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Abstract

A principal contracts optimally with an agent to operate a firm over an
infinite time horizon when the agent is liquidity constrained and has access to
private information about the sequence of cost realizations. We formulate this
mechanism design problem as a recursive dynamic program in which promised
utility to the agent is the relevant state variable. By establishing that output
distortions and the stringency of liquidity constraints decrease monotonically
in promised utility, we are able to interpret the state variable as the agent’s
equity in the firm. We establish a bang-bang property of optimal contracts
wherein the agent is incentivised only through adjustments to his future utility
until achieving a critical level of equity, after which he may be incentivised
through cash payments, that is, through instantaneous rents. Thus the incentive
scheme resembles what is commonly regarded as a sweat equity contract, with
all rents, ie, cash payments net of costs, being back loaded. A critical level of
sweat equity occurs when none of the agent’s liquidity constraints bind. At this
point, the contract calls for efficient production in all future periods and the
agent attains a vested ownership stake in the firm. Finally, properties of the
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theoretically optimal contract are shown to be similar to features common in
real-world work-to-own franchising agreements and venture capital contracts.
Key Words: liquidity, sweat equity, monotone contracts, dynamic screening,

franchising, venture capital, ownership
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1. Introduction

Few entities are more representative of the modern economy than the retail
franchiser and the venture capital investor. At first glance, these two types of
organisations might appear to have little in common. Yet, in many ways, they
possess remarkably similar objectives and engage in remarkably similar economic
activity. Both the retail franchiser and the venture capitalist have capital, but are
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unable, either due to a lack of knowledge of local factors, or because their time and
energy are best spent elsewhere, to operate a particular firm or franchise. Both,
therefore, contract with an agent who is typically liquidity constrained and who has
access to private knowledge about the enterprise either because (as in franchising)
he is on the scene or because (as in venture financing) he possesses technical
expertise. The salient features of these contractual situations are that: (i) the agent
is liquidity constrained and cannot buy the firm outright, (ii) the relationship is of
a long term nature, (iii) the agent acquires private knowledge regarding certain
factors influencing profitability, and (iv) the principal incentivises the agent by
controlling the scale of operations. In this paper, we provide a normative analysis of
the optimal dynamic contract in a general setting possessing these characteristics.

Operationally, we study an infinite-horizon discrete-time model in which the
marginal cost of production evolves according to an iid process that the agent
privately observes. Both principal and agent have quasilinear time-separable von
Neumann-Morgenstern preferences and discount the future at the same rate. Since
contracting occurs before the agent learns any private information and because
allocation of risk is not germane, full efficiency could be achieved by selling the
enterprise to the agent at its first-best expected present value. This solution,
however, is assumed infeasible by supposing that the agent does not possess the
requisite capital. In particular, the agent is presumed to be severely liquidity
constrained and cannot experience negative cash flow in any period.1

These assumptions give rise to a dynamic screening model in which the
principal incentivises the agent through both instantaneous payments as well as
promised future payments. The principal also manages information rents through
control of the scale (or level) of operations, that is, the output of the firm, in each
period.

Our findings relate the dynamics of firm growth to other features of the
contractual relationship. In particular, we show that there is a maximal firm size,
ie, scale of operations, that is achieved if (and only if) the agent becomes a fully
vested partner in the firm. Moreover, we show:

• Sweat equity: The optimal contract incentivises the agent exclusively via
promised future payments before he becomes a fully vested partner, and
exclusively via instantaneous payments if he becomes a fully vested partner.

• Success begets Success: Future firm size is increasing as a function of

(1) We discuss situations in which the agent possesses initial positive wealth in subsection 7.2.
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current firm size. Thus, the firm’s scale of operations is positively serially
correlated over time.

• Easing of liquidity: Liquidity constraints ameliorate as the firm grows, and
vanish completely if the agent becomes a fully vested partner.

• Heaven or Hell: In the long run, with probability 1, the firm either grows
to the point where the agent becomes a fully vested partner or it shrinks to
the point where the principal replaces him.

Indeed, we survey evidence below in section 8 showing that these characteristics
of the optimal dynamic contract have close parallels in real-world work-to-own
franchise programs and venture capital covenants. They also resonate with features
of contracts involving newly hired members of professional partnerships: a new
doctor joining a medical practice, a new attorney joining a law firm, a new economist
joining a consulting firm, etc.

Our analysis leverages the recursive nature of the principal’s problem, where
the utility promised (in the form of present and future rents) to the agent, v, is
the state variable. Building upon techniques recently developed by Quah (2007),
we show that the optimal contract is monotone in v. This is our principal finding.
Indeed, we show that all variables of importance are monotone in promised utility.
Besides its technical significance, monotonicity permits us to interpret promised
utility v as the agent’s equity in the firm.2 In particular,

• All elements of the menu of output choices available to the agent at any point
in time are increasing in his equity.

• All elements of the corresponding menu of continuation payoffs to the agent
are also increasing in his equity.

• All liquidity constraints confronting the agent attenuate as his equity increases,
to the point where if he has enough equity to become a fully vested partner,
then liquidity constraints disappear from that point onward.

• For all cost realizations, greater equity implies a greater likelihood of the agent
becoming a partner in the next period.

(2) Such an interpretation would be more tenuous if some of the key elements of the contract
were not monotone. For instance, if it were the case that output restrictions were more severe
(at least for some cost realisations) at higher levels of promised utility, it is not immediately
(if at all) clear how one could then regard v as equity, since greater levels of equity suggests
not only that the agent is better off, but also that he faces less stringent controls.
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Roughly put, these results show that greater equity comports with the agent
having greater control of the firm because histories resulting in higher expected
payoffs (to the agent) also correspond to greater levels of output, less stringent
output controls, greater rents, more liquidity, and a higher likelihood of attaining
a permanent ownership stake in the immediate future. In fact, our main results
are best summarized collectively as a theory of sweat equity, wherein the agent
works for the principal without receiving rents until the scale of the firm and his
equity position grow to the level of ownership or shrink to the point where he is
replaced.

In the next section we briefly survey the relevant literature. We introduce the
model formally in section 3, and describe the recursive approach in section 4, where
we also establish basic properties of the principal’s value function, prove that the
optimal contract has the bang-bang property, and derive a simplified version of the
principal’s contract design problem more amenable to analysis. In section 5 we use
the simplified program to prove the monotonicity properties of the optimal contract
that facilitate the interpretation of promised utility v as sweat equity. In section 6
we describe the short and long-run dynamics induced by the optimal contract. The
Lagrange multipliers associated with the liquidity constraints, or more precisely,
their sum, can be interpreted as the marginal social cost of illiquidity. This, and
other issues, related to various levels of ownership, path dependence of the optimal
contract, and the extension where the principal can fire the agent, are analysed
in section 7. Section 8 contains the applications of our model mentioned above
to work-to-own franchising programs and to venture capital covenants. Since it
is somewhat disconnected from the rest of the paper, or at least uses sufficiently
different concepts, a discussion of the key ideas underpinning the monotonicity
results are deferred to section 9, with some concluding thoughts in section 10.
Formal proofs and some purely technical results are relegated to the appendix.

2. Related Literature

This paper contributes to a growing literature on optimal dynamic incentive
schemes spanning a diverse set of research areas including: social insurance (eg,
Fernandes and Phelan, 2000), taxation (eg, Albanesi and Sleet, 2006), and executive
compensation (eg, Sannikov, 2008). As is common in this body of work, we employ
the recursive techniques for analyzing dynamic agency problems pioneered by
Green (1987) (who studied social insurance), Spear and Srivastava (1987) (who

5



studied dynamic moral hazard), and especially Thomas and Worrall (1990) (who
examined income smoothing under private information), in which shocks are iid
over time and the state variable is taken to be the expected present value of the
agent’s utility under the continuation contract.

Of particular relevance is the recent literature on optimal financial contracting
in the face of moral hazard. Specifically, Quadrini (2004), Clementi and Hopenhayn
(2006), DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007), and Biais et al.
(2007) study various dynamic incarnations of the celebrated cash flow diversion
(CFD) model.3 Roughly, DeMarzo and Fishman (2007) explore optimal financial
contracting in a general finite-horizon CFD model which DeMarzo and Sannikov
(2006) formulate in continuous-time with an infinite horizon, and Biais et al. (2007)
provide a model bridging the two environments. Clementi and Hopenhayn (2006)
study optimal investment and capital structure in a discrete-time infinite-horizon
model and Quadrini (2004) derives the optimal renegotiation-proof contract in a
similar environment.

As in our setting, all of these papers assume a risk-neutral but liquidity
constrained agent and a risk-neutral wealthy principal. There are, however, several
key differences between the environment we study and the one analyzed in the
dynamic CFD literature. First and foremost, the underlying problem facing the
principal in CFD models involves moral hazard in which the agent must be given
incentives either not to expropriate privately observed cash flows for his personal
use or to privately exert personally costly effort. (As DeMarzo and Fishman,
2007 demonstrate, these two situations are formally equivalent.) In particular, the
information privately observed by the agent in the CFD models is of no operational
use to the principal—she always wants him either to not divert funds or to work
hard, depending on the context of the model. Hence, her contemporaneous policy
decision of how much to invest is not sensitive to the agent’s private information
about his action (regarding the amount of cash he expropriated or his effort choice).

Our focus, by contrast, is not on optimal investment dynamics or capital
structure, but on the day-to-day operation of the firm. The principal in our model
wishes to tailor her contemporaneous policy decision of how much to produce to the
agent’s private information regarding the marginal cost of operation. Thus, ours is
a dynamic model of intratemporal screening that cannot properly be viewed as a
setting of moral hazard.4 To see this plainly, note that in the CFD models each

(3) See Bolton and Scharfstein (1990) for a canonical two-period CFD model.
(4) The conditions under which ex post hidden information, as in the CFD models, is analogous

to moral hazard are articulated in Milgrom (1987).
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value of the state variable gives rise to a distinct level of optimal investment, while
in our setting each value of the state variable gives rise to a menu of output levels
from which the agent must be given incentives to select the optimal one. Among
other things, this means – except in the two-type case – we must employ novel
methods to establish monotonicity of the entire menu of output levels in the state
variable. As we argued above, this monotonicity is crucial for interpreting the state
as the agent’s equity stake in the firm.5 While our investigation clearly touches on
issues of corporate finance, our focus is rooted in questions of procurement and
monopolistic screening more readily identified with industrial organization.6

Clearly, some of our results do have parallels in the CFD literature. For
instance, we discover a bang-bang property of an optimal contract common among
the CFD papers under which the agent is incentivised only through adjustments
in his future utility up to a threshold, after which he is incentivised with cash
payments. The CFD papers naturally interpret this as optimal financial structure;
eg, debt must be retired before dividends can be paid. We, on the other hand,
interpret the bang-bang property of the optimal incentive scheme as a sweat equity
contract under which the agent works for the principal until he is fired or earns a
permanent ownership stake in the firm. However, in both the CFD models as well
as in ours, the bang-bang property is a consequence of the twin assumptions that
the agent is risk neutral and liquidity constrained.

Questions of interpretation and implementation aside, a number of our results
have no counterpart in the CFD literature. For instance, we show that there is an
endogenously determined positive level of equity that the principal optimally grants
the agent at the beginning of the contract. We also characterize the production
mandates used to control information rents including the familiar result from static
mechanism design of no distortion at the top, which holds in our setting for all
values of the state.

In addition to the monotonicity of the primal contractual variables, we also
prove monotonicity of the Lagrange multipliers for the liquidity constraints (one
for each type of the agent). Then, defining dead-weight loss to be the difference
between the first-best value of the firm and its value(principal’s share plus agent’s
share) at any state, allows us to relate the social cost of illiquidity to the analytical

(5) In fact, monotonicity of investment fails at low levels of the state in some of the CFD models
(eg, Clementi and Hopenhayn, 2006) due to an exogenous liquidation value for the firm.
The state at which the principal optimally replaces the agent in our model is endogenously
determined, and monotonicity of output holds globally.

