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Abstract

Many recent modelling advances in asset pricing and management are predicated on the importance of jumps, or

discontinuous movements in asset returns. In particular, volatility predictability is important in numerous areas of

�nancial econometrics ranging from the pricing of volatility-based derivative products to asset management. In light

of this, a number of recent papers have addressed volatility predictability, some from the perspective of the usefulness

of jumps in forecasting volatility. Key papers in this area of research include Andersen, Bollerslev, Diebold and Labys

(2003), Andersen, Bollerslev and Diebold (2007), Barndo¤, Kinnebrock, and Shephard (2010), Corsi (2004), Corsi,

Pirino and Reno (2008), Patton and Shephard (2011), and the references cited therein. In this paper, we examine

the predictive content of a variety of realized measures of jump power variations, all formed on the basis of power

transformations of instantaneous returns (i.e., jrtjq), as �rst discussed in Ding, Granger and Engle (1993) and Ding
and Granger (1996). More speci�cally, we consider jump power variations with 0 � q � 6; and construct a variety
of estimators of jump risk, including upside and downside risk, jump asymmetry (i.e., realized signed jump power

variation), and truncated jump measures. Our prediction experiments use high frequency price returns constructed

using S&P 500 futures data as well as stocks in the Dow 30, for the period 1993-2009 period; and our empirical

implementation involves estimating members of the linear and nonlinear extended Heterogeneous Autoregressive of

the Realized Volatility (HAR-RV) class of models. Our �ndings suggest that past "large" jump power variations help

less in the prediction of future realized volatility, than past "small" jump power variations. This in turn suggests

the "larger" jumps might help less in the prediction of future realized volatility than "smaller" jumps. Our empirical

�ndings also suggest that past realized signed jump power variations, which have not previously been examined in this

literature, are strongly correlated with future volatility, and that past downside jump variations matter in prediction.

Finally, incorporation of downside and upside jump power variations does improve predictability, albeit to a limited

extent. Overall, our �ndings are consistent with ABD (2007) in the concluding that continuous components dominate,

when predicting volatility.
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1 Introduction

Many recent modelling advances in asset pricing and management are predicated on the importance

of jumps, or discontinuous movements in asset returns. In an important paper, Huang and Tauchen

(2005) �nd evidence of discrete large jumps in S&P cash and future (log) returns from 1997 to

2002, in approximately 7% of the trading days. Aït-Sahalia and Jacod (2009b) develop methods

to ascertain whether the process describing an asset contains "in�nite activity jumps" - those

jumps that are tiny and look similar to continuous movements, but whose contribution to the

jump risk of the process is not negligible. In an empirical analysis of Intel and Microsoft returns,

they �nd evidence of the presence of in�nite active jumps in historical data. In summary, it

is now generally accepted that many return processes contain jumps.1 Once jumps are found,

the economic implications of including them in dynamic asset pricing exercises are substantial.

For example, the incorporation of jumps lead to break-downs in the typical market completeness

condition needed for portfolio replication strategy in derivatives valuation. Additionally, jumps

complicate the implementation of the "state of the art" change of risk measure in risk neutral

pricing. As a result, asset allocation and risk management, which heavily depend on risk measures

and underlying asset return dynamics, are a¤ected. In volatility measurement, it is necessary

to separate out the volatility due to jumps or construct variables that appropriately summarize

information generated by jumps.

In volatility forecasting, once jumps are detected, understanding the role of variables that

capture jump information is potentially important for applied practitioners, especially in the con-

struction of hedging strategies.2 In general, volatility predictability is important in numerous areas

ranging from the pricing of volatility-based derivative products to asset management. In light of

this, a number of recent papers have addressed volatility predictability, some from the perspective

of the usefulness of jumps in forecasting volatility. However, although there is strong evidence of

the importance of jumps in pricing, investment and risk management, there is mixed evidence con-

cerning whether information extracted from jumps is useful for volatility forecasting. In a seminal

work, Andersen, Bollerslev and Diebold (ABD: 2007) show that almost all of the predictability

in daily, weekly, and monthly return volatilities comes from the non-jump component for DM/$

exchange rate, the S&P500 market index, and the 30-year U.S. Treasury bond yield. Corsi, Pirino

and Reno (2008) �nd that jumps are positively correlated with, and have a signi�cant impact on

future volatility of the S&P500 index, various individual stocks and US bond yields. Patton and

Shephard (2011) point out that the impact of a jump on future volatility critically depends on the

sign of the jump, for both the S&P 500 index, as well as 105 individual stocks. In this paper we

add to the empirical literature on this topic by providing results on volatility forecasting using a

1For other examples of work in this area, see Aït-Sahalia (2002), Carr et al., (2002), Carr and Wu (2003), Barndor¤-
Nielsen and Shephard (BNS: 2006), Woerner (2006), Jacod (2008), Jiang and Oomen (2008), Lee and Mykland (2008),
Tauchen and Todorov (2009), Aït-Sahalia and Jacod (2009a,b) and the references cited therein.

2See Andersen, Bollerslev and Diebold (2007) and Aït-Sahalia and Jacod (2011) for further discussion.
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variety of "new" variables that capture information generated by jumps.

When undertaking empirical research using volatility, a key issue involves the choice of the

volatility estimator. One approach involves "backing out" volatility from parametric from ARCH,

GARCH, Stochastic Volatility, or Option pricing models. The approach that we adopt involves

using recently developed "model free" estimators (see the in�uential work of Andersen, Bollerslev,

Diebold and Laby (2001)), including realized volatility (RV), and variants thereof such as bipower

variation, tripower variation, multipower variation, semivariance, and various others.3 One key

reason for the use of these "model free" realized measures (RMs), is that they allow us to treat

volatility as if it is observed, when we �t regressions in order to assess jump predictability. Modeling

and forecasting RMs are important not only because RMs are a natural proxy for volatility, but

also because of the many practical applications and uses of RMs in constructing synthetic measures

of risk in the �nancial markets. For example, since shortly after the inception in 1993 of the VIX

(index of implied volatility), a variety of volatility-based derivative products have been engineered

using RV as an input. These include variance swaps, caps on variance swaps, corridor variance

swaps, covariance swaps, options on RV overshooters, and up and downcrossers. The key here is

that investors worry about future volatility risk, and hence often opt for this type of contract in

order to hedge against risk, adding to the traditional volatility "Vega".4 In light of the above uses

of RV, several authors have advocated forecasting RV (and more generally RMs) using extensions of

ARMA models (see e.g., Andersen, Bollerslev, Diebold and Labys (2003), Corsi (2004), and ABD

(2007)). In related work, Corradi, Distaso and Swanson (2012) develop model -free conditional

predictive density estimators and con�dence intervals for integrated volatility.

Given the availability of volatility estimators, as discussed above, it remains to choose variables

that capture information generated by jumps. In this paper, we examine four realized measures

of jump power variations, all formed on the basis of power transformation of the instantaneous

return (i.e., jrtjq). The analysis of power transformations of returns is not new. Ding, Granger and
Engle (1993) and Ding and Granger (1996) develop long memory Asymmetric Power ARCH models

based on power transformations of daily absolute returns. They �nd that the autocorrelations of

power transformations of S&P 500 returns are the strongest for q < 1. In the context of high fre-

quency data, Liu and Maheu (LH: 2005) and Ghysels and Sohn (GS: 2009) study the predictability

of future realized volatility using past absolute power variations and multipower variations. GS

(2009) �nd that the optimal value of q is approximately unity. However, their empirical evidence

considers the continuous class of models, and does not account for jumps. Andersen, Bollerslev and

3See e.g., Barndor¤-Nielsen and Shephard (2004), Aït-Sahalia, Mykland and Zhang, (2005), Zhang (2006),
Barndorf-Nielsen, Hansen, Lunde, and Shephard (2006,2008), Jacod (2008), Barndo¤, Kinnebrock, Shephard (2010),
and the references cited therein.

4Volatility and variance swaps are newer hedging instruments, adding to the traditional volatility "Vega", which
is derived from options data. See Hull and White (1997, pp. 328) for a de�nition of Vega. For example, as noted in
Carr and Lee (2008), the UBS book was short many millions of vega in 1993, and they were the �rst to use variance
swaps and options on realized volatility to hedge against volatility risk. See Duong and Swanson (2011) for further
discussion.
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Diebold (ABD: 2007), on the other hand, develop an interesting framework for separating jump and

continuous components of RV, and carry out predictability experiments indicating that jumps play

a small but notable role in forecasting volatility. In related recent work, Barndo¤, Kinnebrock,

and Shephard (BKS: 2010) construct new estimators of downside (and upside) risk (i.e., so-called

realized semivariances), using square transformations of positive and negative intra-daily return,

and �nd that downside risk measures are important when attempting to model and understand

risk: They note, as quoted from Granger (2008), that: �It was understood that risk relates to an un-

fortunate event occurring, so for an investment this corresponds to a low, or even negative, return.

Thus getting returns in the lower tail of the return distribution constitutes this �downside risk.�

However, it is not easy to get a simple measure of this risk.� This point is noteworthy, since it is

argued in the literature (see e.g., Ang, Chen and Xing (2006)), that investors treat downside losses

di¤erently than upside gains. As a result, agents who put higher weight on downside risk demand

additional compensation for holding stocks with high sensitivity to downside market movements.

Most authors in this literature pay attention to co-skewness as a measure of downside risk, and

use daily data for estimation thereof. Patton and Shephard (2011) build on these ideas and use

semivariance estimators to forecast volatility.

Building on the work of above authors, and in particular BKS (2010), we contribute to the

volatility prediction literature by examining recently proposed realized measures of (downside)

jump power variations. The measures are constructed using power transformations of absolute

intra-daily returns, based on recent limit theory advances due to Jacod (2008) and BKS (2010).

Theoretically, the measures do not require the use of a jump test in order to �pre-test�for jumps.

Although construction of the measures is closely related to the work of Ghysels and Sohn (2009),

our approach di¤ers in that we focus on jump power variations with q > 2: Furthermore, the

limit theory that we adopt allows us to construct estimators of downside and upside jump power

variations using intra-daily positive and negative returns. These estimators are suggested by BKS

(2010) as alternatives to the semivariances implemented in Patton and Shephard (2011). We

also examine jump asymmetry (i.e., realized signed jump power variation) in realized volatility

prediction experiments. Of note is that the role of the size of jumps that are most useful for

forecasting can be inferred through examination of the order of q: For this reason, we consider

jump power variations with 0 � q � 6:While previous authors have focused on q � 2;allowing for a
wider range of values for q is sensible, given that convergence to jump power variation occurs only

when q > 2 (see e.g. Todorov and Tauchen (2009) and BKS (2010)). 5We also use an approach

recommended in Duong and Swanson (2010) for constructing truncated jump measures, in order

to assess whether jumps of a particular range of magnitudes are more useful than measures based

upon the use of all jumps, or of signed jumps. Our dataset includes high frequency price returns

constructed using S&P futures index data as well as stocks in the Dow 30, for the period 1993-

5 In our implementation, for q > 6, the prediction results are almost the same as the case q = 6 and therefore are
not presented.
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2009; and our empirical implementation involves estimating members of the linear and nonlinear

extended Heterogeneous Autoregressive of the Realized Volatility (HAR-RV) class of models. Our

�ndings suggest that past "large" jump power variations help less in the prediction of future realized

volatility, than past "small" jump power variations. This in turn suggests the "larger" jumps might

help less in the prediction of future realized volatility than "smaller" jumps. Our empirical �ndings

also suggest that past realized signed jump power variations, which have not previously been

examined in this literature, are strongly correlated with future volatility, and that past downside

jump variations matter in prediction. Moreover, our results include various experimental setups in

which the (forecast) best values of q are larger than 2 for S&P 500 futures: Interestingly, whether or

nor jump tests are implemented prior to the construction of jump power variations also a¤ects the

choice of q, in a variety of in-sample and out-of-sample forecasting contexts. Finally, incorporation

of downside and upside jump power variations does improve predictability, albeit to a limited

extent. Overall, our �ndings are consistent with ABD (2007) in the concluding that continuous

components dominate, when predicting volatility.

