Dev. (%) Skewness Kurtosis

WTI Spot Price 1979-01 : 2009-01 360 0.23 10.28 -0.70 4.77

NYMEX Future Price 1986-02 : 2009-01 275 0.10 10.27 -1.06 6.56

We report summary statistics for changes in West Texas Intermediate spot and NYMEX contract number 1 on Cushing,

Oklahoma light sweet crude future oil prices. Oil price changes are defined as roilt = 100× [ln(P oilt − ln(P oilt−1)]. Average returns

and standard deviations are reported as percentages. Excess Kurtosis values are reported. Source: Thomson Datastream and

Energy Information Administration, US Department of Energy.
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Table 9: Correlations between West Texas Intermediate spot oil price changes and some U.S.

economic variables.
U.S. Economic Variables Spot Oil Price Oil Future Price

Default Spread 0.18 0.00

Term Structure -0.02 0.05

Dividend Yield -0.09 -0.07

Interest Rate 0.00 -0.07

The sample period is January 1983 to January 2009. The sampling frequency is monthly. Default spread is defined as the

difference between Aaa and Baa corporate bond interest rates, rated by Moody’s. The term structure is defined as the difference

between the 10-year US Treasury bond and the 3-month US Treasury Bill rates. The interest rate is the 3-month US Treasury

Bill rate. Dividend yields are from Thomson Datastream US market index series. Source: St. Louis Fed and Thomson

Datastream.
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