(6) See, for example, Laffont and Martimort (2002, p 86).
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measure of the price of the constraints. Namely, dead-weight loss under the contract
is the integral of the sum of the Lagrange multipliers between the current state
and the state at which firm value is maximised (where all the multipliers drop to
zero and the agent achieves a vested ownership stake in the firm).

More generally, our methods, which build on Quah (2007), allow us to establish
monotonicity of the contractual variables in any (recursive) dynamic contracting
setting where the Principal’s objective is concave and supermodular in all the
contractual variables, and all the constraints are linear (in the contractual variables)
and increasing in the level of promised utility.7 We therefore provide a unified
explanation of the source of monotonicity results in many recursive contracting
models.

In addition to this study, there are several other recent investigations of
screening in dynamic environments. For instance, Bergemann and Välimäki (2010)
introduce and analyze a dynamic version of the VCG pivot mechanism. (In a similar
vein, see Athey and Segal, 2007 and Covallo, 2008.) In two recent working papers,
Pavan, Segal and Toikka (2009); Pavan, Segal and Toikka (2010) study dynamic
screening in a setting in which the distribution of types may be non-stationary
and agents’ payoffs need not be time-separable. They derive a generalization of the
envelope formula of Mirrlees (1971) for incentive compatible static mechanisms
and use this to compute a dynamic representation for virtual surplus in the case
of quasi-linear preferences. While their analysis is illuminating, the generality of
their model prohibits use of both the recursive and monotone methods that are
the lynchpins of our study. Moreover, Pavan, Segal, and Toikka do not address
the question of contracting for ownership in the face of liquidity constraints that
is the focus of our investigation. Boleslavsky (2009) explores a dynamic selling
mechanism in which a consumer possesses both permanent private information
about his propensity to have high or low taste shocks and transitory private
information about his current (conditionally independent) shock. The optimal
contract in Boleslavsky’s model exhibits a type of immiseration in the sense that
after a sufficiently long time horizon, the supplier will eventually refuse to serve
the consumer.

Battaglini (2005) investigates a dynamic selling procedure in a model where

(7) Monotonicity in our setting is not a straightforward application of Quah’s result. Although our
objective function satisfies his conditions (over a suitably restricted domain), our constraint
sets do not. Indeed, the bulk of the proof is in showing that the constraints can be transformed
in such a way that the new optimisation problem (with the transformed constrained set) has
the same maximisers as the original problem.
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a consumer’s taste parameter follows a two-state (high or low) Markov process.
The consumer has private information about the initial state of the process as
well as subsequent states. Although he considers a different setting and does not
employ our methods, Battaglini does also find a type of monotonicity in output
distortions under an optimal contract. For an initial string of reported low-demand
realizations, the consumer is awarded less and less output, but nevertheless makes
payments in excess of his valuation of the output (and thus receives negative rents
in each period). The first time he reports high demand, however, the contract
calls for efficient output for either type from that point forward. In analyzing the
process of ownership acquisition, Battaglini (2005) emphasizes the role of initial
and persistent private information, while we focus on the importance of transitory
private information in the face of liquidity constraints.

3. The Model

Consider a setting in which a principal initially owns a business enterprise and
wishes to contract with an agent to operate it. Specifically, the agent will produce
output in each period t = 0, 1, 2, . . .. Both the principal and agent are risk-neutral,
have time-separable preferences, and have a common discount factor δ ∈ (0, 1).
If the agent produces q units in a given period, then a contractually verifiable
monetary benefit (revenue) R(q) is generated, where R : R+ → R+ is twice
continuously differentiable, strictly concave, and R(0) = 0.8

The principal is not a bank who simply lends the agent capital. Instead, we
shall suppose that the firm possesses some market power, which leads naturally to
the assumption that R′′ < 0, and which we associate with control of specialized
assets such as brand recognition, an exclusive location, a proprietary business
formula, or physical capital. The principal generally retains ownership of these
assets, although they may be transferred to the agent under certain situations as
we discuss in section 7.2 below.

The agent’s cost of producing q units of output in a given period is θq,
where θ ∈ Θ := {θ1, . . . , θn}, and 0 < θ1 < · · · < θn < ∞.9 We will frequently

(8) As long as revenue is contractible, it does not matter whether it accrues directly to the
principal (who then compensates the agent for costs) or to the agent (who then delivers
profits to the principal). We assume the former case in the text.

(9) Consider the seemingly more general specification in which output is x > 0; concave revenue
is B(x); and increasing convex cost is θC(x). This is equivalent to the specification given
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abuse notation and refer to i, j ∈ Θ rather than saying θi, θj ∈ Θ. The cost
parameter θ is drawn independently in each period according to the cumulative
probability distribution F where we may assume, without loss of generality, that
Pr{θ = θi} := fi > 0 for all i ∈ Θ.

To ensure an interior solution to the contracting problem, we shall assume

[MR0] R′(0) =∞

and
lim
q→∞

R′(q) < θ1

Then, implicitly define the first-best output levels by R′(q∗i ) = θi for all i ∈ Θ.
For future reference, note that ∞ > q∗1 > q∗2 > · · · > q∗n > 0; ie, first-best output
is monotone decreasing in type. As always, the agent can leave at any moment
in time, to an outside option worth 0 utiles.10 There are two crucial sources of
friction in the model. First, the realization of the cost parameter θ in each period
is observed only by the agent. Second, the agent is liquidity constrained and
cannot incur a negative cash flow in any period.11 If either of these conditions were
relaxed, it would be possible to implement the first best outcome. For instance, if
θ was observed publicly in each period, the principal could simply write a forcing
contract that dictated the efficient level of output q∗i and compensated the agent
for his actual costs θiq∗i . If, on the other hand, the agent possessed sufficient liquid
resources, he could purchase the franchise from the principal at the outset for its
first-best expected present value,

[FB] vFB := 1
1− δ

∑
i∈Θ

fi
(
R(q∗i )− θiq∗i

)
in which case there would be no residual incentive problem. Hence, it is the
combination of private information and liquidity constraints that links the present
with the future, giving rise to a non-trivial dynamic contracting problem.

in the text under the change of variables q := C(x) and R(q) := B(C−1(q)). Moreover,
our results also hold under an alternative specification in which revenue is θB(x) which is
observed only by the agent and cost is C(x) which is contractually verifiable.

(10) In fact, the agent’s individual rationality constraint never binds (as we discuss below), so
the analysis is unaltered whether we assume he has the option to quit in any period or is
committed to work for the principal indefinitely.

(11) A third implicit assumption is that the agent cannot borrow sufficient funds from a bank to
purchase the firm. There are numerous reasons this might be the case; eg, banks may lack
the expertise needed to evaluate the profitability of the business, or they may be unable to
provide the requisite brand recognition and/or proprietary methods. As mentioned above,
we also suppose that the principal is not a bank.
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The timing runs as follows. At the beginning of the game the principal offers
the agent an infinite-horizon contract which he may accept or reject. If he rejects,
then the game ends and each party receives a reservation payoff of zero. If the
agent accepts the principal’s offer, the contract is executed. We now explore the
structure of the optimal contract.

4. Contract Design

When designing an optimal contract, the Revelation Principle implies that the prin-
cipal may restrict attention to incentive compatible direct mechanisms. Moreover,
it is well known (see, eg, Thomas and Worrall, 1990) that in the setting under study,
she also may restrict attention to recursive mechanisms in which the state variable
is the agent’s lifetime promised expected utility under the contract, denoted by v.
For reasons discussed below, we refer to v as the agent’s equity (or sweat equity)
in the firm. Hence, if the agent’s current equity is v and he reports θi, then the
contract specifies the amount of output he is to produce qi(v), the amount he is to
be compensated by the principal mi(v), and his level of equity starting next period
wi(v). (To ease notation, we frequently suppress dependence of the contractual
terms on v.)

In fact, it is convenient, both notationally and conceptually, to define the
agent’s instantaneous rent as ui := mi − θiqi and to consider contracts of the form
(u, q, w) rather than (m, q, w). We now present the contractual constraints under
this formulation.

Promise Keeping: The promise keeping constraint that the contract must
obey is written

n∑
i=1

fi (ui + δwi) = v[PK]

Each wi summarizes the discounted expected future rents, while v is the expected
sum of instantaneous present and discounted future rents.

Incentives: The set of incentive constraints is

ui + δwi > uj + δwj + (θj − θi)qj[Cij ]

for all i, j ∈ Θ.
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Liquidity: The agent’s liquidity constraints are simply

ui > 0[L′i]

for all i ∈ Θ. That is, when the agent reports truthfully, the monetary transfer he
receives from the principal, mi, must cover his production costs θiqi. As written,
the liquidity constraints do not permit wealth accumulation by the agent. In other
words, he has no method for saving any positive rents mi−θiqi > 0 to ease liquidity
constraints in the future. While this appears to be a restrictive assumption, it is
actually completely innocuous because the principal saves (and dissaves) on the
agent’s behalf by adjusting his equity v in the firm. Of course, the contract could
specify that the agent save any positive rents in a verifiable bank account, but this
would be functionally equivalent to using equity adjustments and operationally
much more cumbersome.12

Participation: The continuation utility wi is the sum of expected rents, and
because instantaneous rents to the agent can never be less than zero, it follows
that we must include feasibility constraints that require wi > 0 for all i. Thus,
the agent’s lifetime expected utility v is always nonnegative, and the participation
constraint that the contract initially offer him nonnegative lifetime utility may be
ignored.

The following proposition shows that the principal’s problem can be written
as a dynamic program, and establishes that an optimal contract exists by virtue of
being the corresponding policy function.

Theorem 1. The principal’s discounted expected utility under an optimal con-
tract, (u, q, w), is represented by a unique, concave, and continuously differentiable
function P : R+ → R that satisfies

P (v) = max
(u,q,w)

∑
i

fi
[(
R(qi)− θiqi

)
− ui + δP (wi)

]
[VF′]

subject to: promise keeping (PK), incentive compatibility (Cij), liquidity (L′i), and
feasibility qi > 0 and wi > 0 for all i ∈ Θ. Moreover, there exists v∗ ∈ (0,∞) such
that P ′(v) > −1 for 0 6 v < v∗ and P ′(v) = −1 for v > v∗, and P ′(0) =∞.

Theorem 1 provides some clues to the structure of an optimal contract. In
particular (MR0), namely the assumption that R′(0) =∞, ensures P ′(0) =∞. In

(12) See Edmans et al. (2010) for a novel use of ‘incentive accounts’ in the context of executive
compensation.
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Figure 1: Principal’s Value Function

other words, the principal’s payoff is initially increasing in the agent’s equity. This,
along with the facts that P ′(v) = −1 for v > v∗ and that P (v) is concave, implies
that there exists a level of equity v0 ∈ (0, v∗) satisfying P ′(v0) = 0 at which the
principal’s discounted expected payoff is maximized (see figure 1). This is the level
of equity that the principal initially stakes the agent upon signing the contract.

Note, however, that social surplus (ie, firm value) P (v) + v is maximized at
any v > v∗.13 In other words, the value of the contractual relationship continues to
grow until v = v∗. The following result shows that any optimal contract must have
a bang-bang structure.

Proposition 4.1. For any optimal contract (u, q, w), incentives are provided purely
through adjustments in the agent’s equity whenever his stake in the franchise is
sufficiently low – in particular,

wi(v) < v∗ implies ui(v) = 0

Moreover, there exists a maximal rent optimal contract in which incentives are
provided purely through payment of rents if the agent’s stake in the franchise is
sufficiently high – specifically, for all v, wi(v) 6 v∗ and

ui(v) > 0 implies wi(v) = v∗

Proposition 4.1 underpins the interpretation of the optimal incentive scheme
as a sweat equity contract. For v < v∗, if it is the case that wi(v) < v∗, that is, the

(13) This follows since P (v) + v is continuously differentiable, and has derivative P ′(v) + 1, which
is strictly positive for all v < v∗, and is 0 for all v > v∗.

13



agent does not reach v = v∗ in the next period, it must be that the agent earns no
instantaneous rents, but instead is incentivised purely through adjustments to his
equity position. Once v = v∗, however, the agent – as we discuss below – achieves a
permanent ownership stake in the firm and earns nonnegative instantaneous rents
from that point forward.