The rest of the paper is organized as follows: Section 2 discusses volatility and price jump

variation, and Section 3 discusses the various realized measures of price jump variation that we

examine. Section 4 outlines our experimental setup, and Section 5 gathers our empirical �ndings.

Concluding remarks are contained Section 6.

2 Volatility and Price Jump Variations

We adopt a general semi-parametric speci�cation for asset prices. Following Todorov and Tauchen

(2009), the log-price of asset, pt = log(Pt); is assumed to be an Itô semimartingale process,

pt = p0 +

Z t

0
bsds+

Z t

0
�sdBs + Jt; (1)

where p0+
R t
0 �sds+

R t
0 �s�dBs is a Brownian semi-martingale and Jt is a pure jump process which

is the sum of all "discontinuous" price movements up to time t;

Jt =
X
s�t

�ps:

Jt is assumed to be �nite6 and a jump at time s is de�ned as �ps = ps� ps�.
When the jump component is a Compound Poisson Process (CPP) - i.e. a �nite activity jump

process - then,

Jt =

NtX
i=1

Yi; (2)

6See, for example Jacod (2008) or Todorov and Tauchen (2009) for the conditions for the �niteness of jump.
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where Nt is number of jumps in [0; t]. Nt follows a Poisson process, and the Y 0i s are i.i.d. and are

the sizes of the jumps. The CCP assumption has been widely used in the literature on modeling,

forecasting, and testing for jumps. However, jumps could have more general speci�cations, which

contain so called - in�nite activity jumps as in Todorov and Tauchen (2009).

The empirical evidence discussed in this paper involves examining the variation of the log-

price jump component using an equally spaced path of a historically observed price sample, i.e.

fp0; p1�n ; p2�n :::; pn�ng, where the sampling frequency �n = t
n is deterministic

7. The intra-daily

return or increment of pt is

ri;n = pi�n � p(i�1)�n :

Returns are observed at various frequencies. However, volatility of log-price is often treated as

an unobserved variable. The "true" value of variance of price (risk) is de�ned in the literature by

so-called quadratic variation of the process pt, i.e.,

Vt = [p; p]t =

Z t

0
�2sds+QJt;

where the variation of continuous component is
R t
0 �

2
sds (integrated volatility) and the variation

of jump component is QJ =
P
s�t(�ps)

2:

The realized volatility (RV), constructed by simply summing up all successive intra-daily squared

returns, converges to the quadratic variation of the process as sampling frequency n ! 1. An-
dersen, Bollerslev, Diebold and Labys (2001) use realized volatility as an estimator of variation or

volatility of the process,

RVt =
nX
i=1

r2i;n
ucp�! Vt; (3)

where ucp denotes uniform convergence in probability. RV is useful, in particular in volatility

modeling and forecasting.

As jumps are often linked to abnormal or tailed behaviors of returns, the assessment of di¤erent

RMs of jump variations is important. One way is to decompose price jumps �ps as in Duong and

Swanson (DS: 2010) and Ait-Sahalia and Jacod (2011) using pre-�xed truncation level 
; 
 � 0;

JTt;
 =
X
0<s�t

(�ps)
2I�ps>
 +

X
0<s�t

(�ps)
2I�ps<�
 ; (4)

where I is an indicator taking 1 if jump size is larger than 
 (upside truncated jumps) or less

than �
 (downside truncated jumps). Intuitively, JTt;
 keeps all jumps with absolute magnitude
larger than 
:

7For instance, if we use 5 minute sampling frequency to calculate daily measure in our application. Then t = 1
and n = 78 and �n =

1
78
:
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In this paper, we assess jump variations using di¤erent measures, jump power variations for-

mulated by power transformation of absolute log-price jumps (j�psjq),

JPq;t =
X
0<s�t

j�psjq, (5)

and "upside" jump power variation measure, de�ned as

JPV +q;t =
X
0<s�t

j�psjqI�ps>0. (6)

JPV +q;t retains the "upside" jump movements. Similarly, we could consider the "downside"

jump power variation which keeps all the "downside" jump movements, i.e.,

JPV �q;t =
X
0<s�t

j�psjqI�ps<0, (7)

Finally, jump asymmetry could be measured by the so-called signed jump power variation,

de�ned as

JAq;t =
X
0<s�t

j�psjqI�ps>0 �
X
0<s�t

j�psjqI�ps<0. (8)

In the above expression, we are particularly interested in the case where q is larger or equal to

2. Note that for a large value of q; JPq;t; JPV +q;t; JPV
�
q;t; JAq;t are dominated by large jumps. For

q < 2; the jump variations are not always guaranteed to be �nite. The natural estimators for the

above jump variations are based on power transformation of intra-daily return, jri;njq, which we
will discuss in the next section.

3 Realized Measures of Price Jump Variations

Our interest in this paper is to construct and examine the realized measures (RMs) of jump power

variations such as JPq;t; JPV +q;t; JPV
�
q;t; JAq;t; for a wide range of values of q, and then use them

for various prediction experiments. In this line of research, note that for the case q = 2, BKS

(2010) develop the so-called realized semivariances which are the estimators of JPV +q;t; JPV
�
q;t. PS

(2011) build on these results and make use of realized semivariances to forecast volatility. For

the variations with q 6= 2, GS (2009) study the predictability of future RV using realized power

variations. Realized power variations are formed on the basis of the power transformation of

absolute return. They look for the optimal predictors of this type in the forecast. In their set-up,

the log-price process is a continuous semimartingale. In the following sections, we brie�y review

the estimators used in GS (2009), BKS (2010) and PS (2011) and then present the RMs of jump

power variations JPq;t; JPV +q;t; JPV
�
q;t; JAq;t used in our paper.
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3.1 Semivariances and Realized Power Variations

We start by reviewing the estimators used in BKS (2010) and PS (2011). BKS (2010) construct

realized semivariances on the basis of square transformation of intra-daily return, r2i;n; de�ned as

follows:

RS� =
nX
i=1

(ri;n)
2 Ifri;n<0g,

and

RS+ =
nX
i=1

(ri;n)
2 Ifri;n>0g.

RS� (RS+) retains only negative (positive) intra-daily returns and could serve as a measure

of downside (upside) risks as pointed out in BKS (2010). They show that RS+ and RS� converge

uniformly in probability to semi-variances,

RS+ ! 1

2

Z t

0
�2sds+

X
(�ps)

2I�ps>0, (9)

and

RS� ! 1

2

Z t

0
�2sds+

X
(�ps)

2I�ps<0.

With the above limit results, realized measure of "downside" jump variation is obtained by

replacing
R t
0 �

2
sds with it�s estimator cIV ,

nX
i=1

r2i;nIfri;n<0g �
1

2
cIV !X

(�ps)
2I�ps�0. (10)

In volatility forecasting experiments, PS (2011) use bipower variation for cIV 8. In addition,

they construct the so-called "signed" jump variation variable, �RJ = RS+ � RS� that captures
jump variation asymmetry,

�RJ !
X
(�ps)

2I�ps>0 �
X
(�ps)

2I�ps<0.

When jumps are not present, �RJ converges to 0 and there is no asymmetry in volatility

of (log) price process. When the process has jumps, �RJ could be a proxy for jump variation

asymmetry.

Turning to the discussion of variations with q 6= 2; to our knowledge, very few papers empirically
examined realized power variations for forecasting. GS (2009) examine the optimal realized power

variation, n�1+q=2
Pn
i=1 jri;njq (optimal q) in forecasting future RV: They build their estimators

on the assumption that the price process follows Brownian Semi-martingale. Their implications

8See BNS (2004) for the dicussion on bipower variation and integrated volatility.
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are therefore restricted to the higher order variation of log-price continuous component,
R t
0 �

q
sds;

involving no jumps: In such case, Ait-Sahalia and Jacod (2011) point out that for all q > 0;

n�1+q=2
nX
i=1

jri;njq ! �q

Z t

0
�qsds, (11)

where �q = E(jujq) and u is a standard normal random variable.

3.2 Realized Downside and Signed Jump Power Variation

Understanding the role of variables that capture jump information is potentially important for

applied practitioners. In this section, we �rst study recently proposed realized measures of jump

power variations JPq;t. The measures are constructed using power transformations of absolute

intra-daily returns, based on recent limit theory advances due to Jacod (2008) and BKS (2010).

Furthermore, the limit theory that we adopt then allows us to construct estimators of downside

and upside jump power variations, JPV +q;t; JPV
�
q;t for q > 2; using intra-daily positive and nega-

tive returns. These estimators are suggested by BKS (2010) as alternatives to the semivariances

implemented in PS (2011). Finally. making use of the RMs of JPV +q;t; JPV
�
q;t, we develop a novel

proxy for jump asymmetry (i.e., realized signed jump power variation). The RMs of jump power

variations are de�ned as:

RPVq;t =
nX
i=1

jri;njq;

for q > 0:

The realized downside and upside power variations are de�ned as:

RJ+q;t =

nX
i=1

jr+i;nj
q,

and

RJ�q;t =
nX
i=1

jr�i;nj
q,

for q > 2.

For a brief discussion of the above realized measures, the convergences of the above RMs to

jump power variations occur when q > 2. Therefore, in the prediction experiments, di¤erent from

previous work, we are particularly interested a range of q from 2 to 6 and allow for price process

to contain jumps. Regarding RPVq;t; we also look at at the range of q from 0 to 2 by applying a

jump robust limit result of Jacod (2008).

Regarding the limiting behavior of RPVq;t; Todorov and Tauchen (2009) summarize selected

results from Barndor¤-Nielsen et. al. (2005) and Jacod (2008). In their set-up, the log-price

process contains continuous martingale, jump and drift components. The value of q directly a¤ects

the limiting behavior of RPVq;t. For instance, for q < 2; the limit of RPVq;t is determined by the

8



continuous martingale. For q > 2; the limit is driven by jump component. When q = 2; both

continuous and jump components contribute to the limit of RPVq;t. The results are as follows:8><>:
�
1�q=2
n RPVq;t

ucp�! �q
R t
0 �

q
sds , if 0 < q < 2,

RPVq;t
ucp�! V if q = 2,

RPVq;t
ucp�! JPq;t if q > 2.

(12)

BKS (2010) point out that we can go one step further to decompose jump power variations into

upside movements and downside movements, i.e.�
RJ+q;t

ucp�! JPV +q;t

RJ�q;t
ucp�! JPV �q;t

if q > 2 (13)

As earlier mentioned, for q < 2; the scaled RPVq;t converges to power variations of the con-

tinuous component, involving no jumps. Intuitively, with q > 2; the scaled RPVq;t; RJ+q;t; RJ
�
q;t

eliminate all variations due to the continuous component and keep all the large jumps. In addition,

the realized measures are more dominated by large jumps for the high value of q. Conversely, for

the case q < 2, all jumps are eliminated asymptotically.

Building on (13), we could construct the novel RMs of jump power variation asymmetry, so-

called "signed" jump power variation. It is straightforward to verify that:

RJAq;t = RJ
+
q;t �RJ�q;t

ucp�! JAq;t

Note that this variable has not been studied in volatility forecasting literature. PS (2011) study

the predictability of the similar estimator, �RJ; constructed on the basis of realized semivariance:

In our forecasting experiments, we examine the usefulness of this new jump asymmetry variable,

RJAq;t with a wide range of values of q > 2; in future volatility forecasting.

As the last remark in our discussion of RMs of variations, in the predictive comparison of vari-

ables that capture information generated by jumps and the continuous component, we need to select

variables that measure the variation of the continuous movements of price process. In this paper

we use multi-power variations, which are estimators of
R t
0 �

q
sds. Those estimators are robust to the

existence of jumps. We also utilize these estimators for the jump test implementation highlighted

in the next section. The multipower variations discard the impact of jumps by multiplying power

transformations of successive absolute intra-daily returns, i.e.,

Vm1;m2:::;mj =

nX
i=2

jri;njm1 jri�1;njm2 ::::jri�j;njmj ,

where m1;m2;:::;mj are positive, such that
Pj
1mi = q:
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3.3 Testing for Jumps

As discussed in the previous section, realized measures of jump power variationsRPVq;t; RJ+q;t; RJ
�
q;t,

RJAq;t converge asymptotically to jump power variations JPq;t, JPV +q;t; JPV
�
q;t; JAq;t of the price

process. Theoretically, this result also holds for price process without jumps, yielding the limits of

zeros: However, in �nite sample, it might be useful to implement a pre-testing step to determine

whether the log-price process has jumps. The pre-testing approach is developed by ABD (2007)

and is empirically examined in DS (2010) for the construction of RMs of truncated jump quadratic

variation. We follow this approach in our construction of variables that capture information gener-

ated by jumps, in particular we use the jump test statistics developed by BNS (2006) and Huang

and Tauchen (2005).

Firstly, we review some theoretical results relating to testing for jumps, namely testing whether

Jt 6= 0.
In pioneering work, BNS (2006) propose a robust and simple test for a class of Brownian Itô

Semimartingales plus Compound Poisson jumps9. In recent work, Aït-Sahalia and Jacod (2009a)

among others develop a di¤erent test which applies to a large class of Itô-semimartingales, and

allows the log price process to contain in�nite activity jumps - small jumps with in�nite concen-

trations around 0.

Regardless of the estimator that is used, the appropriate test hypotheses are:

H0 : pt is a continuous process in the interval [0; t]

H1 : the negation of H0 (there are jumps)

If we use multipower variation, under the null hypothesis the test statistic which directly follows

from the CLT mentioned above is:

LSjump =

q
t
n

�Pn
i=1(ri;n)

2 � cIV �q
#cIQ D�! N(0; 1)

and the so-called jump ratio test statistic is:

RSjump =

q
t
nq

#cIQ=(cIV )2
 
1�

cIVPn
i=1(ri;n)

2

!
D�! N(0; 1):

9A simpli�ed version of the results of the above authors applied to (1) for the one-dimensional case is as follows.
If the process X is continuous, let f(x) = xn (exponential growth), let ��s be the law N(0; �

2
s); and let ��s(f) be the

integral of f with respect to this law. Then:r
1

�n

 
�n

nX
i=1

f(
�n
i Xp
�n

)2 �
Z t

0

��s(f)ds

!
�!

Z t

0

q
��s(f

2)� �2�s(f)dBs (14)
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where cIV and cIQ are multipower variation estimators of integrated volatility
R t
0 �

2
sds andR t

0 �
4
sds. BNS (2006) use V1;1 (bipower variation) and V1;1;1;1. In jump test implementation with

multipower estimators, ABD (2007) suggest the use V 2
3
; 2
3
; 2
3
(tripower variation) and V 4

5
; 4
5
; 4
5
: The

reason we use tripower variation, V 2
3
; 2
3
; 2
3
; instead of bipower variation, V1;1; is that it is more robust

to clustered jumps and note that: cIV = V 2
3
; 2
3
; 2
3
��32
3

(15)

and

cIQ = n

t
V 4
3
; 4
3
; 4
3
��54
5

(16)

where �r = E(jZjr) and Z is a N(0; 1) random variable.

Andersen, Dobrev, Schaumburg (2008) suggest a di¤erent estimator that could handle the case

of consecutive jumps. This estimator is also more robust to occurrence of zero-return. This robust

jump measure is as follows:

cIV =MedRVn = �

6� 4
p
3 + �

�
n

n� 2

� n�1X
i=2

med (jri�1;nj jri�2;nj jri�3;nj)2

Of note is that an adjusted jump ratio statistic has been shown by extensive Monte Carlo

experimentation in Huang and Tauchen (2005), in the case of CCP jumps, to perform better than

the two above statistics, being more robust to jump over-detection. This adjusted jump ratio

statistic is:

AJjump =

p
n
tq

#max(t�1; cIQ=(cIV )2)
 
1�

cIVPn
i=1(ri;n)

2

!
D�! N(0; 1)

In general if we denote the daily test statistics to be Zt;n(�); where n is the number of observa-

tions per day and � is the test signi�cance level 10, then we reject the null hypothesis if Zt;n(�) is

in excess of the critical value ��; leading to a conclusion that there are jumps. The converse holds

if Zt;n(�) is less than ��. In our empirical application, Zt;n(�) is the adjusted jump ratio statistic.

3.4 Realized Measures of Daily Variations

With the availability of the RMs such as RPVq;t; RJ+q;t; RJ
�
q;t, RJAq;t and the jump tests, in this

section, we elaborate further on how to construct daily time series of variables that captures infor-

mation generated by the variations of log-price process for forecast experiments.

For each day, we calculate the realized measures of jump power variations using a high fre-

quency price path. To mitigate the e¤ect of microstructure noises,11 we sample data at �ve-minute

10 i.e., �n = 1=n
11The main drawback of realized measures constructed on the basis of high frequency data is that they are conta-

minated by mictrostructure noises. See Aït-Sahalia, Mykland and Zhang (2005) for further dicussion.
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frequency as suggested in Aït-Sahalia, Mykland and Zhang (2005). The �rst group of predictors is

constructed without jump tests. The second group of predictors utilizes jump test adjusted tech-

nique by ABD (2007). We set n = 78, the number of �ve-minute observations within a day, and

consider the range of q from 0:1 to 6, i.e. q = f0:1; 0:2; :::; 5:9; 6g:

3.4.1 Predictors with No Jump Test

The daily times series of realized measures of jump power variations are formed at a particular day

t as follows:

RPVq;t = Realized qth order power variation at day t =
P78
i=1 jri;78jq with q > 0,

RJ+q;t = Realized Measure of qth order upside jump power variation at day t =
P78
i=1

�
jr+i;78jq

�
;

q > 2,

RJ�q;t = Realized Measure of qth order downside jump power variation at day t=
Pn
i=1

�
jr�i;78jq

�
,

q > 2,

RJAq;t = Realized Measure of qth order signed jumps power variation at day t = RJ+q;t�RJ�q;t,
q > 2,

As noted before, realized qth order power variation with q < 2 does not involve jumps.

3.4.2 Predictors with Jump Test

First, the predictors are calculated as in section 3.4.1. Jump tests are then implemented on daily

basis and the predictors are adjusted accordingly. Speci�cally, RMs of jump power variations at

day t are positive if jumps are detected and 0 otherwise. This simple approach is �rst studied by

ABD (2007) in the construction of time series of RMs of quadratic variations of jump component.

Let Ijump;t be the indicator of jumps, i.e. Ijump;t = 1 if jumps occur at day t and Ijump;t = 0

otherwise: Then the adjusted realized measure of jump power variations are expressed as,

RPVq;t = Realized q � th order power variation = Ijump;t � f
P78
i=1 jri;78jqg,

RJ+q;t = Realized q � th order upside jump power variation = Ijump;t � f
P78
i=1

�
jr+i;78jq

�
g,

RJ�q;t = Realized q �th order downside jump power variation = Ijump;t � f
Pn
i=1

�
jr�i;78jq

�
g,

RJAq;t = Realized q � th order signed jumps power variation = Ijump;t � fRJ+q;t �RJ�q;tg.

3.4.3 Benchmark Realized Variations of the Continuous and Jump Components

The RMs of quadratic variation (RV) and variation of continuous component are formalized as in

ABD (2007),

RV Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t,
RV Ct =Variation of continuous component = RVt �RV Jt,
where cIVt is an estimator of variation of continuous component R t0 �2sds: One could use Tripower

Variation or Truncated Power Variation. In the paper, we use Tripower Variation:

RV Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t,
12



RV Ct =Variation of continuous component = RVt �RV Jt.
As the above measures in section 3.4.1 and 3.4.2 depend on q, we take into account the fact that

larger q magni�es larger jump in the sum. RPVq;t; RJ+q;t; RJ
�
q;t and RJAq;t are assessed for a wide

range of values of q; from 2:1 to 6, i.e. q = f2:1; 2:2; ::::; 5:9; 60g: We end up with 40 sub-models
(predictors) for each case. For the realized power variation RPV; we set q from 0:1 to 6:

4 Models and Forecast Evaluations

4.1 Model Speci�cations

In a classical paper, Ding, Granger and Engle (DGE:1993) �nd that the auto-correlation of power

transformation of daily return of S&P 500 is strongest when q = 1, as opposed to the value q = 2

widely used in the literature: This leads them to generalize ARCH type model to the class of so-

called Asymmetric Power ARCH (APARCH) model. The APARCH speci�cation allows for the

�exibility of q in the power qth transformation of absolute returns. GS (2009) point out that this

class of models ends up working with volatility that is not measured by squared returns, which

researchers and practitioners care the most. Using the �ve-minute intra-daily returns of the Down

Jones Composite over the period 1993-2000, GS (2009) make a thorough empirical correlation

analysis of daily RV and realized power variations, with the forecasting horizon from one to four

weeks. They conclude that realized power variation with q = 1 and future RV display the strongest

cross-correlation over the �rst 10 lags. Beyond this �rst 10 lags, the cross-correlation holds for

q = 0:5. This suggests that the prediction of RVs using variables such as realized power variation

might be a better approach compared to the lag of RVs. GS (2009) use the Mixed Data Sampling

Regression (MIDAS) models to investigate the predictive power of realized power variation for

q < 2.

We add to the empirical research on this topic by providing results on volatility forecasting

using a variety of "new" variables that capture information generated by jumps. In particular, we

utilize RMs of jump power variations discussed in the previous section. We estimate an extended

Heterogeneous Autoregressive of the Realized Volatility (HAR-RV) class of models. The HAR-RV

model, initially developed in Corsi (2009), has been implemented with success in a number of recent

contributions. These models are formulated on the basis of the so-called Heterogeneous ARCH, or

HARCH, a class of models analyzed by Müller et al. (1997), in which the conditional variance of

the discretely sampled returns is parameterized as a linear function of the lagged squared returns

over the identical return horizon together with the squared returns over shorter return horizons.