In order to obtain a sharper characterization of an optimal contract the
following definitions are very useful.

Definition 4.2 (Monotonicity in Type and Equity). Output is said to be mono-
tonic in type if for all v > 0,

qi(v) > qi+1(v)[Mi]

for all i = 1, . . . , n−1. Output is said to be monotonic in equity if for all i ∈ Θ,

v′ > v implies qi(v′) > qi(v)

Analogous definitions apply for rent ui(v) and promised utility wi(v).

In static mechanism design, inequalities analogous to (Mi) are often referred
to as implementability conditions. In order to establish our key result that
the optimal contract is monotone in equity, it is necessary to reformulate the
principal’s program in a simpler way (with fewer constraints and choice variables)
that is more amenable to analysis. To this end, first consider the binding version
of the upward adjacent incentive constraints that say the agent must be indifferent
between reporting his true marginal cost and one level higher:

ui + δwi = ui+1 + δwi+1 + ∆iqi+1[Ci]

for all i = 1, . . . n− 1, where ∆i := θi+1 − θi.

The following lemma establishes a result familiar from static mechanism
design that the large set of incentive constraints (Cij) may be replaced by a much
smaller set, namely (Mi) and (Ci).

Lemma 4.3. If output is monotonic in type (Mi) and the upward adjacent incentive
constraints bind (Ci), then all incentive constraints (Cij) are satisfied. Moreover,
there exists a maximal rent optimal contract (u, q, w) in which (Mi) and (Ci)
hold, and in any such contract, instantaneous rent and promised utility are also
monotonic in type.
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Next, the following lemma uses (PK) and (Ci) to derive a key expression for
the agent’s current payoff.

Lemma 4.4. In any optimal contract, the agent’s payoff satisfies

ui + δwi = v −
n−1∑
j=1

Fj∆jqj+1 +
n−1∑
j=i

∆jqj+1[Ui]

for all i = 1, . . . , n. Moreover, (Ui) implies (PK) and (Ci).

Equation (Ui) says that the current payoff to the agent when he is type i is
his promised expected level of equity from the prior period (first term on the right)
minus his expected information rent (second term) plus his realized information
rent (third term).

The equations (Ui), which imply (PK) and (Ci) can be used to eliminate
instantaneous rents, ui, from the principal’s program (VF′). Specifically, the liquidity
constraints (L′i), requiring ui > 0, can be recast as

n−1∑
j=1

Fj∆jqj+1 −
n−1∑
j=i

∆jqj+1 + δwi 6 v[Li]

for all i ∈ Θ. Using this version of the liquidity constraints and substituting (PK)
directly into the principal’s objective yields the following intuitive result.

Theorem 2. The principal’s value function P : R+ → R is a solution to the
following relaxed program:

P (v) = max
(q,w)

∑
i

fi
[(
R(qi)− θiqi

)
+ δ

(
P (wi) + wi

)]
− v,[VF]

subject to monotonicity in output (Mi), liquidity (Li), and feasibility qn > 0 and
wn > 0. Moreover, there is a solution to this program that is a maximal rent
contract in which ui(v) and wi(v) are monotonic in type. This optimal contract
(q, w) is unique and continuous in v.

This version of the principal’s program is substantially simpler than the
one presented in Theorem 1, involving n2 fewer constraints and n fewer choice
variables. This version of the program also has an intuitive interpretation. The
term ∑

i fi
[
R(qi)− θiqi

]
is simply expected instantaneous social surplus (current

profit), while the term ∑
i fiδ

[
wi + P (wi)

]
is the expected continuation surplus
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(future profit). Also, v is just the sum of present and future expected rents owed
to the agent. Therefore, P (v) is just the dynamic analogue of the objective in the
static problem, wherein the principal wants to maximize expected social surplus
(ie, the value of the firm) net of any expected information rents.

Most importantly, the version of the principal’s problem presented in Theorem
2 is also more amenable to analysis. In particular, in the next section we use this
version of the problem to establish our key result that all contractual variables are
monotonic in v; ie, that v may be interpretted as the agent’s equity in the firm.

5. Monotone Contracts

In the previous section, we noted that we can formulate the principal’s problem as a
dynamic program with only liquidity, implementability, and feasibility constraints.
For any value of v, the optimal value of

(
q(v), w(v)

)
is the solution to a concave

programming problem, hence first order conditions are both necessary and sufficient.
Let λi be the Lagrange multiplier associated with the liquidity constraint (Li)
and µi the Lagrange multiplier of the implementability constraint qi > qi+1 with
qn+1 = 0 for all i. Since P ′(0) =∞, we will ignore the constraint wn > 0 whenever
v > 0. Since P ′(v) = −1 for v > v∗, we can also ignore the constraint wi 6 v∗.
For the moment, let us ignore the constraint (M1), that is, the constraint (Mi) for
i = 1. (Lemma 5.2 below shows that this is without loss of generality.)

The first order condition for q1 is simply R′(q1) = θ1, that is q1 = q∗1. This is
the familiar result from static monopolistic screening that there is no distortion for
the best type, ie, there is no distortion at the top, which holds here for all v > 0.
The first order condition for qi, for any i > 1, is

R′(qi)− θi = ∆i−1

fi

n∑
k=1

λk
[
Fi−1 − I{k < i}

]
− 1
fi

(µi − µi−1)

= ∆i−1

fi

[
Fi−1Λn − Λi−1

]
− 1
fi

(µi − µi−1)[FOqi]

where Λk = ∑k
j=1 λj for all k.

By Theorem 1, we know that the value function P is continuously differenti-
able. Therefore, the first order condition for wi is

[FOwi] P ′(wi) = −1 + λi
fi
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Finally, the envelope condition is

[Env] P ′(v) = −1 + Λn

The first order conditions permit calculation of v∗ as presented in the following
lemma.

Lemma 5.1. The critical level of equity is

v∗ = 1
1− δ

n−1∑
j=1

Fj∆jq
∗
j+1.[Vest]

Hence, v∗ is the present value of receiving expected rents from efficient
production (that is, output without distortions) in perpetuity. Moreover, since
P ′(v) = −1 for all v > v∗, it must be that λi(v) = 0 for all i, v > v∗. That is, v∗ is
the lowest equity level at which none of the agent’s liquidity constraints bind.

In order to establish our principal result below, it will be useful to show that
the optimal contract does not involve production greater than the socially optimal
amount. This is now stated formally.

Lemma 5.2. In any maximal rent optimal contract, the agent never produces
more than first-best output, that is qi(v) 6 q∗i for i = 1 . . . , n and v ∈ [0, v∗].

This result indicates that we can, without loss of generality, restrict attention
to domains for the choice variables wherein q ∈ [0, q∗1]×· · ·× [0, q∗n] and w ∈ [0, v∗]n.
Notice that the principal’s objective function,∑i fi

[(
R(qi)−θiqi)

)
+δ
(
P (wi)+wi

)]
,

which is simply the expected social surplus, is strictly increasing, supermodular
and concave over this restricted domain. This observation enables us to prove
that in a maximal rent optimal contract, output and promised utility must be
monotonic in the state, allowing us to interpret v as the agent’s equity in the firm.
Moreover, monotonicity allows us to characterize not only the long-run dynamics
of the contractual relationship but to analyze short-run changes as well.

Theorem 3. The optimal contract is monotone in equity. That is, for all i ∈ Θ
and all v, v′ ∈ [0, v∗], v > v′ implies

(
qi(v), wi(v)

)
>
(
qi(v′), wi(v′)

)
.

Figure 2 illustrates the monotonicity of the quantities and continuation
utilities in the state variable, promised utility, when there are three types. (The
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Figure 2: Monotone Contracts

cutoff points x∗1, x∗2 and x∗3 are discussed in proposition 5.3 below.) While this
result seems natural, establishing monotonicity is often problematic in dynamic
contracting models with more than two types. The proof uses results from Quah
(2007), and is in the appendix. Since the main ideas underlying the proof are
sufficiently removed from incentive theory, we defer a sketch and discussion of the
intuition for the interested reader to section 9 below.

Theorem 3 says that the degree of distortion the contract imposes on the
agent’s output decreases as his stake, ie, his equity, in the firm grows. Hence,
increasing v results in firm growth, while decreasing v results in contraction. At
v = 0, the contract calls for virtual shutdown (this is lemma A.1 in the appendix):
q1(0) = q∗1 and qi(0) = 0 for i = 2, . . . , n.14 As v increases, output restrictions are
relaxed until v = v∗, at which point the contract calls for efficient production for
all cost realizations: qi(v∗) = q∗i for i = 1 . . . , n. The agent’s promised future utility
levels are similarly increasing in sweat equity. At v = 0, he never receives any rents,
implying wi(0) = 0 for i = 1, . . . , n. Again, as v increases, promised future utility
levels rise monotonically until v = v∗, when the agent becomes a vested partner
with a permanent ownership stake, with wi(v∗) = v∗ for i = 1, . . . , n. At low levels
of v, the agent’s liquidity constraints are tight and the contract imposes stringent
output restrictions along with correspondingly low levels of promised future utility.

(14) To be sure, the assumption R′(0) = ∞ implies that the limiting case of v = 0 and the
concomitant virtual shutdown never occurs on any finite sample path; ie wn(v) > 0 for all
v > 0.

18



As we prove in the next section, if the agent makes a favorable report at this
point, he is rewarded with higher equity. This relaxes his liquidity constraints (see
Proposition 5.3 immediately below) leading to less strict output controls and still
higher levels of promised future utility.

The monotonicity of the optimal contract also reveals information about the
Lagrange multipliers. As usual, the multipliers can be thought of as the marginal
cost of violating a constraint – in this case, the liquidity constraints. The following
proposition collects some useful facts.

Proposition 5.3. The Lagrange multipliers (λi) satisfy the following:

(a) For each v, λ1(v)/f1 6 . . . 6 λn(v)/fn.

(b) For each i, λi(v) is continuous and decreasing in v, with λi(v∗) = 0 and
limv→0 λi(v) =∞.

(c) There exist 0 < x∗1 6 . . . 6 x∗n = v∗ such that v < x∗i implies λi(v) > 0, and
v > x∗i implies λi(v) = 0. Moreover, x∗1 < v∗.

v

qi.v/
q�
1

q1.v/

q�
2

q�
3

q2.v/

q3.v/

x�
3 D v�x�

2x�
10

v

�i.v/

fi

�1.v/=f1

�2.v/=f2

�3.v/=f3

x�
3 D v�x�

2x�
10

1

Figure 3: Cost of Liquidity Constraints

Figure 3 illustrates the monotonicity of the Lagrange multipliers, as well as
the cutoff points, for the case of three types. The envelope condition (Env) and
concavity of the value function imply that the sum of the Lagrange multipliers
of the liquidity constraints Λn must be decreasing. The proposition above is a
refinement of that observation. In particular, it says that at each v < v∗, there is
a subset of the constraints (Li) that bind, and that this subset is decreasing in
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v. The fact that each λi is decreasing in v has an important interpretation. As
the agent acquires a greater stake in the firm, the cost of violating his liquidity
constraints falls. The intuition is that when the agent acquires more equity, then
the contract optimally reduces distortions in order to generate more joint surplus.
Moreover, equity is particular to the relationship between the principal and the
agent, and cannot be traded with anyone outside this interaction. Put differently,
equity is a relation-specific tradeable asset, and larger amounts of it alleviate
liquidity concerns.

The cutoff points x∗i for the Lagrange multipliers have another useful con-
sequence. For each v, we may define the probability, G(v), that the agent will
become the owner of the firm in the next period. For each v > x∗1, G(v) > 0. If, for
example, v ∈ [x∗k, x∗k+1), the agent is potentially one step away from obtaining a
permanent ownership stake in the firm. Specifically, liquidity constraints 1 through
k do not bind at this point, so if the agent reports a cost realization in this range,
ie reports θj where j 6 k, his sweat equity will be v∗ in the ensuing period and
forever hence. Thus, for a v ∈ [x∗k, x∗k+1), G(v) = Fk = ∑

i6k fi. It follows from
proposition 5.3 that G(v) is monotone increasing in v; indeed, it is a step function.
Thus, with a greater stake in the firm, the agent is ever closer, in a precise sense,
to becoming a vested partner in the firm.

6. Dynamics

We next derive both short- and long-run dynamics of the contractual relationship.
We begin with a straightforward, but important, consequence of our definitions,
which reveals something about the long-run behaviour of the relationship. The
optimal contract induces a process P ′(·) that is a martingale. To see this, consider
an increase in v by one unit. This can be achieved by increasing all the wi’s by 1/δ.
The cost of this to the principal is ∑i fi

[
1 +P ′(wi)

]
. As Thomas and Worrall point

out, by the envelope theorem, this is locally optimal, and hence is equal to P ′(v).
From a slightly different point of view, notice that P ′(v) = −1 + Λn = ∑

i fiP
′(wi),

where the first equality is the envelope condition (Env), and the second equality is
obtaineed by summing the first order conditions for wi (FOwi).

An important consequence of the martingale property of P ′ and the mono-
tonicity of the optimal contract is that a shock of θ = θ1 is necessarily good, in the
sense that the continuation values of sweat equity w1 > v, while a shock of θ = θn
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is unambiguously bad, wherein wn < v. More generally, we have the following.

Proposition 6.1. In the optimal maximal rent contract, for all v ∈ (0, v∗), we
have P ′(wn) > P ′(v) > P ′(w1). Moreover, w1(v) > v > wn(v).

This captures the short-run consequences of good and bad shocks. To see the
intuition, suppose, for simplicity, that P is strictly concave on (0, v∗). Since P ′ is a
martingale, if the proposition were not true, it would follow that P ′(wi) = P ′(v)
for all i ∈ Θ, which implies (if P is strictly concave) that wi(v) = v < v∗ for all
i ∈ Θ. But proposition 4.1 also requires that for such a v, ui(v) = 0, which violates
promise keeping (PK), and by incentive compatibility, would require that qi = 0 for
all i > 1. Therefore, incentive compatibility and promise keeping force the agent to
spread out continuation utilities. This is unsurprising, since the role of continuation
utilities is precisely to aid in incentive compatibility, by allowing the principal to
raise instantaneous surplus, without raising the cost of doing the same. While we
are unable to establish that P is strictly concave, the proof can be extended to the
case where P is merely concave (see the appendix).

We are now in a position to describe the long-run properties of the optimal
contract. Recall that the agent is a vested partner if his equity level reaches v∗.

Theorem 4. The martingale P ′ converges almost surely to P ′∞ = −1. Thus, the
agent becomes a vested partner with probability 1.

From the martingale convergence theorem, it follows that P ′ must converge,
almost surely, to an integrable random variable P ′∞. The theorem establishes that
along almost all sample paths, this limit must be −1. That P ′ cannot settle down to
a finite limit greater than −1 follows from proposition 6.1 above and the continuity
of the contract in v.

The economic intuition behind this result is that in the dynamic setting, the
principal can induce truth telling via two instruments: instantaneous rent ui and
continuation utility wi, the latter being the sum of expected future rents. Recall
that total lifetime utility for type i is ui + δwi. Clearly, for any type i < n, the
total (lifetime) expected rent is ui + δwi > 0, that is, lifetime expected utility is
strictly positive. Therefore, the principal faces the choice of either granting rents
in the present, via ui, or relegating them to the future, via wi. Notice that any
instantaneous rent to the agent is spent outside the relationship and therefore does
not affect the principal. However, if the principal chooses to provide the necessary
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incentives via continuation payoffs wi, this has the benefit of increasing liquidity
in the following period, which is useful for the principal, since it allows her to raise
instantaneous surplus in the subsequent period. (Recall that a larger v means a
larger feasible set, and output is increasing in v; see Theorem 3 above.) It is this
desire to keep the agent’s rents within the relationship for as long as possible that
causes the principal to back load payments, and consequently causes v to converge
to v∗ along almost all sample paths.

7. Discussion and Extensions

7.1. Social Cost of Liquidity Constraints

Define firm value, or what is the same in this instance, social surplus, under an
optimal contract as S(v) := P (v)+v. By Theorem 1, S(v) is an increasing, concave
and continuously differentiable function. In particular, we know that S(v) is strictly
increasing on [0, v∗), and S(v) = vFB = 1

1−δ
∑
i fi
[
R(q∗i ) − θiq∗i

]
for all v > v∗.15

Moreover, by the envelope condition (Env), we see that S ′(v) = P ′(v) + 1 = Λn(v).
Therefore, Λn measures the marginal social cost of illiquidity (which is decreasing
in v). Hence, for any v < v∗, the dead-weight loss generated by an optimal
contract is

vFB − S(v) =
∫ v∗

v
Λn(x) dx.

This cost represents the loss in social surplus arising from the output restrictions the
principal imposes to control information rents. As the agent’s stake in the enterprise
grows, his liquidity constraints become less stringent and output restrictions
are relaxed. At v = v∗, all output levels are first-best and dead-weight loss is
consequently nil.

(15) To see this, recall that for all i, qi(v∗) = q∗i and wi(v∗) = v∗. Substitution into (VF) then
yields P (v∗) +v∗ = 1

1−δ
∑
i fi
[
R(q∗i )− θiq∗i

]
= vFB, and hence, S(v∗) = vFB. Moreover, P (v)

is continuous and P ′(v) = −1 for v > v∗, so S(v) = S(v∗) for v > v∗. It also follows from
this that P (v∗) > 0 if, and only if, v∗ > vFB, the latter being a condition depending on the
primitives of the model; recall that (Vest) says v∗ = 1

1−δ
∑n−1
j=1 Fj∆jq

∗
j+1.
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7.2. The Path to Ownership

When exploring firm ownership, it is useful to distinguish between two paradigms
as discussed by Bolton and Scharfstein (1998). One school of thought, due to Berle
and Means (1968), defines ownership as residual claims over the cash flows of the
firm. A second school, pioneered by Grossman and Hart (1986) and Hart and Moore
(1990), identifies ownership of the firm with control rights over productive assets. In
our model, the formal contract between the principal and agent is purely financial,
identifying firm ownership with the Berle-Means interpretation. Nevertheless, it is
possible to include an option for the principal to transfer control of the productive
assets to the agent in certain situations, thereby permitting us to regard firm
ownership in the Grossman-Hart-Moore sense as well.

It follows from our assumption on the absence of fixed costs, ie, R(0) = 0,
that first-best profit is nonnegative in every state.16 Recall that under a maximal
rent optimal contract, the agent’s equity is capped at v∗ and he is incentivised with
cash from that point forward. However, once the agent attains equity of v∗, all
output restrictions are eliminated, and both the principal and agent are indifferent
between providing incentives with cash or further equity adjustments.

Suppose now that v∗ < vFB, so that P (v∗) = vFB − v∗ > 0 = P (vFB),
and consider a contract under which the agent continues to be incentivised with
sweat equity until v = vFB. Indeed, if the agent attains v∗, then he will move
monotonically to vFB because (as is easily seen from Ui) wn(v) = v − (1− δ)v∗

δ
> v

for v > v∗. Once v = vFB, the principal owes the agent cash flows equal to the
first-best value of the enterprise; ie P (vFB) = 0. While this commitment is formally
financial, it is easy to imagine the principal simply transferring control of the
productive assets to the agent and terminating the contractual relationship at this
point.

Our model is somewhat less well suited to analyze transfer of asset ownership
in the case when v∗ > vFB. In this instance, output distortions are not completely
eliminated until the principal owes the agent cash flows in excess of the first-best
value of the firm. If v = v∗, one can imagine the principal paying the agent a
termination fee of v∗−vFB and transferring control of the firm to him. The trouble is
that if relinquishing control is an option formally available to the principal, then she
should exercise it before v = v∗ because v∗ > vFB implies 0 > P (vFB) > P (v∗). The

(16) If this were not the case, then the agents lack of liquidity would prohibit full ownership of
the productive assets.
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principal could eliminate the negative part of the value function by relinquishing
control to the agent at the point when P (v) = 0. Of course, this would impact her
incentives to distort output at lower equity levels as well as the value function itself.
This, however, would not alter the qualitative nature of the optimal contract.

We conclude the discussion of ownership with a few words concerning the
situation in which the agent has positive initial wealth. Theorem 1 implies the
following result.

Corollary 7.1. Suppose v∗ 6 vFB and the agent has initial liquid wealth of y > 0.

(a) If y 6 v0, then the agent surrenders y to the principal and receives initial
equity v0. Initial welfare is S(v0) < vFB.

(b) If v0 < y < v∗, then the agent surrenders y to the principal and receives initial
equity y. Initial welfare is S(y) ∈ (S(v0), vFB).

(c) If y > v∗, then the agent surrenders at least v∗ and receives a like amount in
initial equity. Initial welfare is vFB.

If the agent possesses initial liquid wealth of y > 0, then the principal, who
has all the bargaining power, can require the agent to buy his way into the contract.
If y < v0, then it is optimal for the principal to demand y from the agent and grant
him the starting equity level v0. If v0 < y < v∗, then the principal receives S(y) by
requiring the agent to tender all his wealth. Since S(y) is increasing, higher values
of y result in a higher initial payoff for the principal. Finally, if y > v∗, then the
agent has enough initial wealth to become a vested partner from the outset; ie,
liquidity constraints never bind and the contract is first-best. Finally, while it is
common wisdom that incentive problems can be eliminated by selling the firm to
the agent, note that if v∗ < vFB, then it is not necessary to sell the entire firm to
the agent because the first-best outcome obtains if his equity position is v∗.

7.3. Hiring and Firing

Suppose there is an infinite pool of identical agents, but that the principal can only
contract with one agent at a time. The principal may, however, fire the current
agent and replace him with a new one. If the principal fires an agent, then she
must make a severance payment to him equal to the current level of sweat equity.
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Proposition 7.2. There exists a critical level of equity v† ∈ (0, v0) such that it is
optimal to fire the agent if sweat equity falls below v† (also see figure 1).

Lemma C.2 in the appendix shows that for any C > 0, the process P ′ is
greater than C with strictly positive probability. Hence, there is a strictly positive
probability that sweat equity will fall below any positive v ∈ (0, v0), and hence, a
positive probability that a given agent will get fired. Moreover, Doob’s Maximal
Inequality (see, for instance, Theorem 2.4 of Steele, 2001) provides a bound for
this probability, wherein, the probability that P ′(v) > C is less than 1/(1 + C).

To formally incorporate the option to replace an agent it is necessary to
introduce a new value function Q(v). For any function Q : R+ → R bounded above,
let v0

Q ∈ arg maxxQ(x). Now let Q be the unique function that satisfies

Q(v) = max
[
Q(v0

Q)− v, max
(q,w)

E
[(
R(qi)− θiqi

)
+ δ

(
Q(wi) + wi

)]
− v

]
s.t. (Mi), (Li), qn > 0 and wn > 0

At any level of sweat equity v such that it is not optimal to fire the current
agent, Q(v) obviously has the same properties as P (v), although it lies above P (v)
for v < v∗ because the option to replace the agent has positive value since it is
exercised with positive probability. Hence, for any v < v0

Q such that firing is not
optimal, Q(v) is increasing. Since Q(v0

Q)− v is decreasing, there exists a state v†
such that it is optimal to fire the agent if v < v† and to retain him if v > v†.

In essence, the option to reset the process allows the principal to avoid very
low levels of sweat equity and the associated large output restrictions. Rather than
waiting for the agent to make the long and erratic climb back to v0

Q, the principal
simply pays him off and begins again with a new agent.