Intuitively, di¤erent groups of investors have di¤erent investment horizons, and consequently behave

di¤erently. The genuine HAR-RV model is formally a constrained AR(22) model and is convenient

in application as volatility is treated as if it is observed, when we �t regressions in order to assess

predictability. In the following, we describe the set-up of HAR-RV and present the speci�cations

13



that extends HAR-RV to incorporate our new jump variables.

De�ne the multi-period normalized realized measures for jump and continuous components as

the average of the corresponding one-period measures. Namely for daily time series Yt; we construct

Yt;t+h such that

Yt;t+h = h
�1[Yt+1 + Yt+2 + :::+ Yt+h]; (17)

where h is an integer. Yt;t+h aggregates information between time t + 1 and t + h: The daily

time series Yt could be the RMs such as RVt; RV Jt; RV Ct; RPVq;t; RJ+q;t; RJ
�
q;t; RJAq;t and q =

f0:1 + 0:1kgk=59k=0 .

In standard linear and nonlinear HAR-RV models, future RV depends on the past of RV,

�(RVt;t+h) = �0 + �d�(RVt) + �w�(RVt�5;t) + �m�(RVt�22;t) + �t+h, (18)

where � is a linear, square root or log function.

The incorporations of RMs of jump variations, RV Jt could be done as in ABD (2007), using

the HAR-RV-J,

�(RVt;t+h) = �0 + �d�(RVt) + �w�(RVt�5;t) + �m�(RVt�22;t) + �j�(RV Jt) + �t+h,

or HAR-RV-CJ,

�(RVt+h) = �0 + �d�(RV Ct) + �w�(RV Ct�5;t) + �m�(RV Ct�22;t) + �jd�(RV Jt);

+ �jw�(RV Jt�5;t) + �jm�(RV Jt�22;t) + �t+h:

ABD (2007) �nd that the class of log HAR-RV, log HAR-RV-J and log HAR-RV-CJ models

performs the best for several market indexes. DS (2010) revisit this class of models but focus on

the predictive performance of the models applied to Dow 30 individual stock returns. PS (2011)

extend this class of models to assess di¤erent predictors, the realized semivariance and realized

signed jump measure. Their extended HAR-RV model is,

�(RVt;t+h) = �0 + �
+
1 �(RS

+
t ) + �

�
1 �(RS

�
t ) + �

+
5 �(RS

+
t�5;t) + �

�
5 �(RS

�
t�5;t)

+ �+22�(RS
+
t�22;t) + �

�
22�(RS

�
t�22;t) + "t+h:

Building on Corsi (2004), ABD (2007) and PS (2011), we extend the HAR- RV to incorpo-

rate time series of RMs of jump power variations. In addition, we modify the forecast set-up by

examining the forecast of RVt+h; rather than RVt;t+h: The speci�cations are presented as follows:

Speci�cation 1: Class of standard HAR-RV-C Model (Benchmark Model),

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t) + �t+h: (19)

In this benchmark case, future RV s depend on lags of the variation of the continuous component

of the process.
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Speci�cation 2: Class of HAR-RV-C-PV(q) Model,

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �jd�(RPVq;t) + �jw�(RPVq;t�5;t) + �jm�(RPVq;t�22;t) + �t+h; (20)

where RPVq;t is qth order variation of the jump component. RPVq;t�5;t and RPVq;t�22;t are

calculated using (17). As discussed in the previous section, we allow for a wide range of values of

q from 0:1 to 6: Note that when q > 2; the implication of this variable is jump power variations.

With q < 2; actually the limit is robust to jumps as discussed in Section 2.

Speci�cation 3: HAR-RV-C-UJ(q) Model (upside jump) is de�ned as,

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �+jd�(RJ
+
q;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t) + �t+h: (21)

This speci�cation incorporates the RMs of qth order upside jump power variations as explana-

tory variables to forecast future RV. Speci�cally, RJ+q;t; RJ
+
q;t�5;t; RJ

+
q;t�22;t measure the qth or-

der power variation of positive jumps of today, previous week, and previous month, respectively:

RJ+q;t�5;t; RJ
+
q;t�22;t are calculated using (17). The range of q varies from 2:1 to 6:

Speci�cation 4: HAR-RV-C-DJ(q) Model (downside jump),

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ ��jd�(RJ
�
q;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h: (22)

This speci�cation incorporates the RMs of qth order downside jump variations as explanatory

variables. Speci�cally, RJ�q;t; RJ
�
q;t�5;t; RJ

�
q;t�22;t are the RMs of the qth order power variations of

negative jumps of today, previous week, and previous month, respectively: RJ�q;t�5;t; RJ
�
q;t�22;t are

calculated using (17). The range of q varies from 2:1 to 6:

Speci�cation 5: HAR-RV-C-UDJ(q) Model (Full decomposition),

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �+jd�(RJ
+
q;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t)

+ ��jd�(RJ
�
q;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h: (23)

This speci�cation fully decomposes realized measure of the qth order jump power variation into

upside and downside components. The predictors therefore contain both upside and downside jump

power variations, i.e. RJ+q;t; RJ
+
q;t�5;t; RJ

+
q;t�22;t and RJ

�
q;t; RJ

�
q;t�5;t; RJ

�
q;t�22;t. We set the range of

q to vary from from 2:1 to 6 for this speci�cation.

Speci�cation 6: HAR-RV-C-APJ(q) Model,

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �jd�(RJAq;t) + �jw�(RJAq;t�5;t) + �jm�(RJAq;t�22;t) + �t+h: (24)
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This class of models uses RMs of signed jump power variations, measures of jump asymme-

try, as explanatory variables for RV forecast. Speci�cally, predictors are RJAq;t; RJAq;t�5;t and

RJAq;t�22;t; calculated using (17).

The estimation of the above models is simply done by OLS regression. We report the para-

meters and measures of �t. Across all the speci�cations, there is a potential issue of the serial

correlation due to the long forecast horizons (h = 5; 22). Though serial correlation does not a¤ect

the consistency of the estimated parameters, robust estimates of covariance matrix need be ad-

dressed. In our empirical experiments, we apply both standard and robust heteroskedasticity-and-

autocorrelation-consistent (HAC) estimators of covariance matrix 12 .

In a di¤erent forecast experiment, we construct realized measures of the truncated jump power

variations following the similar approach as in DS (2010). Speci�cally, we de�ne the RMs of jump

power variations truncated at a �xed level 
 to be:

RJq(
) =
nX
i=1

jri;njqIjri;nj<
 :

Similarly for the RMs of downside jump power variations truncated at �xed level 
;

RJ�q (
) =
nX
i=1

jri;njqI�
<ri;n<0;

and for realized measure of upside jump power variations truncated at �xed level 
;

RJ+q (
) =

nX
i=1

jri;njqI0<ri;n<
 :

Then, if one is interested in jumps with magnitude less than 
 in the forecast of future RV; the

time series of RJq;t; RJ�q;t; RJ
+
q;t on the right hand side of forecasting equation(20) (21) (22) (23)

(24) could be replaced by RJq;t(
); RJ�q;t(
); RJ
+
q;t(
): In this context, we assume that the modeler

has a predetermined knowledge of 
. In our empirical implementation, we choose 
 on the basis

of the sample of maximum of monthly increments which represents monthly abnormal events. A

question we would want to see is whether the choice of larger 
 has an impact on the volatility

prediction.

Note that we could obtain the optimal value of q for prediction of volatility under a certain

measure of �t criteria such as the minimum mean square error. However, this is not the aim of our

paper. By using a wide rage of values of q; we are more interested in capturing the pattern of the

predictive powers of the RMs of jump power variations. The pattern also helps in approximating

the optimal value of q in the prediction.

Regarding the predictive regression of the above models, note that for speci�cation 2, we need

to estimate 60 linear regression equations, depending on q from 0.1 to 6. For each speci�cation
12For Hac estimator, we use Newey-West estimator.
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3,4,5 and 6, we need to estimate 40 linear regression equations, depending on q from 2.1 to 6.

A straightforward way to assess the usefulness of the RMs is to compare the predictive accuracy,

measured by mean square errors or R2 across all values of q: In the next section, we discuss the

forecast evaluation methods that are being used in empirical implementation.

4.2 In-Sample and Out-of-Sample Forecast Evaluation

For each speci�cation, we �t the above forecasting equations by ordinary least square. The forecast

horizons that we examine in this paper are set to be h = 1; 5; 22 which are the one day ahead,

one week ahead and one month ahead horizon, respectively. Our model speci�cations extend the

standard HAR-RV models, as presented in previous section. For each speci�cation, we have 40

sub-models, corresponding to 40 di¤erent values of q: Once a measure of �t is obtained, we present

it as a function of q and the relationship between q and the measure of �t could be plotted.

Regarding the measure of �t, a straightforward way is using in-sample adjusted R2. The other

favored measure of �t is the out-of-sample R2, calculated from projection of the predictive RV

sample on the sample of forecasted RV implied by the model. For the pairwise model comparisons,

we use the Diebold-Mariano (DM:1995) test and quadratic loss function.

Speci�cally, the entire sample of T observations is divided into two samples, the estimation

sample containing R observations and the prediction sample containing P = T � R observations.

The traditional in-sample adjusted R2 is calculated using entire sample T .

For the out of sample forecast, we calculate the R2 using recursive, rolling or �xed estimation

schemes. If the forecast horizon h = 1 and the recursive estimation are used, the model is to be

�tted by P regressions using data chunks from 1 to R; 1 to R + 1; :::1 to T � 1: Alternatively, we
could use the rolling scheme where the P regressions are implemented using data chunks 1 to R; 2

to R+1; :::; T �P to T �1. The �xed scheme requires the estimation using the entire sample. After
this step, we could calculate P predicted values implied by the models. Next, the out-of-sample

R2s are obtained by simply regressing the prediction sample on the forecasts implied by the models.

Note that the above procedure is presented with forecasting horizon h = 1: For the general forecast

horizon h and the recursive scheme, the models are �tted P times using data chunk from 1 to

R� h+ 1; 1 to R+ 1; :::1 to T � h. For the rolling scheme, P model-implied forecasts are obtained
by the estimation using data chunk from 1 to R� h+ 1; 2 to R+ 1; :::; T � P � h+ 1 to T � h:

Now turn to predictive equality accuracy test of Diebold and Mariano (DM: 1995), we could

formally make a pairwise comparisons of any two models by applying this test. Suppose we are

interested in the comparison of two models i = 1; 2 using the times series yt, t = 1; 2; :::; T: The

mean square forecast error (MSFE) is de�ned as

MSFE =
T�h+1X
�=R�h+2

(yt+h � byi;t+h)2 ;
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where byi;t+h is the forecast for horizon h for model i: Denote "i;t+h to be model�s prediction
error of model i: The hypothesis could be set up as. The null H0 : E("21;t+h) � E

�
"22;t+h

�
= 0

and alternative H1 : not H0: The actual statistics is constructed as: DM = P�1
PP
k=1 (dt=b�)

where dt = b"21;t+h � b"22;t+h; a the comparative measure of �t between the two models. b� is the
the estimator of standard deviation of (

PP
k=1 dt)=P: The choice of this estimator could be set as

a heteroskedasticity and auto-correlation robust estimator (HAC). In addition, to the acceptance

and rejection outcome of the test on the basis of the test statistics, we could also infer that the

negative statistics implies that model 2 is preferred to model 1 as it�s statistics measure of �t over

the out of sample forecast is superior.