7.4. Path Dependence

The maximal rent optimal contract specifies (q, w) as a function of equity, v.
Therefore, the evolution of (q, w) depends on the evolution of v. Typically, the
evolution of v along any sample path will depend on the order of shocks – and this
is true of models of dynamic contracting in general. Nevertheless, there is a very
strong form of path dependence that holds in our model. There are two reasons for
this: Firstly, once v = v∗, output is always first-best efficient from then on, and in
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any optimal contract, v never falls below v∗ again, and second, from any initial
v > 0, v∗ can be reached in finitely many periods.17

More specifically, for any initial v(0) = v ∈ (0, v∗), there exists an integer
τ > 0 such that if the agent repeatedly receives θ1 shocks over τ periods (which
happens with strictly positive probability), he will reach v∗, ie he will have v(τ) = v∗,
in τ periods (where v(k) represents the value of v in period k). This relies on two
observations. The first observation is that for any v ∈ (0, v∗) and γ such that
P ′(v) > γ > −1, there is a τ < ∞ such that if state θ1 is repeated τ times,
P ′(v(τ)) < γ (this is lemma C.2 in the appendix). Of course, the sample path where
θ1 is repeated τ times has strictly positive probability. The second observation is
that there exists an ε > 0 such that λ1(v) = 0 for all v ∈ (v∗ − ε,∞). But this
follows from part (c) of proposition 5.3. In sum, we have shown that from any
initial level of sweat equity, the agent will reach v∗ with positive probability in a
finite number of periods.

Therefore, in an arbitrary sample path, the order of the occurrences of shocks
matters greatly. In any sample path where θ1 occurs sufficiently often, the agent
strictly prefers to have all the θ1 shocks in the beginning, since this will place
him at v∗ in finitely many periods, giving him a permanent ownership stake in
the firm. Notice that this result holds for all revenue functions R that satisfy our
assumptions. This is in contrast with a result in Thomas and Worrall (1990), where
it is shown that when an agent with a private endowment has CARA utility, the
optimal lending contract with a risk neutral principal takes a simple form, where it
is only the number of times a particular state (private income shock) has occurred
that matters, and the order in which the shocks occur is irrelevant.

8. Applications

In order to focus on the fundamental economic forces at work, the model ana-
lysed above is necessarily stylized. Nevertheless, the environment we investigate,
involving a liquidity-constrained entrepreneur who must contract for initial rounds
of operating capital, has obvious real-world counterparts. In this section we briefly

(17) This second property is what distinguishes our strong form of path dependence from the
results in, for instance, Thomas and Worrall (1990). In that paper, immiseration occurs
(with probability 1) and the agent’s lifetime utility goes to −∞, but takes infinitely long to
do so.
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discuss the two examples mentioned in the introduction, work-to-own franchise
programs and venture capital contracts. In each of these settings, numerous features
of the agreements closely parallel aspects of the theoretically optimal contract.

Work-to-Own Franchising Programs

Franchising is a ubiquitous organisational form, especially in retailing. According
to Blair and Lafontaine (2005, pages 8–13), 34% of US retail sales in 1986 (almost
13% of GDP) derived from franchised outlets. Estimates on the number of US
franchisers vary widely, but listings in directories suggest a figure between 2,500
and 3,000. The basic reasons for the prevalence of the franchise relationship accord
well with our model. The franchiser wishes to expand into a specific market but
lacks idiosyncratic knowledge about local factors influencing profitability such as
demand and cost fluctuations. The franchisee observes local conditions but lacks
brand recognition and an established business formula. Often, the franchisee also
lacks sufficient seed capital for getting the business off the ground. For instance,
Blair and Lafontaine (2005, page 97) suggest that franchisee capital constraints
partially explain the wide discrepancy between the franchise fee of $125,000 charged
by McDonald’s in 1982 and the estimated present value of restaurant profits of
between $300,000 and $450,000 over the duration of the contract.

In fact, many franchisers have explicit work-to-own or sweat equity programs
designed to allow liquidity constrained managers to become owners of their own
franchises. These arrangements span a wide variety of retail businesses and indus-
tries including: 7-11 convenience stores, Big-O-Tires, Charley’s Steakery, Fastframe,
Fleet Feet Sports, Lawn Doctor, Petland, Outback Steakhouse, and Quiznos sand-
wiches, to name but a few. While details of sweat equity arrangements vary across
franchisers, Quiznos’ Operating Partner Program is broadly representative, enabling
experienced managers to receive financing from the parent company for all but
$5,000 of the up-front investment. A recent interview with Quiznos’ executive John
Fitchett highlights the similarities between the restaurant chain’s sweat equity
program and the theoretically optimal contract discussed above.18

Private information and liquidity constraints: ‘The Operating Partner Pro-
gram was developed in response to a successful pool of qualified, interested
entrepreneurs with restaurant experience who would make great franchise
owners, but lack access to the necessary financing . . . ’

(18) See Liddle (2010).
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Sweat Equity and ownership: ‘Operating partners earn a salary and benefits
as they work toward full ownership of the restaurant, with 80 percent of profits
paying down Quiznos’ contribution on a monthly basis. . . . we believe an
operating partner that successfully operates the restaurant can reach the point
of being able to acquire full ownership in two to five years . . . ’.

Path dependence and replacement: ‘For the first year, Quiznos will cover any
losses, and the amount will be added to the loan value. After 12 months, if
the restaurant has not reached profitability, Quiznos and the operator will
determine whether the operator is running his or her restaurant in the most
effective way, or if there are other circumstances that may influence the
profitability of the restaurant. [We will then] evaluate whether to put a new
operator in the restaurant.’

Venture Capital Contracts

Another contractual setting that accords neatly with our model is the venture
capital market. Founders often wish to launch a business based on their personal
expertise but do not possess sufficient financial resources. Venture capitalists
(VCs) provide liquidity to startups staging subsequent investments and founder
compensation based on various performance criteria. Indeed, HBS (2000), a case
study by Harvard Business School, reports ‘A central concept used by VCs in
structuring their investments is “earn in”, in which the entrepreneur earns his
equity through succeeding at value creation . . . VCs also insist on vesting schedules
for options or stock grants, whereby managers earn their stakes over a period of
years’. VC contracts are very complex legal instruments, providing investors with
numerous control and liquidation rights. VCs typically demand representation on
the board of directors and often play an active role in the day-to-day operation of
the fledgling company.

In a pioneering article, Kaplan and Stromberg (2003) investigate 213 VC
investments in 119 portfolio companies by 14 VC firms. Their findings also corrob-
orate many features of our optimal dynamic mechanism.

We find that venture capital financing allow VCs to separately allocate
cash flow rights, board rights, voting rights, liquidation rights, and other
control rights. These rights are often contingent on observable measures of
financial and non-financial performance. In general, board rights, voting
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rights, and liquidation rights are allocated such that if the firm performs
poorly, the VCs obtain full control. As performance improves, the entre-
preneur retains/obtains more control rights. If the firm performs very well,
the VCs retain their cash flow rights, but relinquish most of their control
and liquidation rights. Ventures in which the VCs have voting and board
majorities are also more likely to make the entrepreneur’s equity claim
and the release of committed funds contingent on performance milestones.

While our stylized model cannot directly address the plethora of sophist-
icated contingencies and control rights found in typical VC contracts, Kaplan
and Stromberg’s findings are consistent with the monotonicity of the optimal
mechanism in both type and equity. Specifically, v, or sweat equity, is a summary
statistic of past performance, and greater sweat equity leads to reductions in output
restrictions, less stringent liquidity constraints, and eventually to agent ownership,
while lower sweat equity results in more stringent restrictions and liquidity con-
straints, and ultimately to replacement of the agent. In fact, the founders of poorly
performing ventures are often ousted by the VCs who either take direct control of
the company themselves or hire new management. According to White, D’Souza
and McIlwraith (2007) VC’s replace the founder with a new CEO in up to 50% of
all venture-backed startups.

9. Monotone Contracts: Another Look

In this section, we provide some intuition and sketch the proof to our critical
result, Theorem 3, which establishes that the maximal rent contract is monotone
in the agent’s equity v. In dynamic contracting models, monotonicity in the state
variables is often difficult to establish. As noted by Stokey, Lucas and Prescott
(1989, p 86), the problem is the same as establishing monotone comparative statics
of constrained optimization problems. Seminal work by Milgrom and Shannon
(1994) and Topkis (1998) provide the most general conditions under which a set
of maximisers is monotone in the parameters of the objective function. These
methods, however, often cannot be applied to establish monotonicity in parameters
appearing in the constraints because constraint sets are often not sublatttices (eg,
budget sets) and hence cannot be ranked in the strong set order (see section D.1
in the appendix below for a definition of the strong set order).
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However, models in economics typically have more structure (for instance,
convexity assumptions) beyond the lattice theoretic structure assumed by Milgrom-
Shannon/Topkis. In particular, in a seminal study, Quah (2007) shows, among
other things, the following result which is extremely useful to us.

Theorem 5. Let X be a convex sublattice of Rn, U : X → R a concave and
supermodular function, and g : X → R a continuous, increasing, submodular
and convex function. Suppose also that for each value of k ∈ R, there is a unique
solution to maxx∈g−1((−∞,k]) U(x). Then, k > k′ implies arg maxx∈g−1((−∞,k]) U(x) >
arg maxx∈g−1((−∞,k′]) U(x).

The above theorem follows from Corollary 2(ii) of Quah (2007). The chief
challenge in applying Quah’s techniques in our setting is in verifying that the
contract design program belongs to the class of problems amenable to analysis. The
first step is provided in lemma 5.2, which says that in any maximal rent optimal
contract, the agent never produces more than first-best output, qi(v) 6 q∗i for
i = 1 . . . , n and v > 0. (Recall that for v > v∗, output is always optimal.)

This allows us to restrict attention to a domain where q ∈×n

i=1[0, q
∗
i ] and

w ∈ [0, v∗]n. It is easily seen that this domain is both convex and a sublattice
of R2n. It is also easy to see that when restricted to this domain, the principal’s
objective function, ∑i fi

[(
R(qi) − θiqi)

)
+ δ

(
P (wi) + wi

)]
, is strictly increasing,

supermodular and concave.

Next, observe that the liquidity constraints (Li) can be written, in vector
form, as

Aq + δw 6 v1

where 1 = (1, . . . , 1) ∈ Rn, and A is the following n× n matrix

0 ∆1(F1 − 1) ∆2(F2 − 1) · · · ∆n−1(Fn−1 − 1)
0 ∆1F1 ∆2(F2 − 1) · · · ∆n−1(Fn−1 − 1)
0 ∆1F1 ∆2F2 · · · ∆n−1(Fn−1 − 1)
... ... ... . . . ...
0 ∆1F1 ∆2F2 · · · ∆n−1Fn−1


Let ai be the ith row of A and consider the function

g(q, w) := max{a1q + δw1, . . . , anq + δwn}

Evidently, the liquidity constraints (Li) are satisfied if and only if g(q, w) 6 v.
Hence, if g(q, w) is increasing, convex, and submodular, then we can invoke Quah’s
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result to establish that output and promised utility are increasing in equity. The
problem is that negative elements in the matrix A imply that g is neither increasing
nor necessarily submodular. However, in appendix D, we show that we can replace
A by a different matrix Â possessing nonnegative elements without changing the
solutions to the original problem. Appealing to results in Topkis (1998), we show
that the function

ĝ(q, w) := max{â1q + δw1, . . . , ânq + δwn}

is increasing, convex, and submodular, which allows us to invoke Quah’s result,
proving Theorem 3. The results in appendix D are somewhat cumbersome (especially
notationally), but we can yet provide some intuition for the result. To do so, we
shall consider an abstract programming problem, with the same mathematical
structure as the problem considered in Theorem 3 above.

Let U : R2
+ → R be a continuous, strictly increasing, concave function, and

consider the constrained optimisation problem

[G] max U(x) subject to g(x) 6 v

where g(x) = max[1
2x1 + 1

2x2, 2x1 − x2]. Notice that the constraint set Dv := {x ∈
R2

+ : g(x) 6 v} can be written as Dv = {x ∈ R2
+ : Ax 6 v1}, where A is the matrix[1

2
1
2

2 −1

]
. It is easily seen that the function g is not increasing. It is also not clear

if the function g is submodular.19 On the other hand, the constraint set is easily
described as Dv = conv

{
(0, 2v), (v, v), (1

2v, 0), (0, 0)
}
, is the convex hull of a set of

four points.