4.3 Alternative Models to HAR-RV and Other Issues

Given the main focus of our paper is to assess the predictability of the new group of variables that

capture information generated by jumps, we use the simple predictive regression models, i.e. the

extended HAR-RV in this paper. For an alternative to the extended HAR-RV class of models,

the GARCH-based model as in BKS (2010) could be considered. The other approach is using

stochastic volatility models. Both approaches require us to treat true volatility as an unobserved

variable. In this context, RVs are additional variables that capture rich information generated by

high frequency data sets. Stochastic Volatility (SV) model in discrete time is discussed in depth by

Shephard (2005). We could use models that inputs RV variable into volatility equation. One way

is to estimate the bivariate return - stochastic volatility system building on Lies�eld and Richard

(2003) �ltering framework. In the context of mixed data sampling, one could also implement

non-linear regression MIDAS as used in Ghysels and Sohn (2009) as an alternative to HAR-RV

model.

In addition, with the choice of volatility estimator, variables that capture information generated

by jumps (RMs of Jump Power Variations), jump test statistics, and predictive models as discussed

in previous sections, before moving to the discussion on empirical �ndings, it is useful make an

comparative overview on empirical strategies implemented in our paper and other related papers.

The following table summarizes the selected papers that examine jumps and higher order power

transformation of absolute returns to predict future volatility.
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Summary of Related Work using RMs of Power Variations for Volatility Prediction13

Paper HFD Jumps Dow/Upside Power q Jump Test Truncation

DGE (1993) No No No 0-5 No No

LM (2005) Yes Yes No 0-2 No No

ABD (2007) Yes Yes No 2 Yes No

GS (2009) Yes No No 0-2 No No

PS (2011) Yes Yes Yes 2 No No

Duong (2012) Yes Yes Yes 0-6 Yes Yes

In the above table, note that our work makes a thorough examination of jumps variations by

using a wide range of values of q compared to other papers and we also consider jump test adjusted

RMs in predictions. In the next section, we present empirical �ndings of our paper.

5 Empirical Findings

5.1 Data Description

For empirical implementation in this paper, we implement the forecasting experiments on S&P 500

futures for the period 1993-2009. We also look at Dow 30 components in the period 1993-2008 as

in DS (2010). The data source for stocks is the TAQ database. In the data processing, we follow

the common practice in the literature by eliminating from the sample those days with infrequent

trades (less than 60 transactions at our 5 minute frequency).

One problem in data handling involves determining the method to �lter out an evenly-spaced

sample. In the literature, two methods are often applied - previous tick �ltering and interpolation

(Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)). As shown in Hansen and Lund (2006),

in applications using quadratic variation, the interpolation method should not be used, as it leads

to realized volatility with value 0 (see Lemma 3 in their paper). Therefore, we use the previous

tick method (i.e. choosing the last price observed during any interval). We restrict our data-set to

regular time (i.e. 9:30am to 4:00pm) and ignore ad hoc transactions outside of this time interval. To

reduce microstructure e¤ects, the suggested sampling frequency in the literature is from 5 minutes

to 30 minutes14. As mentioned above, we choose the 5 minute frequency, yielding a maximum of

78 observations per day.

13The table summarizes the selected papers that examine jumps and higher order power transformation of absolute
returns to predict future volatility. The �rst column is the list of papers under consideration. The second, third
and fourth column provide information whether the paper in the list utilizes high frequency data (HFD), jumps,
downside/upside jumps, respectively. The �fth column provides the range of order q used in each paper. The sixth
and seventh column provide information whether the paper implements jump test adjustment technique as in ABD
(2007) and whether the paper looks at truncated jumps (truncation) in the construction of jump variables for volatility
prediction, respectively.
14See Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005)
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5.2 Prediction without Jump Test

First, we calculate all daily RMs as discussed in section 3.4 for S&P 500 futures. For each re-

alized measure, we end up with a time-series of size T = 4123. In the out-of-sample forecasting

experiments, we choose prediction sample size, P = 410; and estimation sample size, R = 3713;

respectively.15

Models considered in our empirical application are discussed in Section 3. We present all the

speci�cations in Table 2. For a quick summary, the speci�cation 1 (benchmark model), HAR-RV-C

incorporates only RMs of continuous component variations as predictors. The speci�cation 2, the

HAR-RV-C-PV (q > 0) uses RMs of continuous component variations and RMs of qth (jump)

power variation components as predictors16. The speci�cation 3, the HAR-RV-C-UJ (q > 2) uses

RMs of continuous component variations and RMs of the qth order "upside" jump power variation

components as predictors. The speci�cation 4, HAR-RV-C-DJ (q > 2) utilize continuous component

variations and the qth order "downside" jump power variation components as predictors. The

speci�cation 5, HAR-RV-C-UDJ (q > 2) builds directly on speci�cation 3 and 4, and uses both

RMs of the qth order upside and downside jump power variation components in predictions. The

speci�cation 6, HAR-RV-C-APJ examines variables that capture jump asymmetry by incorporating

RMs of the signed qth order jump power variations in the prediction. The formulation of the time

series, RPVq;t; RJ+q;t, RJ
�
q;t and RJAq;t is shown in details Section 3.4.

The empirical analyses of exchange rates, equity index returns, and bond yields in ABD (2007)

suggest that the volatility jump component is both highly important and distinctly less persistent

than the continuous component, and that separating the "rough" jump movements from the smooth

continuous movements results in signi�cant in-sample volatility forecast improvements (i.e. the

linear and nonlinear HAR-RV-CJ models perform better than the other two classes of models).

We �rst provide a brief discussion on the performance of the models for S&P futures. In our

paper, the predictive performance of a model is measured by both its in-sample and out-of sample

R2; which is similar to approach taken in ABD (2007). We also carry out the Diebold-Mariano

(1995) predictive equivalence tests to determine whether the choice of order q matters for the qth

order jump power variations in forecasting future RV.

Turning to our regression results, Table 1 reports the regression estimates, in-sample and out-

of-sample R2 values for the linear, square root and log HAR-RV-C models at daily (h = 1), weekly

(h = 5) and monthly (h = 22) prediction horizons. The entries in bracket are t-statistics calculated

using the Newey-West estimator with auto-correlation up to 44 lags17. Regarding in-sample and

out-of-sample R2s, as shown in the table, the square root models and log models perform much

15We also implement other choices for P =210, 310, 510, 610,710 and results show the same pattern, which are
available upon request.
16For q>2;the realized power variation converges to the jump power variation. For q<2, the standardized realized

power variation converges to power variation of continuous component as discussed in Section 3.
17HAC estimator is known to be robust to both heteroscedasticity and auto-correlation.
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better than their linear counterpart regardless of the prediction horizon. For instance, at the

forecasting horizon h = 1; the in-sample and out-of-sample R2 of square root models are 0.45

and 0.34 while those of the linear counterpart are 0.35 and 0.24, respectively. In addition, the

estimates of �cd, �cw, �cm and t-statistics con�rm the long memory persistent feature of volatility.

For the linear model with h = 1; the t-statistics of the monthly forecast parameter is 7:81; implying

that the continuous component of the previous month could help the one-day-ahead prediction of

volatility. This statistical pattern holds for square root and log models across all forecast horizons.

In addition, at prediction horizon h = 22; while the in-sample R2s are large, the out-of sample

results show an opposite direction.

In the formulation of RMs of jump power variations, RPVq;t, RJ+q;t, RJ
�
q;t, and RJAq;t, order

q is gridded by 0.1 from 2.1 and 6, i.e q = f2:1; 2:2; :::; 5:8; 5:9; 6g. The choice of maximal q = 6

is su¢ cient to determine the e¤ect of large jumps and their predictive power18. With q > 2; the

realized (jump) power variation, RPVq;t, converges asymptotically to jump power variations of

log-price process. In addition, larger q e¤ectively eliminates the e¤ect of continuous component

and smaller jumps and magnify the impacts of large jumps. In the presentation of results, we

choose q = 2:5 and q = 5, the two representative cases for small and large jump power variations.

Table 3A, 3B, 3C, 3D report predictive regression estimates of the two cases. Each table involves

linear, square root or log model. All the numbers in the brackets are t-statistics. For the in-sample

forecast results, jump coe¢ cients are not statistically signi�cant for q = 5 (large jumps). The

results hold across all model speci�cations. For q = 2:5, the t-statistics are signi�cant for �jm
in HAR-RV-C-PV linear and square root models. Similarly, the t-statistics are 2.366 and 2.1 for

forecasting horizon h = 1 in HAR-RV-C-PDJ linear and square root models. Regarding the full

"decomposition" HAR-RV-C-PDUJ model, we �nd that the downside jumps have an impact on

future RV at one-day-ahead forecast horizon (h = 1): In particular, for linear model, Table 3C

shows that the t-statistics for ��jd is 2.138. All the upward jump variations have small impacts

on the prediction. More interestingly, correlation between the past RAJ(q) and and future RV is

strong across all forecast horizons (daily, weekly and monthly) for all models under consideration

(linear, square root, log). Table 4 depicts the �ndings in the group of log models, showing the

t-statistics for �jd of 10.05 (daily), 9.15 (weekly), 10.01(monthly) for case q = 2:5 and 10.76 (daily),

9.91 (weekly), 11.08 (monthly) for case q = 5. The �nding strongly suggests that jump asymmetry

matters for modeling future RV, at least at the shorter horizon. In addition, the asymmetry holds

for both large and small jumps.

Turn to the analysis of the predictive comparison, our prediction experiments show improve-

ments for both in sample and out of sample once RMs of jump power variations are used as addi-

tional predictors in volatility forecasting. For example, at the forecast horizons h = 1 and h = 5,

the out-of sample R2s of the HAR-RV-C square root models are 0.341 for h = 1 and 0.244 for

18 In our implementation, for q > 6, the prediction results are almost the same as the case q = 6 and therefore are
not presented.
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h = 5 compared to that numbers of 0.368 and 0.262 of HAR-RV-C-PV models. This is equivalent

to 8% and 7.5% increases in R2 if we switch from HAR-RV-C to HAR-RV-C-PV models. However,

as shown in the table, the continuous component, RV C; dominates in all prediction experiments,

which is consistent with the previous �ndings in the literature on volatility forecasting using high

frequency data. There are little improvements in R2 for HAR-RV-C-PDUJ in the prediction. In-

terestingly, the table suggests in-sample and out-of sample R2 be smaller for the larger q when we

examine prediction experiments for the case q = 2:5 and q = 5. Once we consider a wider range of

values of q; this pattern is clear as shown next.