Consider now, for each v, the expanded constraint set given by Ev :=
conv

{
(0, 2v), (v, v), (v, 0), (0, 0)

}
, which clearly contains Dv.20 Evidently, we may

write Ev = {x ∈ R2
+ : ĝ(x) 6 v}, where ĝ(x) = max[1

2x1 + 1
2x2, x1], or equivalently,

as Ev = {x ∈ R2
+ : Âx 6 v1}, where Â is the matrix

[1
2

1
2

1 0

]
. This allows us to

study the alternate optimisation problem

[H] max U(x) subject to ĝ(x) 6 v

where ĝ is defined above.

(19) In particular, it is not clear how we would establish submodularity if g were the minimum of
an arbitrary, but finite, set of linear constraints.

(20) We shall explain our construction of Ev momentarily.
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Figure 4: Transforming the Constraint Set

Since U is strictly increasing, it is easy to see that any solution to (H) is
automatically a solution to (G), and vice versa. Therefore, without loss of generality,
we may solve problem (H). But we may also show (as we do in appendix D) that ĝ
is submodular. It is clear that ĝ is continuous, increasing, and convex. Therefore, we
have met all the sufficient conditions of corollary 2(ii) of Quah (2007), to establish
the monotonicity of the maximisers in v.

We end with a few observations. Notice first that for any v > 0, Ev :=
(Dv + R2

−) ∩ R2
+, where Dv + R2

− := {x + y : x ∈ Dv, y ∈ R2
−}. A generalisation

of this construction allows us to expand the constraint set in the contracting
problem, without affecting the set of maximisers. A second observation is for each
v > 0, Dv = vD1 and Ev = vE1. This is no coincidence, and we use the positive
homogeneity of the constraint set to construct the function ĝ for the general
problem.

A final comment is in order. In the original contracting problem, there are
additional monotonicity (or implementability) constraints on the q’s, which require
that for any v and i, qi(v) > qi+1(v). It is easy to see that in the abstract problem
considered above, we could impose the constraint x1 > x2, without any change to
either the construction of the function g̃ or the conclusion. In appendix D.1, we
also provide some intuition for Quah’s result.

10. Conclusion

In this paper we explore the question of how a principal optimally contracts with an
agent to operate a business enterprise over an infinite time horizon when the agent
is liquidity constrained and has access to private information about the sequence
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of cost realizations. We formulate the mechanism design problem as a recursive
dynamic program in which promised utility to the agent constitutes the relevant
state variable. We prove that the optimal contract is monotone in promised utility,
facilitating the interpretation of the state variable as the agent’s equity in the firm.
In particular, we show that in each state, output increases, distortions decrease,
liquidity constraints matter less, and the agent’s probability of achieving ownership
in the immediate future increases in the agent’s level of equity.

We establish a bang-bang property of an optimal contract wherein the agent
is incentivised only through adjustments to his equity until achieving a critical
level, after which he may be incentivised through cash payments. We can, therefore,
interpret the incentive scheme as a sweat equity contract, where all rent payments
are back loaded. The critical level of sweat equity occurs when none of the agent’s
liquidity constraints bind. At this point, the contract calls for efficient production
in all future periods and the agent earns a permanent ownership stake in the
enterprise, ie, he becomes a vested partner.

We demonstrate that the derivative of the principal’s value function is a
martingale, yielding several implications. First, for a given level of sweat equity,
the set of cost reports can be partitioned into two subsets, good reports leading to
higher levels of sweat equity and bad reports leading to lower levels. Second, if the
principal cannot fire the agent, the Martingale Convergence Theorem implies that
he will eventually become an owner with probability 1; ie, the contract provides a
Stairway to Heaven. On the other hand, if the principal has the option to replace
the current agent with a new one, then she will do so after the agent’s equity level
in the firm becomes sufficiently low, an event that occurs with positive probability.
Hence, the contract also embodies a Highway to Hell.

Finally, we show that the properties of the theoretically optimal contract
square well with features common in real-world work-to-own franchising agreements
and venture capital contracts. In both of these settings, managers are incentivised
primarily through equity adjustments. Moreover, good outcomes lead to less
stringent controls by the franchiser/VC and increased autonomy by the manager,
while bad outcomes have the reverse effects.

We believe that the monotone methods employed in this investigation can
be fruitfully applied in numerous other settings of dynamic incentives including:
regulation, taxation, and procurement. A particularly appealing avenue for future
research involves application of the approach to analyse frequent customer programs
in a setting where liquidity constraints imply a bound on payments rather than on
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rents. Also, we conjecture that the methods we use can be generalised in several
directions such as continuous types and Markovian shocks. Finally, our principle
methodological contribution, adapting the techniques of Quah (2007) to establish
the monotonicity of the policy function (in the state variable) of a dynamic program,
may be of independent interest beyond the model presented here.
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Appendices

A. Proofs from Section 4

We begin with a proof of Theorem 1.

Proof of Theorem 1. The proof is standard, which alows us to make frequent
reference to Stokey, Lucas and Prescott (1989). Recall that the state variable,
sweat equity or promised utility v, lies in the set [0,∞). The principal can always
just give the agent v utiles without requiring any production. This would give the
agent v utiles and cost the principal −v utiles, thus forming a lower bound for her
utility. An upper bound for the principal’s value function obtains if we consider
the case where there is full information, in which case, the principal’s utility is

1
1− δ

n∑
i=1

fi
[
R(q∗i )− θiq∗i

]
− v

This entails giving the agent exactly v utiles (net of production costs), but getting
efficient output in every state, ie there are no output distortions. Therefore, the
value function P (v) must lie within these bounds, ie must satisfy

0 6 P (v) + v 6
1

1− δ

n∑
i=1

fi
[
R(q∗i )− θiq∗i

]

Let C[0,∞) be the space of continuous functions on [0,∞), and let

F :=
{
Q ∈ C[0,∞) : 0 6 Q(v) + v 6

1
1− δ

n∑
i=1

fi
[
R(q∗i )− θiq∗i

]}

be endowed with the sup metric, which makes it a complete metric space. Let Γ0(v)
be the set of (u, q, w) that satisfy the constraints qi > 0, (L′i), (PK), (Cij), and
wi > 0 for all i, j. Define the operator T : F→ F as

(TQ)(v) = max
(ui,qi,wi)

∑
i

fi
[(
R(qi)− θiqi

)
− ui + δQ(wi)

]
s.t. (u, q, w) ∈ Γ0(v)

for each Q ∈ F. Since Γ0(v) is compact for each v, the maximum is achieved for
each v. Moreover, by the bounds established earlier, it is easily seen that TQ ∈ F.
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Next, define

v[ := 1
1− δ

n−1∑
j=1

Fj(θj+1 − θj)q∗j+1

and let us assume that Q ∈ F is such that Q′(v) = −1 for all v > v[. Consider the
relaxed problem

max
(ui,qi,wi)

∑
i

fi
[(
R(qi)− θiqi

)
+ δwi + δQ(wi)

]
− v

s.t. (PK)

It is easy to see that every solution to this problem must have qi = q∗i . Moreover, a
solution (but certainly not the unique solution) to this problem has, in addition,
wi = v[. By letting

ui(v) := v − δv[ −
n−1∑
j=1

Fj(θj+1 − θj)q∗j+1 +
n−1∑
j=1

(θj+1 − θj)q∗j+1

we see from (Ui) above that (PK) and (Ci,i+1) hold with equality, so that all the
constraints, including liquidity, are satisfied. Therefore, the contract

(
u(v), q∗i , wi =

v[
)
∈ Γ0(v), and is feasible, and is therefore a solution to the original constrained

problem. In particular, for any Q ∈ F that is linear, with slope −1 for v > v[,

TQ(v) =
∑
i

fi
[(
R(q∗i )− θiq∗i

)
+ δv[(b) + δQ

(
v[
)]
− v

for such v > v[. Indeed, with the contract
(
u(v), q∗i , wi = v[

)
∈ Γ0(v), for any

v, v′ > v[,
TQ(v)− TQ(v′) = −(v − v′)

that is, (TQ)′(v) = −1 for all v > v[.

By a variation of Theorem 4.6 of Stokey, Lucas and Prescott (1989), we see
that the operator T has a unique fixed point in F, that we shall call P . Moreover,
if Q ∈ F is concave and is linear with slope −1 beyond v[, TQ has this property
too. Therefore, the fixed point of the operator T must also have this property, that
is, the value function P is concave and has the property that P ′(v) = −1 for all
v > v[.

We first establish a lower bound on P ′(0). By lemma A.1 below, the optimal
contract associated with v = 0 is q1 = q∗1, qi = 0 for i > 1 and ui = wi = 0 for all
i ∈ Θ, and we have

P (0) = f1
(
R(q∗1)− θ1q

∗
1

)
+ δP (0).
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Since P is concave, we know P ′(0) >
[
P (ε)− P (0)

]
/ε for all ε > 0.

Now, consider a contract such that in the first period q1 = q∗1, qi = x, for
i > 1, wi = 0 for all i ∈ Θ, and ui = (θn − θi)x for all i ∈ Θ. From the second
period on, the contract reverts to v = 0. Define x by

ε =
∑
i∈Θ

fiui

= (θn − E[θ])x.

to satisfy (PK). Note that this contract satisfies all constraints.

The principal’s payoff under the proposed contract is

Q(ε) = f1 (R(q∗1)− θ1q
∗
1) +

n∑
j=2

fj
[
R(x)− θjx

]
− ε+ δP (0)

= P (0) +
n∑
j=2

fj
[
R(x)− θjx

]
− ε.

Note that P (ε) > Q(ε) and limε→0Q(ε) = P (0). Moreover,

Q(ε)− P (0) =
∑n
j=2 fj

[
R(x)− θjx

]
− ε

ε

so that

lim
ε→0

Q(ε)− P (0)
ε

= lim
ε→0

∑n
j=2 fj

[
R(x)− θjx

]
− ε

ε

=
n∑
j=2

fj lim
x→0

 R(x)− θjx(
θn − E[θ]

)
x

− 1

= (1− f1)R′(0) + f1θ1 − E[θ]
θn − E[θ] − 1

= (1− f1)R′(0) + f1θ1 − θn
θn − E[θ] ,

where we have used ε = x
(
θn − E[θ]

)
in the second equality. This gives us the

bound

P ′(0) = lim
ε→0

P (ε)− P (0)
ε

> lim
ε→0

Q(ε)− P (0)
ε

= (1− f1)R′(0) + f1θ1 − θn
θn − E[θ]
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as required. Notice now that if (MR0) holds, that is if R′(0) = ∞, it follows
immediately that P ′(0) =∞.

Since the optimal contract lies in the interior of the feasible set (in an
appropriate sense), the continuous differentiability of P follows from standard
results as, for instance, in Theorem 4.11 on p 85 of Stokey, Lucas and Prescott
(1989). Since P is concave and P ′(v) = −1 for all v > v[, there is a smallest v such
that P ′(v) = −1; let v∗ := min{v : P ′(v) = −1}. In sum, P ′(v) = −1 for all v > v∗

and P ′(v) > −1 for all v < v∗. Moreover, by construction, v∗ 6 v[. (Of course, it
is shown in section 5 that in fact v∗ = v[.)

While we do not (yet) know much about the optimal contract, the following
lemma tells us what any optimal contract must look like at v = 0.

Lemma A.1. If v = 0, any optimal contract entails ui = wi = 0 for all i, q1 = q∗1,
and qi = 0 for all i > 1.

Proof. To see this, recall that feasibility implies u,wi > 0 for all i. Promise keeping
(PK) requires ∑i fi

[
ui + δwi

]
= 0, which implies ui = wi = 0 for all i. This

observation and Ci,i+1 in turn imply that qi = 0 for all i > 1. The intuition is
simply that if there is any output, there must be some rent paid which, due to the
liquidity and feasibility constraints, would violate (PK).