Table 4 shows the Diebold and Mariano (DM) test statistics for �xed, recursive and rolling

schemes. In the construction of the statistics, denoted in the table as DM Stat, we make a restriction

for q to be larger or equal to 2:5; i.e. (q = f2:5 + k � 0:1gk=35k=0 ) and then search for the values of q

that yield the maximal and minimal mean square errors. More speci�cally, qb denotes the the value

of q that yields biggest R2 and qs denotes the value of q that yields the smallest R2. The table

shows that qb is smaller than qs. In addition, for most of the models, the value of qb is 2:5 and the

value of qs is 6: We test whether the predictions of future volatility using RMs of (jump) power

variations as predictors di¤er if qb and qs are used. The results of DM tests show that most of the

t-statistics are signi�cant, regardless of which forecast scheme is used. In particular, the results are

stronger for downside jump measures.

Finally, the pattern involving R2s suggested in the above discussion is con�rmed by our �gures

shown in the appendix. In Figure 1, we plot the in-sample adjusted R2s of all linear and nonlinear

models across horizon h = 1; 5 and 22. The vertical axis ranges from 0 to 1 for the value of the

R2. The horizontal axis ranges from 0.1 to 6, representing the 60 grid points of value of q, i.e.

q = f0 + 0:1 � kg60k=1. In those plots, except for HAR-RV-PV models, we focus on the part of the
curves on the right side of 2 as convergence to jump power variation occurs only when q > 2 (see e.g.

Todorov and Tauchen (2009) and BKS (2010)): The purple curve represents the R2s of HAR-RV-

C-PDUJ model (full decomposition). The light blue curve represents the R2s of HAR-RV-C-AJP

model. The dark purple curve represents HAR-RV-C-PUJ model. The light green curve represents

HAR-RV-C-PDJ. The dark blue curve and orange curve represent the R2s of HAR-RV-C-PV and

the benchmark model HAR-RV-C model, respectively: Notably, for q > 2 the R2 is monotonically

decreasing in q. These results are consistent with what we found in Table 3. With the monotonic

pattern, all the curves look very close to one another, except for HAR-RV-C-PDUJ and HAR-

RV-C-AJP model. HAR-RV-C-PDUJ model is slightly better for daily and weekly horizon while

HAR-RV-C-AJP model is slightly superior for monthly horizon. It is also clear that the R2s of all

models are higher than those of the benchmark model. This suggests that higher order jumps be

helpful in prediction of future RV. The predictive power of large jumps power variations dies out

as q becomes bigger. As the higher order jump power variations are dominated by large jumps, the

observation suggests that large jumps play less important role in the prediction and dies out when
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the value of q is larger than 6:

Finally, we also plot the results for the mean square errors across power q; as shown in Figure 4.

The shapes of plots are in opposite direction to R2, supporting our earlier �ndings. In addition to

S&P futures, we also implement the volatility prediction applied to individual stocks in the Down

30. We get the similar pattern. However, the optimal values of q in the prediction for those stocks

are smaller than 2 and mostly stick around 1, which is consistent with the �ndings in GS (2009).

We show the results for several individual stocks of the Dow 30 components in Figure 519. The

patterns are obviously similar to S&P futures.

5.3 Prediction with Jump Test and Truncated Jump

In the previous section, we present a set of results which are purely based on the RMs of jump

power variations which are not adjusted for the jump tests. Theoretically, the realized measures

should converge to jump power variations. In �nite sample with the sampling choice of 5 minutes

(n = 78 per day), ABD (2007) develop a straightforward procedure to separate the variation of

log-price process due to jumps. We follow this approach to adjust the realized measures of jumps

for any day that jump does not occur. In particular day, we �rst test for jumps using the simple

jump test procedure and set the realized measures of jumps to be 0 once the jump statistics is

signi�cant. With the new time series of RPVq;t; RJ+q;t, RJ
�
q;t and RJAq;t; we then carry out the

similar forecast experiments as in previous section.

The results show similar pattern as earlier �ndings. Figure 2 plots the in-sample R2s for all

speci�cation and horizons while Figure 3 plot the out of sample R2s for linear, square root at the

forecast horizon h = 1 and h = 5: Across all plots, HAR-RV-C-PDUJ is slightly better for and

daily and weekly horizon while HAR-RV-C-AJP is slightly better for monthly horizon. Regarding

all speci�cations from 2 to 6 of linear square root and log models, the R2s are higher than those of

the benchmark model. This result is consistent with the earlier �ndings that higher order jumps

help in prediction of future. In addition, similar to the above discussion, large jumps play less

important role in the prediction and dies out: In comparison of out-of sample R2s between jump

test and no jump test cases, we see a marginal improvement in the jump test case. Though the

increase is very small, this would suggest jump test might be helpful in the forecast experiments

using jump variations.

As an additional remark, as shown in Figure 3A and 3B for S&P futures, the out-of-sample

results for the no-jump-test case point out the scenarios where the optimal predictive values of q

are larger than 2; as opposed to the the results found in earlier in the literature where q is around

1. Interestingly, the curves change when jump tests are implemented. For linear models at horizon

h = 1 and h = 5, the optimal q is larger than 2 in Figure 3A (no jump tests) and is less than 2 in

Figure 3B (with jump tests). Conversely, for the linear model, the optimal q is larger than 2 when

19We present the result for 4 stocks. Results for other stocks in Dow 30 are avaialbe upon request.
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jump tests are implemented. This illustration therefore also suggests that the implementation of

jump tests could a¤ect the results of the prediction.

Now turn to the truncated jumps variables, as discussed in section 4.1, we truncate large jumps

on the basis of percentiles of the time series of monthly largest increments, as implemented in DS

(2010). For the experiments, we pick 
 = 5th; 10th and 25th percentile of the sample spanning

period 1993-2009, i.e. we discard all the jumps larger than this threshold and construct the new time

series RPVq;t(
); RJ+q;t(
), RJ
�
q;t(
) and RJAq;t(
):We then implement forecast using speci�cations

as in 4:1. Interestingly, the results are almost the same as in the above discussion, implying that

the larger jumps matter little in the prediction of future volatility.

In summary, our analysis demonstrates that: (i) Continuous component dominates in the pre-

dictions. (ii) There is a strong correlation between our jump power variation based jump asymmetry

variable and future realized volatility and downside jumps matters more than upward jumps in the

prediction. (iii) Incorporation of downside and upside jump power variations might help in predic-

tion but to a limited extent in term of both in-sample and out-of-sample prediction. (iv) There

is a strong pattern that higher order jump power variations help less in the prediction of realized

volatility, regardless of model speci�cations that we consider.(v) We �nd the evidence that the

optimal value of q could be larger than 2, depending on the set-up and jump implementation. (vi)

Finally, the implementation of jump tests might change the results in the predictions.

6 Concluding Remarks

In this paper, we build on the recent theoretical results of Jacod (2008) and Barndor¤-Nielsen and

Shephard (2004, 2006) and BKS (2010) to assess large jump power variations, downside (upside)

jump power variations, and asymmetry jump power variations. In particular, we look at the role

of those variables in the prediction of future realized volatility. We do so by extending the class of

approximate long memory model, HAR-RV. Our results are consistent with the earlier �ndings in

the literature, such as ABD (2007) that continuous component dominates in the prediction of future

realized volatility. The separation of continuous and jump components could help in increasing in-

sample and out-of- sample R2. In addition, we �nd a pattern of predictability in which past "large"

jump power variations help less in the prediction of future realized volatility, than past "small"

jump power variations. This suggests the "larger" jumps might help less in the prediction of future

realized volatility than "smaller" jumps. Regarding jump asymmetry, there is an evidence that

the signed jump power variation has a strong correlation with future RV. Our results also show

that downside jump power variation might matter for modeling future RV. Moreover, in various

experimental setups, the (forecast) best values of q are larger than 2 for S&P futures. Finally,

incorporation of downside and upside jump power variations does improve predictability, albeit to

a limited extent.
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Table 1: Daily, Weekly and Monthly HAR-RV-C Predictive Regression for S&P 500 futures (Benchmark)*

Linear Model Square Root Model Log Model

�0 �d �w �m �0 �d �w �m �0 �d �w �m

h=1 (Daily Forecast)

0.000 0.089 0.060 1.654 -0.002 0.067 0.117 1.001 -0.200 0.167 0.099 0.716

(-0.67) (1.93) (0.38) (7.81) (-1.569) (2.70) (1.70) (11.91) (-1.15) (7.04) (1.66) (11.71)

R2in(R
2
out) = 0.35(0.244) R2in(R

2
out) = 0.45(0.341) R2in(R

2
out) = 0.45(0.388)

h=5 (Weekly Forecast)

0.000 0.058 -0.075 1.832 -0.001 0.055 0.037 1.077 -0.346 0.134 0.142 0.688

(-0.71) (0.51) (-0.43) (10.31) (-1.00) (0.94) (0.40) (12.62) (-1.84) (5.80) (2.40) (10.85)

R2in(R
2
out) = 0.35(0.169) R2in(R

2
out) = 0.44(0.244) R2in(R

2
out) = 0.43(0.296)

h=22 (Monthly Foreast)

0.000 -0.034 0.387 1.375 0.000 0.011 0.137 0.978 -0.772 0.076 -0.014 0.847

(0.32) (-0.89) (3.47) (11.86) (0.18) (0.41) (1.92) (15.04) (-3.08) (3.24) (-0.19) (12.39)

R2in(R
2
out) = 0.33(0.026) R2in(R

2
out) = 0.41 (0.0357) R2in(R

2
out) = 0.38 (0.033)

Table 2: Summary of Model Speci�cations for RV Forecasting

Speci�cation 1 �(RV t+h) = �0+�cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t) + �t+h

Speci�cation 2 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)

(HAR-RV-C-PV(q)) +�jd�(RPVq;t) + �jw�(RPVq;t;t�5) + �jm�(RPVq;t;t�22) + �t+h

Speci�cation 3 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)+

(HAR-RV-C-UJ(q)) +�+jd�(RJ
+
q;t�5;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t) + �t+h

Speci�cation 4 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)+

(HAR-RV-C-DJ(q)) +��jd�(RJ
�
q;t�5;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h

Speci�cation 5 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

(HAR-RV-C-UDJ(q)) +�+jd�(RJ
+
q;t�5;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t)

+��jd�(RJ
�
q;t�5;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h

Speci�cation 6 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

(HAR-RV-C-APJ(q)) +�jd�(RJAq;t) + �jw�(RJAq;t�5;t) + �jm�(RJAq;t�22;t) + �t+h
� The table 1 summarizes the estimation of HAR-RV-C model at daily (h=1), weekly (h=5) and montly (h=22) horizon.

For each horizon, the �rst row entries are the parameter estimates, the second row entries in bracket are t-statistics. The third
row reports RI and RO , the in and out-of- sample R-square of the predictive regressions, respectively.
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Table 3A: HAR-RV-C-PV(q) Predictive Regression (q=2.5 and 5) for S&P 500 Futures *

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 0 0.001 0.006 0.005 0.008 -0.519 -0.702 -1.228

�0 -3.035 -1.737 -2.107 -3.444 -2.885 -3.286 (-1.902) (-2.369) (-3.290)

q=5 0.001 0 0.001 0.003 0.004 0.006 -0.38 -0.55 -1.024

-3.171 -2.345 -2.468 -2.486 -2.455 -3.136 (-1.620) (-2.173) (-3.203)

q=2.5 0.066 0.004 -0.072 0.02 0.024 0.031 0.174 0.136 0.075

�cd -1.448 -0.031 (-1.090) -0.599 (0.347 -0.674 -6.808 -5.691 -2.978

q=5 0.073 0.019 -0.078 0.056 0.056 0.029 0.169 0.133 0.071

-1.771 -0.17 (-1.319) -1.786 (0.961 -0.71 -6.893 -5.73 -2.944

q=2.5 -0.122 -0.251 0.421 0.015 -0.116 0.111 0.087 0.128 -0.017

�cw (-0.812) (-1.419) -2.79 -0.177 (-1.058) -1.247 -1.346 -2.102 (-0.217)

q=5 -0.067 -0.197 0.429 0.061 -0.065 0.088 0.098 0.137 -0.012

(-0.443) (-1.151) -2.944 -0.777 (-0.616) -1.015 -1.594 -2.289 (-0.164)

q=2.5 0.701 1.23 0.686 0.52 0.695 0.37 0.681 0.653 0.793

�cm -2.472 -4.925 -2.215 -3.628 -4.685 -1.933 -10.055 -9.149 -10.088

q=5 1.25 1.569 1.029 0.854 0.973 0.784 0.691 0.666 0.818

-6.84 -10.869 -5.276 -9.239 -10.025 -7.699 -10.764 -9.918 -11.084

q=2.5 0.072 0.214 0.165 0.108 0.067 -0.042 -16.351 -9.511 -2.187

�jd -0.434 1.317) -0.7 -1.942 -0.879 (-0.426) (-1.441) (-0.787) (-0.143)

q=5 18.272 56.886 71.9 0.625 -0.05 -0.84 -2597 -1047 3180

-0.351 1.171) -1.002 -0.563 (-0.035) (-0.451) (-0.877) (-0.302) -0.889

q=2.5 0.788 0.793 -0.186 0.321 0.471 0.08 27.949 30.637 10.902

�jw -1.628 1.775) (-0.543) -1.916 -2.573 -0.544 -0.872 -0.97 -0.362

q=5 194.637 195.392 -76.421 3.984 7.134 3.415 2032 6163 127

-1.158 -1.469 (-0.808) -1.064 -1.884 -1.223 -0.215 -0.68 -0.016

q=2.5 1.18 0.46 1.236 0.387 0.195 0.746 32.416 26.803 51.586

�jm -2.238 -0.893 -1.976 -1.969 -0.793 -2.742 -0.984 -0.726 -1.389

q=5 114.426 2.21 211.491 0.879 -1.852 2.98 10776 6132 10073

-0.714 -0.017 -1.346 -0.245 (-0.454) -0.987 -1.066 -0.59 -1.056

R2in q=2.5 0.376 0.372 0.333 0.463 0.452 0.418 0.452 0.434 0.383

q=5 0.368 0.368 0.333 0.455 0.446 0.414 0.451 0.434 0.383

R2out q=2.5 0.315 0.199 0.033 0.368 0.262 0.04 0.39 0.297 0.032

q=5 0.244 0.167 0.027 0.344 0.24 0.037 0.389 0.296 0.032
� The table 3A summarizes the regression parameter estimates for HAR-RV-C model at daily (h=1), weekly (h=5) and

montly (h=22) horizon. For each parameters corresponding to q=2.5 or q=5, the �rst row entries are the parameter estimates.
The entries in bracket in the second row are t-statistics. The four rows at the bottom report Rin and Rout, the in-sample and
out-of- sample R-squares of the predictive regressions for the case q=2.5 and q=5, respectively.
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Table 3B: HAR-RV-C-PDJ(q) Predictive Regression (q=2.5 and 5) for S&P 500 Futures *

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 -0.702 -1.228 0.006 0.005 0.008 -0.525 -0.710 -1.236

�0 (3.024) (-2.369) (-3.290) (3.462) (2.886) (3.281) (-1.917) (-2.385) (-3.300)

q=5 0.001 -0.550 -1.024 0.004 2.489 0.006 -0.384 -0.554 -1.027

(3.175) (-2.173) (-3.203) (2.533) (0.004) (3.145) (-1.632) (-2.184) (-3.203)

q=2.5 0.069 0.136 0.075 0.023 0.025 0.030 0.174 0.136 0.074

�cd (1.465) (5.691) (2.978) (0.675) (0.359) (0.653) (6.812) (5.653) (2.955)

q=5 0.078 0.133 0.071 0.058 0.968 0.027 0.169 0.133 0.071

(1.779) (5.730) (2.944) (1.813) (0.058) (0.673) (6.894) (5.715) (2.927)

q=2.5 -0.122 0.128 -0.017 0.018 -0.113 0.109 0.087 0.130 -0.016

�cw (-0.800) (2.102) (-0.217) (0.222) (-1.037) (1.226) (1.345) (2.125) (-0.203)

q=5 -0.070 0.137 -0.012 0.063 -0.633 0.085 0.099 0.136 -0.012

(-0.456) (2.289) (-0.164) (0.804) (-0.061) (0.976) (1.601) (2.286) (-0.156)

q=2.5 0.656 0.653 0.793 0.503 0.682 0.371 0.679 0.651 0.792

�cm (2.211) (9.149) (10.088) (3.442) (4.541) (1.966) (10.050) (9.121) (10.043)

q=5 1.228 0.666 0.818 0.845 10.021 0.788 0.690 0.666 0.817

(6.486) (9.918) (11.084) (8.960) (0.982) (7.668) (10.738) (9.897) (11.055)

q=2.5 0.115 -9.511 -2.187 0.143 0.091 -0.057 -33.777 -16.717 -2.734

�jd (0.347) (-0.787) (-0.143) (1.798) (0.859) (-0.411) (-1.493) (-0.731) (-0.091)

q=5 21.144 -1047 3180 0.720 -0.083 -1.051 -5414 -2223 7005

(0.204) (-0.302) (0.889) (0.449) (-0.424) (-0.411) (-0.915) (-0.341) (0.994)

q=2.5 1.548 30.637 10.902 0.441 0.654 0.126 56.900 57.260 17.944

�jw (1.638) (0.970) (0.362) (1.917) (2.516) (0.623) (0.893) (0.901) (0.304)

q=5 390 6163 127 5.415 1.885 5.192 3453 12940 -688

(1.184) (0.680) (0.016) (1.058) (17.888) (1.385) (0.182) (0.710) (-0.043)

q=2.5 2.528 26.803 51.586 0.582 0.300 1.038 65.742 56.053 106.019

�jm (2.366) (0.726) (1.389) (2.104) (0.863) (2.748) (0.999) (0.755) (1.416)

q=5 263 6132 10073 1.719 -0.446 3.727 22752 12109 20505

(0.817) (0.590) (1.056) (0.348) (-5.091) (0.858) (1.104) (0.576) (1.051)

R2in q=2.5 0.376 0.372 0.333 0.463 0.452 0.418 0.452 0.434 0.383

q=5 0.365 0.368 0.333 0.455 0.446 0.414 0.451 0.434 0.383

R2out q=2.5 0.318 0.201 0.033 0.364 0.260 0.039 0.390 0.297 0.032

q=5 0.244 0.167 0.027 0.345 0.241 0.037 0.390 0.296 0.032
� See notes in Table 3A.
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Table 3C: HAR-RV-C-PDUJ(q) Predictive Regression (q=2.5 and 5) for S&P 500 Futures*

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 0.000 0.001 0.006 0.006 0.008 -0.569 -0.748 -1.279

�0 (2.950) (1.648) (2.055) (3.550) (2.901) (3.284) (-2.038) (-2.468) (-3.357)

q=5 0.001 0.000 0.001 0.004 0.004 0.006 -0.415 -0.582 -1.026

(3.221) (2.326) (2.607) (2.727) (2.561) (3.128) (-1.746) (-2.262) (-3.156)

q=2.5 0.067 0.004 -0.072 0.019 0.023 0.031 0.173 0.136 0.074

�cd (1.477) (0.030) (-1.135) (0.583) (0.335) (0.671) (6.758) (5.646) (2.952)

q=5 0.072 0.020 -0.074 0.056 0.054 0.028 0.168 0.133 0.071

(1.845) (0.182) (-1.300) (1.778) (0.940) (0.712) (6.859) (5.733) (2.958)

q=2.5 -0.102 -0.239 0.407 0.018 -0.110 0.113 0.094 0.133 -0.011

�cw (-0.633) (-1.439) (2.755) (0.217) (-1.034) (1.291) (1.462) (2.172) (-0.141)

q=5 -0.040 -0.185 0.407 0.067 -0.056 0.084 0.104 0.140 -0.013

(-0.235) (-1.132) (2.757) (0.834) (-0.557) (0.980) (1.673) (2.333) (-0.174)

q=2.5 0.578 1.153 0.713 0.509 0.680 0.364 0.668 0.643 0.782

�cm (1.713) (3.750) (2.468) (3.549) (4.638) (1.943) (9.919) (8.889) (9.762)

q=5 1.160 1.504 1.062 0.831 0.951 0.793 0.682 0.659 0.818

(5.209) (8.904) (6.022) (8.645) (10.120) (8.485) (10.528) (9.598) (10.980)

q=2.5 -1.116 0.419 1.836 -0.303 -0.114 0.082 -144 89 75

��jd (-0.659) (0.395) (2.138) (-1.002) (-0.317) (0.263) (-1.037) (0.784) (0.638)

q=5 -526 8 532 -5.807 -4.136 3.523 -16818 -7675 39133

(-0.785) (0.026) (1.961) (-0.831) (-0.700) (0.667) (-0.426) (-0.312) (1.644)

q=2.5 0.523 -0.579 0.404 0.002 0.588 0.608 214 -130 -173

��jw (0.111) (-0.241) (0.082) (0.002) (0.756) (0.699) (0.449) (-0.340) (-0.412)

q=5 400 245 328 -2.498 16.943 11.885 -22222 58161 -39700

(0.292) (0.347) (0.215) (-0.144) (1.479) (0.954) (-0.199) (0.747) (-0.433)

q=2.5 14.004 9.028 -3.694 2.772 1.644 0.097 946 989 1155

��jm (1.682) (0.798) (-0.495) (1.435) (0.742) (0.048) (1.217) (1.063) (1.262)

q=5 3597 2303 -1813 47.313 18.591 -22.755 277860 154197 28836

(1.692) (0.825) (-0.916) (1.689) (0.572) (-0.717) (1.530) (0.735) (0.122)
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Table 3C: HAR-RV-C-PDUJ(q) Predictive Regression (q=2.5 and 5) for S&P 500 Futures (Continued)*

q=2.5 1.272 0.001 -1.536 0.460 0.212 -0.141 113.345 -109.981 -81.229

�+jd (0.755) (0.001) (-1.547) (1.595) (0.574) (-0.481) (0.817) (-0.884) (-0.690)

q=5 567.860 103.841 -397.293 6.768 4.195 -4.735 11699 5426 -33271

(0.833) (0.331) (-1.310) (1.018) (0.658) (-0.897) (0.293) (0.190) (-1.373)

q=2.5 0.893 2.094 -0.688 0.445 0.062 -0.498 -172.658 185.572 187.449

�+jw (0.184) (0.792) (-0.131) (0.373) (0.089) (-0.551) (-0.362) (0.493) (0.434)

q=5 -79.637 108.397 -441.164 7.847 -7.332 -6.750 22772 -48575 40677

(-0.056) (0.143) (-0.274) (0.440) (-0.785) (-0.507) (0.208) (-0.656) (0.428)

q=2.5 -11.313 -7.911 6.100 -2.226 -1.355 0.968 -875 -934 -1049

�+jm (-1.438) (-0.726) (0.784) (-1.167) (-0.623) (0.462) (-1.131) (-1.013) (-1.163)

q=5 -3255.071 -2218.650 2196.218 -45.618 -20.656 26.622 -252245 -138328 -8874

(-1.634) (-0.795) (1.066) (-1.648) (-0.628) (0.813) (-1.469) (-0.678) (-0.038)