Proof of proposition 4.1. Notice that the value function can be written as

P (v) = max
(u,q,w)

∑
i

fi
[(
R(qi)− θiqi

)
+ δwi + δP (wi)

]
− v

subject to all the constraints. So suppose wi(v) < v∗ for some v, and by way
contradiction, ui(v) > 0. Notice that in all the constraints (Cij) and (PK), ui and
wi appear in the form ui + δwi. Since ui > 0, we can reduce it by an appropriately
chosen ε > 0 and increase wi by ε/δ. This leaves all the (PK) and (Cij) constraints
unchanged. Moreover, liquidity constraint (Li) is also unaffected. Lastly, the qi’s
are left unchanged. Therefore, this new contract is feasible, and is also a strict
improvement, since wi + P (wi) is strictly increasing for wi < v∗ (by Theorem 1),
which contradicts the optimality of the original contract. Therefore, it must be
that for any optimal contract, wi(v) < v∗ implies ui(v) = 0.

Suppose now that the contract is a maximal rent contract, where wi(v) 6 v∗

for all v. We have proved above that ui(v) 6= 0 implies wi(v) > v∗. But since ui
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is nonegative, and the contract is maximal rent, this is equivalent to saying that
ui(v) > 0 implies wi(v) = v∗, as required.

The following lemma breaks down the proof of Lemma 4.3 into easily digestible
parts.

Lemma A.2. (a) For all v, q is monotone in type, that is qi(v) > qi+1(v).

(b) The constraints Ci,i+1 and Ci,i−1 imply all other constraints Cij.

(c) If the constraints Ci,i+1 hold with equality and qi(v) > qi+1(v) for all i < n,
the constraints Ci,i−1 holds for all i > 1.

(d) We may assume that the constraints Ci,i+1 hold with equality; that is, if any
of the constraints Ci,i+1 are slack, there is another contract that gives the
principal the same utility, but where Ci,i+1 holds with equality.

(e) In any maximal rent contract, (Ci,i+1) and (Li) imply that u and w are
monotone in type.

Proof. (a) That qi > qi+1 follows by adding Ci,i+1 and Ci+1,i.

(b) Suppose all the constraints Ci,i+1 and Ci,i−1 hold. Define zi = ui + δwi, fix
some i, and suppose j > i. Then,

zi > zi+1 + (θi+1 − θi)qi+1

> zi+2 + (θi+2 − θi)qi+2

> zj + (θj − θi)qj

where we have used the facts that zi > zi+1 and qi > qi+1. The proof that any
constraint Cij also holds for j < i is similar, and therefore omitted.

(c) That monotonicity (in type) of qi and the equality of Ci,i+1 implies Ci,i−1 is
standard, and therefore omitted.

(d) We want to show that Ci,i+1 holds with equality for all i < n. By the results
above, we may restrict attention to upward incentive constraints and assume
that q is monotone in type. Suppose that some constraint Ci,i+1 is slack, so
that ui+δwi > ui+1 +δwi+1 +∆iqi+1. There are two cases to consider. The first
case is when ui > ui+1. We can increase ui+1 by ε and reduce ui by (fi/fi+1)ε,
so that (PK) still holds, none of the upward incentive constraints are upset,
and the objective is unchanged. We may choose ε so that Ci,i+1 holds with
equality, which proves this case.
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The second case is where ui 6 ui+1, which implies wi > wi+1. Replace wi with
w′i := wi − ε, and replace wi+1 with w′i+1 := wi+1 + (fi/fi+1)ε, where ε > 0 is
chosen so that Ci,i+1 holds with equality. Notice that since qi+1 > 0, it must
be that w′i > w′i+1. We want to show this change does not leave the principal
any worse off.

To see this, notice that by construction, fiwi + fi+1wi+1 = fiw
′
i + fi+1w

′
i+1.

Therefore, it only remains to show that fiP (w′i) + fi+1P (w′i+1) > fiP (wi) +
fi+1P (wi+1), which holds if, and only if, fi+1

[
P (w′i+1)−P (wi+1)

]
> fi

[
P (wi)−

P (w′i)
]
. Recall that P is continuously differentiable, so that if w′i+1 6 w′i, the

concavity of P implies P ′(w′i+1) > P ′(w′i). We then observe

fi+1
[
P (w′i+1)− P (wi+1)

]
> fi+1P

′(w′i+1)(w′i+1 − wi+1)

= fiP
′(w′i+1)ε

> fiP
′(w′i)(wi − w′i)

> fi
[
P (wi)− P (w′i)

]
where we have used the fact that fi(wi − w′i) = fiε = fi+1(w′i+1 − wi+1), and
the first and last inequality follow from the definition of the subdifferential,
and the second follows from the concavity of P . This proves our claim.

(e) We shall show that u and w are monotone in type in any maximal rent contract.
Suppose first that ui < ui+1 for some i. Then, by the liquidity constraint (L′i),
it must be that ui+1 > 0. But by proposition 4.1, this implies wi+1 = v∗. Now,
(Ci,i+1) with implies δwi > (ui+1 − ui) + δwi + ∆iqi+1 > δwi, which implies
wi+1 > v∗, which is impossible in a maximal rent contract. Therefore, it must
be that u is monotone in type.

Next, let us assume that wi+1 > wi for some i. Once again, (Ci,i+1) implies
ui−ui+1 > δ(wi+1−wi)+δiqi+1 > 0, which implies, by (Li+1), that ui > 0. But
proposition 4.1 says we must have wi = v∗, which in turn implies wi+1 > v∗,
which is impossible in a maximal rent contract. Therefore, w must also be
monotone in type.

Proof of Lemma 4.4. Note that (Ci) can be rewritten, for each i from 1 to n− 1,
as

ui + δwi = un + δwn +
n−1∑
j=i

∆jqj+1

Taking the expectation of both sides and – as usual – reversing the order of the
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double summation on the right yields

n∑
j=1

fj (uj + δwj) = un + δwn +
n−1∑
j=1

Fj∆jqj+1

Notice from (PK), that the left side of this expression is simply v. Hence, we have

un + δwn = v −
n−1∑
j=1

Fj∆jqj+1

Substituting this back into the original equation above yields (Ui).

Proof of Theorem 2. The only part that remains to be proved is the uniqueness
of the maximal rent contract. The first claim is that for any v > 0, there is a
unique qi(v) for each i for all maximisers (q, w). To see this, suppose (q, w) and
(q′, w′) are optimal at some v, but q 6= q′. Then, since the feasible set is convex,(

1
2(q + q′), 1

2(w + w′)
)
is also feasible, and moreover, is a strict improvement over

(q, w) and (q′, w′), since R(q) is strictly concave. Therefore, it must be that q = q′

across all optimal contracts.

By proposition 4.1 and lemma 4.3, we know that for each v, there exists a
type i such that for ui = 0 implies uj = 0 for all j > i. Suppose v is such that
ui(v) = 0 for some i. We have already established that qj(v) is unique for all j.
This implies that there is a unique wi(v) such that (Li) holds with equality. On
the other hand, if ui > 0 for some v, then it must be that wi = v∗, since we have a
maximal rent contract. In either case, wi(v) is uniquely determined in a maximal
rent contract.

Finally, Theorem 4.6 of Stokey, Lucas and Prescott (1989) shows that the
optimal maximal rent contract must be continuous in v.

B. Proofs from Section 5

First we present the derivation of v∗ given in (Vest).

Proof of Lemma 5.1. Since P ′(v∗) = −1, we have Λn(v∗) = 0, and since λi > 0 for
all i, it must be that λi(v∗) = 0 for all i.
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By the definitions of P and v∗, we also have Λn(v) > 0 for all v < v∗. Lemma
4.3, which says that rents are monotone in type, now implies λn(v) > 0 for all
v < v∗. But by complementary slackness, un(v) = 0 for all v < v∗. Since the
optimal contract is continuous in v (see Theorem 2), it follows that un(v∗) = 0.

From the first order conditions, if v = v∗, then P ′(wi) = −1, which implies
wi(v∗) = v∗ for all i (in a maximal rent contract). Therefore, (Vest) holds by (Ui)
for i = n.

Next, for ease of exposition, we shall provide some lemmas that are of
independent interest and present results in an order somewhat different from the
text, which allows this material to be relatively self contained. We begin with an
observation about the implications of local linearity of the value function.

Lemma B.1. Let 0 6 v◦ < v◦. If P is linear on [v◦, v◦], any optimal contract must
have q constant on [v◦, v◦], that is q(v) = q(v′) for all v, v′ ∈ [v◦, v◦].

Proof. It is easy to see that at each v, if (u, q, w) and (u′, q′, w′) are part of optimal
contracts (maximal rent or not), it must necessarily be that q = q′. This follows
from the convexity of the set of maximisers, and the strict concavity of R. It is
easily seen that we may consider, without loss of generality, maximal rent contracts.

We will prove the contrapositive of the assertion. Let v, v′ ∈ [v◦, v◦], and
suppose q, q′ are optimal at v and v′ respectively, with q 6= q′. For any α ∈ (0, 1), let
(qα, wα) = α(q, w) + (1− α)(q′, w′). Notice that the constraint (Li) can be written
as 〈ai, q〉 + δwi 6 v, where ai ∈ Rn−1. Therefore, (qα, wα) is certainly feasible at
vα := αv + (1− α)v′, that is (qα, wα) satisfies (Li) and (Mi) for all i. Then,

P
(
αv + (1− α)v′

)
>
∑
i

fi
[(
R(qαi )− θiqαi

)
+ δwαi + δP (wαi )

]
− vα

> α
∑
i

fi
[(
R(qi)− θiqi

)
+ δwi + δP (wi)

]
− αv

+ (1− α)
∑
i

fi
[(
R(q′i)− θiq′i

)
+ δw′i + δP (w′i)

]
− (1− α)v′

= αP (v) + (1− α)P (v′)

where the strict inequality follows from the strict concavity of R. This proves the
strict concavity of P , as required.
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The following lemma provides some useful bounds on the Lagrange multipliers.
As in the text, we shall assume, unless otherwise mentioned, that the contracts
under question are maximal rent contracts.

Proposition B.2. The Lagrange multipliers satisfy the following inequalities:

(a) λi
fi

>
λj
fj

for i > j

(b) λi
fi

>
Λi−1

Fi−1
for i > 1

(c) Λi+1

Fi+1
>

Λi

Fi
for i < n

(d) Λn >
Λi

Fi
for all i 6 n

Proof. (a) By Lemma 4.3, we know that in a maximal rent contract, for each v,
wi(v) > wi+1(v). The concavity of P then implies that P ′(wi) 6 P ′(wi+1). By
the first order condition for wi, namely (FOwi), we see that −1 + λi/fi =
P ′(wi) > P ′(wi−1) = −1 + λi−1/fi−1. This allows us to conclude that λi/fi >
λj/fj for all i > j.

(b) The previous part tells that for all i > j, λifj > λjfi. Summing over j 6 i− 1,
we see that λi

∑i−1
j=1 fj > fi

∑i−1
j=1 λj , which can be rewritten as λiFi−1 > fiΛi−1,

ie λi/fi > Λi−1/Fi−1, as required.

(c) From the previous part, we know that Fiλi+1 > fi+1Λi. Adding FiΛi to both
sides of the inequality, we get Fi(Λi + λi+1) > (Fi + fi+1)Λi, which can be
rewritten as FiΛi+1 > Fi+1Λi, as required.

(d) The previous part tells us that Λn > Λn−1/Fn−1 > . . . > Λ1/F1, as required.

The following is an easy corollary of the proposition above.

Corollary B.3. If λi/fi = λj/fj for all i, j, Λn = Λk/Fk for all k < n.

Proof. Again, λi

fi
= λi

fi
can be rewritten as fj

(
λi

fi

)
= λj . Summing over j = 1, . . . , k,

we get Fj
(
λi

fi

)
= Λk. This gives us the equalities λi

fi
= Λi

Fi
= Λn, as required.
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An obvious question is whether the optimal contract can ever have greater
than optimal production, which was stated as lemma 5.2 in the main text. We are
now in a position to establish this lemma.