R2in q=2.5 0.378 0.373 0.335 0.464 0.452 0.418 0.480 0.434 0.384

q=5 0.372 0.369 0.335 (0.456 0.447 .0415 0.452 0.434 0.383

R2out q=2.5 0.342 0.212 0.03 0.373 0.263 0.038 0.391 0.298 0.033

q=5 0.249 0.169 0.027 (0.352 0.246 0.035 0.390 0.297 0.032
�See notes in Table 3A.
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Table 3D: HAR-RV-C-APJ(q) Predictive Regression (q=2.5 and 5) for S&P 500 Futures*

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q=2.5 0.001 0.000 0.001 0.006 0.005 0.008 -0.519 -0.702 -1.228

�cd (3.035) (1.737) (2.107) (3.449) (2.885) (3.285) (-1.902) (-2.369) (-3.290)

q=5 0.001 0.000 0.001 0.003 0.004 0.006 -0.380 -0.550 -1.024

(3.171) (2.345) (2.468) (2.484) (2.451) (3.135) (-1.620) (-2.173) (-3.203)

q=2.5 0.066 0.004 -0.072 0.019 0.023 0.032 0.174 0.136 0.075

�cw (1.448) (0.031) (-1.090) (0.575) (0.338) (0.680) (6.807) (5.688) (2.977)

q=5 0.073 0.019 -0.078 0.056 0.055 0.028 0.169 0.133 0.071

(1.771) (0.170) (-1.319) (1.780) (0.947) (0.710) (6.893) (5.730) (2.944)

q=2.5 -0.122 -0.251 0.421 0.013 -0.115 0.111 0.087 0.129 -0.017

�cm (-0.812) (-1.419) (2.790) (0.163) (-1.053) (1.242) (1.348) (2.104) (-0.216)

q=5 -0.067 -0.197 0.429 0.058 -0.063 0.088 0.098 0.137 -0.012

(-0.443) (-1.151) (2.944) (0.741) (-0.602) (1.005) (1.594) (2.289) (-0.164)

q=2.5 0.701 1.230 0.686 0.522 0.695 0.370 0.681 0.653 0.793

�jd (2.472) (4.925) (2.215) (3.649) (4.681) (1.934) (10.058) (9.152) (10.092)

q=5 1.250 1.569 1.029 0.858 0.973 0.784 0.691 0.666 0.818

(6.840) (10.869) (5.276) (9.293) (9.994) (7.693) (10.764) (9.918) (11.084)

q=2.5 0.072 0.214 0.165 0.078 0.048 -0.030 -16.138 -9.318 -2.037

�jw (0.434) (1.317) (0.700) (1.970) (0.898) (-0.431) (-1.431) (-0.777) (-0.134)

q=5 18.273 56.886 71.902 0.450 -0.002 -0.591 -2596.867 -1046.806 3180.150

(0.352) (1.171) (1.002) (0.571) (-0.002) (-0.449) (-0.876) (-0.302) (0.889)

q=2.5 0.788 0.793 -0.186 0.229 0.330 0.057 27.695 30.419 10.641

(1.628) (1.775) (-0.543) (1.930) (2.588) (0.549) (0.867) (0.967) (0.355)

q=5 194.636 195.391 -76.421 2.935 4.928 2.420 2031.944 6162.489 127.111

(1.158) (1.469) (-0.808) (1.108) (1.897) (1.230) (0.215) (0.680) (0.016)

q=2.5 1.180 0.460 1.236 0.271 0.139 0.528 32.365 26.705 51.504

�jm (2.238) (0.893) (1.976) (1.947) (0.805) (2.740) (0.985) (0.726) (1.391)

q=5 114.426 2.211 211.490 0.499 -1.222 2.100 10776.175 6131.779 10073.197

(0.714) (0.017) (1.346) (0.197) (-0.435) (0.991) (1.066) (0.590) (1.056)

R2in q=2.5 0.376 0.372 0.335 0.463 0.451 0.418 0.452 0.434 0.384

q=5 0.368 0.368 0.335 0.455 0.445 0.415 0.451 0.434 0.383

R2out q=2.5 0.315 0.199 0.033 0.368 0.262 0.040 0.39 0.297 0.032

q=5 0.244 0.167 0.027 0.343 0.241 0.037 0.389 0.296 0.032
�See notes in Table 3A.
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Table 4: Diebold - Mariano Predictive Tests for Jump Variations for S&P 500 futures*

Panel A: Recursive Scheme

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

DM Stat 5.30 2.75 -3.04 3.42 2.60 3.25 2.08 2.84 2.29

HAR-C-PV qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50

.qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 4.05 1.61 -2.40 3.20 2.90 3.41 2.51 3.20 2.64

HAR-C-PDJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50

.qs 4.30 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 5.80 2.36 -1.69 3.20 2.05 3.30 2.20 1.49 1.31

HAR-C-PUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

.qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 6.16 2.89 -1.75 3.51 2.31 3.16 2.19 2.28 1.63

HAR-C-PDUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

.qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Panel B: Rolling Scheme

DM Stat 6.17 3.19 -3.41 3.29 2.55 3.19 0.99 2.87 2.49

HAR-C-PV qb 2.50 2.50 2.50 2.50 2.50 2.50 3.40 2.50 2.50

.qs 4.20 4.70 5.40 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 4.28 2.15 -2.67 3.09 2.84 3.32 -3.18 3.30 2.83

HAR-C-PDJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.40 2.50 2.50

.qs 4.20 4.70 5.40 6.00 6.00 6.00 2.50 6.00 6.00

DM Stat 6.56 2.86 -1.89 3.04 1.99 3.20 0.92 1.46 1.53

HAR-C-PUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.30 2.50 2.50

.qs 4.20 4.70 5.40 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 7.13 3.40 -1.75 3.35 2.26 3.11 2.11 2.24 1.88

HAR-C-PDUJ qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

.qs 4.20 4.70 5.30 6.00 6.00 6.00 6.00 6.00 6.00
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Panel C: Fixed Scheme

Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

DM Stat 6.17 3.11 -3.23 4.27 3.15 3.41 -4.82 3.32 2.35

HAR-C-PV qb 2.5 2.5 2.5 2.5 2.5 2.5 3.5 2.5 2.5

.qs 4.3 4.8 5.8 6.0 6.0 6.0 2.5 6.0 6.0

DM Stat 4.23 1.98 -2.46 3.67 3.25 3.52 -3.75 3.46 2.66

HAR-C-PDJ qb 2.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5

.qs 4.3 4.3 4.3 6.0 6.0 6.0 6.0 6.0 6.0

DM Stat 6.82 2.76 -1.84 3.86 2.43 3.37 0.21 1.80 1.23

HAR-C-PUJ qb 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

.qs 4.3 5.8 5.8 6.0 6.0 6.0 6.0 6.0 6.0

DM Stat 7.13 3.05 -1.80 4.37 2.87 3.34 1.73 3.19 1.85

HAR-C-PDUJ qb 2.5 2.5 2.5 2.5 2.5 2.5 3.2 2.5 2.5

.qs 4.3 4.9 3.4 6.0 6.0 6.0 6.0 6.0 6.0

� The table reports Diebold-Mariano (1995) test statistics, calculated using Hac estimators with auto-correlated lags up
to 44 as discussed in section 4.2, for linear, square root and log speci�cations HAR- C-PV, HAR-C-PDJ, HAR-C-DUJ, HAR-
C-AJP at forecast horizon h=1,5,22 respectively. For each speci�cation, the entries in the �rst rorws, DM Stat are statistics.
The entries in the second row, qb(2:5 <= qb <= 6) is the value of q that yields the highest R-square and qs(2:5 <= qb <= 6)
is the value of q that yields the smallest R-square.
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Figure 1: In-sample R2 for S&P 500 futures, No Jump Test*

Linear, h=1 Square Root, h=1 Log, h=1

Linear, h=5 Square Root, h=5 Log, h=5

Linear, h=22 Square Root, h=22 Log, h=22

� The �gure depicts 9 plots in-sample R-square of 6 speci�cations summarized in Table 2 for all linear, square root and log
models across forecast horizon h=1, 5 and 22. For each plot, the vertical axis represents R-square, with range from 0 to 1. The
horizontal represents the order q with range from 0 to 6 , i.e, q=0.1,0.2,...,5.9,6. The orange line plots R-square of HAR-RV-C.
The purple curve plots R-square of HAR-RV-C-PDUJ model. The dark purple represents HAR-RV-C-PUJ and the light green
represents HAR-RV-C-PDJ and dark blue is for HAR-RV-C-PV. The light blue plots R-square of HAR-RV-C-AJP.
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Figure 2: In-sample R2 for S&P 500 futures, with Jump Test*

Linear, h=1 Square Root, h=1 Log, h=1

Linear, h=5 Square Root, h=5 Log, h=5

Linear, h=22 Square Root, h=22 Log, h=22

� The Figure depicts 9 plots in-sample R�where jump tests are taken into account. See footnote in Figure 1.

37



Figure 3A: Out of sample R2 for S&P 500 futures, No Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

Figure 3B: Out of sample R2 for S&P 500 Futures, with Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

� The Figure 3A depicts 4 plots in-sample R� of 6 speci�cations summarized in Table 2 for linear, square root across
forecast horizon h=1, 5 See footnote in Figure 1 for further details. Figure 3B takes jump tests into account.
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Figure 4A: Mean Square Errors for S&P 500 futures, No Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

Figure 4B:Mean Square Errors for S&P 500 futures, Jump Test*

Linear, h=1 Square Root, h=1

Linear, h=5 Square Root, h=5

� The �gure 4A depicts 4 plots mean square errors of speci�cations from 2 to 6 summarized in Table 2 for linear, square
root across forecast horizon h=1, 5. Figure 4B takes jump tests into account. See footnote in Figure 1 for further details.
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Figure 5: R2 for Dow 30 components for Square Root Models, No Jump Test*

Panel A: Intel

Square Root, h=1 Square Root, h=5 Square Root, h=22

Panel B: City

Square Root, h=1 Square Root, h=5 Square Root, h=22

Panel C: Microsoft

Square Root, h=1 Square Root, h=5 Square Root, h=22

Panel D: Home Depot

Square Root, h=1 Square Root, h=5 Square Root, h=22

� The Panel A,B,C,D in Figure 5 depict the in-sample R� for the 4 representative stocks in Down 30 components. The
four stocks are Intel, Citi, MSFT and Home Depot, respectively and the models are square root at daily, weekly and monthly
forecast horizon. See footnotes in Figure 1A for further details about the plot.
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