Proof of lemma 5.2. Recall the first order condition for qi, (FOqi), is

R′(qi)− θi = ∆i−1

fi

[
Fi−1Λn − Λi−1

]
+ 1
f i

(µi−1 − µi)

where µi is the Lagrange multiplier of the constraint qi > qi+1, and qn+1 is taken
to be 0. Also recall that R(qi)− θiqi is concave in qi, achieving its maximum at q∗i .
Therefore, for any qi > q∗i , R′(qi)− θi < 0. We shall prove the proposition via the
following claims.

Claim 1. If, for some v > 0, there is an i such that the optimal qi > q∗i , then
µi > 0.

Proof of Claim 1. This follows from inspection of the first order condition, which
requires that ∆i−1

fi

[
Fi−1Λn−Λi−1

]
+ 1

f i
(µi−1−µi) < 0. But proposition B.2(d) tells

us that Fi−1Λn − Λi−1 > 0. Moreover, by virtue of being Lagrange multipliers,
µi−1, µi > 0. Therefore, it must be that µi > 0. N

Claim 2. If, for some v > 0, there is an i such that the optimal qi > q∗i , then
qi+1 = qi.

Proof of Claim 2. In claim 1 above, we established that qi > q∗i implies µi > 0.
But the KKT complementary slackness condition requires that µi(qi − qi+1) = 0,
which implies qi = qi+1. N

Returning to the proof at hand, suppose for some v > 0, there is an i such
that qi > q∗i . Then, by claims 1 and 2, it must be that qi = qi+1 > q∗i+1. This,
in turn, implies that µi+1 > 0. Therefore, by induction, we see that qn > q∗n > 0
(where the second inequality is by assumption) and µn > 0. But this is impossible,
since the KKT complementary slackness condition requires that µn(qn − 0) = 0,
which proves the claim.

We can now prove the main Theorem of section 5, which tells us that a
constrained version of the principal’s problem is well behaved, in the sense that the
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maximisers are increasing in v. Recall that the principal’s problem can be written
as the solution to the Bellman equation

P (v) = max
(q,w)

∑
i

fi
[(
R(qi)− θqi

)
+ δ

(
wi + P (wi)

)]
− v

subject to monotonicity in output (Mi), liquidity (Li), and feasibility qi > 0, wn > 0.
Let the set of all (q, w) that satisfy these constraints be written as Γ(v). Theorem
3 says that (q, w) is monotone increasing in v. We can now provide the proof, while
deferring mathematical generalities and details to section D.

Proof. By lemma 5.2, qi(v) 6 q∗i for all i and v. Therefore, on the domain [0, q∗i ],
R(qi)− θi is strictly increasing. Consider now the domain

X =
{

(q, w) : q ∈
n∏
i=1

[0, q∗i ], w ∈ [0, v∗]n, qi > qi+1 for i > 1
}

Clearly, X is a sublattice of R2n, and is also convex. Moreover, the objective,∑
i fi
[(
R(qi)− θqi

)
+ δ

(
wi + P (wi)

)]
− v is strictly increasing, concave and super-

modular on the domain X.

In the next section, we shall see that there is a continuous increasing, convex,
and submodular function g : X → R, that has the properties that (i) for each v,
Γ(v) is a subset of the lower contour set of g, namely {(q, w) : g(q, w) 6 v}, and
(ii) solving the optimisation problem on this larger domain {(q, w) : g(q, w) 6 v}
instead of Γ(v) leaves the set of maximisers unchanged.

But this means that we have satisfied all the conditions of corollary 2(ii) of
Quah (2007). By Theorem 2, we know that there is a unique maximal rent contract,
and the maximisers of our program constitute a maximal rent contract. Therefore,
by corollary 2(ii) of Quah (2007), the unique maximal rent contract is monotone
increasing in v.

We end with a proof of proposition 5.3.

Proof of proposition 5.3. To prove part (a), recall that by Lemma 4.3, w1 6 . . . 6

wn which implies P ′(wn) > . . . > P ′(w1). The claim now follows from the first
order condition for wi (FOwi). Part (b) is an immediate consequence of the fact
that wi is monotone increasing in v (Theorem 3), and the first order condition
(FOwi). That 0 < x∗1 6 . . . 6 x∗n = v∗ in (c) follows from the fact that for each
i < n, λi(v) is decreasing in v and is nonnegative. All that remains is to show that
x∗1 < v∗.
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It suffices to show that there exists an ε > 0 such that λ1(v) = 0 for all
v ∈ (v∗− ε,∞). To see that this is true, suppose not, that is, suppose λ1(v) > 0 for
all v < v∗. Then, (L1) holds for all v < v∗, which implies δw1 = v+∑i(1−Fi)∆iq

∗
i+1.

But the optimal contract (q, w) is continuous in v, and qi(v∗) = q∗i . Therefore, for
some v sufficiently close to v∗, δw1 > v∗, which implies w1 > v∗, which is impossible
in a maximal rent contract (which requires that w1 6 v∗).

C. Proofs from Section 6

To prove proposition 6.1, we shall need the following lemma.

Lemma C.1. For any v > 0, qi(v) = q∗i for all i implies λi(v)/fi = λj(v)/fj =
Λn(v) for all i, j.

Proof. From the first order condition for qi, (FOqi), it is clear that Fi−1Λn = Λi−1

for all i > 1, since by assumption, µi = 0 for all i. For i = 2, this implies Λn = λ1/f1.

Suppose now that for all j 6 i − 1, we have λj/fj = λj−1/fj−1 = Λn. In
particular, we have Λn = Λi−1/Fi−1 = λi−1/fi−1, which can be rewritten as

fi−1Λi−1 = Fi−1λi−1.[C.1]

The condition Fk−1Λn = Λk−1 for k = i + 1 then gives us Λn = Λi/Fi =
λi−1/fi−1 (where the last equality is the induction hypothesis). This is equivalent
to fi−1λi + fi−1Λi−1 = λi−1fi + Fi−1λi−1. By equation (C.1), this is equivalent to
λi/fi = λi−1/fi−1. This establishes Λn = λj/fj = λj−1/fj−1 for all j < n.

For j = n, recall that Λn = Λn−1/Fn−1. This can be rewritten as Fn−1λn +
Fn−1Λn−1 = fnΛn−1 +Fn−1Λn−1, that is λn/fn = Λn−1/Fn−1 = Λn, as required.

We are now ready to prove proposition 6.1, which says that in the unique,
optimal maximal rent contract, for all v ∈ (0, v∗), P ′(wn) > P ′(v) > P ′(w1). This
is Lemma 5, parts (i) and (ii), of Thomas and Worrall (1990). While their proof is
applicable here, we give another proof of the result, that uses the monotonicity of
the optimal contract.
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Proof of proposition 6.1. Recall that w is monotone in type, that is w1 > . . . > wn,
which implies P ′(wn) > . . . > P ′(w1). The claim is that for all v ∈ (0, v∗),
P ′(wn) > P ′(v) > P ′(w1). So suppose the claim is not true. Since P ′ is a martingale,
the only possibility then is that P ′(w1) = · · · = P ′(wn) = P ′(v). (Notice that this
does not imply w1 = · · · = wn = v, since we haven’t established that P is strictly
concave.)

Since P ′(0) = ∞, we know that wn > 0. The first order condition (FOwi)
then implies λi/fi = λj/fj for all i, j. Corollary B.3 then implies Fi−1Λn = Λi−1,
and (FOqi) then implies qi = q∗i for all i.

Let v(0) := v, and define K = ∑n−1
i=1 (1 − Fi)∆iq

∗
i+1. Suppose v(k) is such

that qi(v(k)) = q∗i . Lemma C.1 then implies λi/fi = λj/fj for all i, j which, in
turn, implies P ′(w1) = · · · = P ′(wn) = P ′(v(k)). Define now, vk+1 := w1(v(j)) =(
v(j) +K

)
/δ, and notice that since the optimal qi(v) is (a) by lemma 5.2, less than

q∗i (v) for all i and v, and (b) by Theorem 3, monotone in v, so it must be that
qi(v(k+1) = q∗i for all i.

In sum, we have a sequence (v(k))k>0 with the following properties. (i) v(k+1)−
v(k) > K/δ, and (ii) P ′(v(k+1)) = P ′(v(k)) for all k. But by (i), there is some k
such that v(k) > v∗, and by assumption, P ′(v(0)) > −1. This gives us P ′(v(k)) =
P ′(v(0)) > −1 = P ′(v∗) = P ′(v(k)), which is a contradiction. (In the above, the
first equality is (ii) above, the strict inequality is since v(0) < v∗, P ′(v∗) = −1 by
definition, and the last equality is by definition of P – see Theorem 1.)

We now prove another useful lemma that shows that with positive probability,
the martingale P ′ can take all values in (−1,∞). This is lemma 5(iii) of Thomas
and Worrall (1990) and we follow their proof.

Lemma C.2. For any v ∈ (0, v∗), and γ > P ′(v), if state θn is repeated τ times
consecutively, then P ′(vτ ) > γ for τ large enough. Similarly, for −1 < γ < P ′(v),
if state θ1 is repeated τ times consecutively, then P ′(vτ ) < γ for τ large enough.

Proof. Suppose state θn occurs repeatedly. This gives us a sequence v0 = v,
v1 = wn(v0) <, and vτ = wn(vτ−1) < vτ−1. Since (vτ ) is a decreasing sequence that
is bounded below by 0, it has a limit. The first part is proved if we can show that
this limit is 0, since P ′(0) =∞.

Therefore, suppose the claim is not true. This implies there is some yn > 0
such that limτ→∞ = yn. In other words, limτ→∞wn(vτ ) = yn. Since the optimal
contract is continuous in v, wn(·) is continuous in v. Therefore, wn(yn) = yn, which
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contradicts proposition 6.1 which requires that wn(yn) < yn. This gives us the
desired contradiction. The second part is similar and therefore omitted.

We now move to the proof of proposition 4. Once again, we follow Thomas
and Worrall (1990).

Proof of proposition 4. Since P ′ is a martingale that is bounded below by −1,
it follows that P ′ + 1 is a nonnegative martingale. The (positive) Martingale
Convergence Theorem (see, for instance, Theorem 22 of Pollard, 2002), says that
P ′+1 converges almost surely to a nonnegative, integrable limit, P ′∞+1. Therefore,
P ′ converges almost surely to P ′∞, and the limit is integrable (which implies that
P ′∞ =∞ with zero probability). We want to show that P ′∞ = −1 almost surely.

Consider a sample path with the properties that (i) limt→∞ P
′(vt) = C /∈

{−1,∞}, and (ii) state θn occurs infinitely often, and define C =: P ′(y), so that
limt→∞ v

t = y. Consider a subsequence (σ(t)) such that θσ(t) = θn for all t, ie this
is the subsequence consisting of all the θn shocks in the original sequence. Since
(vσ(t)) is a subsequence of (vt), it also converges to y.

Recall that the evolution of promised utility along any sample path can
be written as ϕ(vt, θi) = vt+1, where ϕ(v, θi) is continuous in v. This induces
the function ϕσ(v, θn) where ϕσ(vσ(t), θn) = vσ(t+1). Since ϕ(v, θi) is continuous
in v, it follows that ϕσ(v, θn) is also continuous in v. Therefore, the sequence
ϕσ(vσ(t), θn) converges to ϕσ(y, θn). Moreover, ϕσ(y, θn) = ϕ(y, θn) = y, since
ϕσ(vσ(t), θn) = vσ(t+1), and limt→∞ v

σ(t) = limt→∞ v
t = y.

But limt→∞ P
′(vσ(t)) = C and limt→∞ P

′(vσ(t+1)) = C, so by the continuity of
P ′ we have P ′(y) = P ′

(
ϕσ(y, θn)

)
= P ′

(
ϕ(y, θn)

)
= C, contradicting proposition

6.1 which states that P ′(y) < P ′
(
ϕ(y, θn)

)
. But paths where state θn does not

occur infinitely often are of probability zero, which proves the proposition.

Proof of proposition 7.2. By way of contradiction, suppose it is never optimal to
fire an agent, then for all v ∈ [0, v0] the principal’s payoff is P (v). If she fires the
current agent when his sweat equity is v (and never fires another), then her payoff
is P (v0)− v. Hence, a contradiction will obtain if there exists v ∈ (0, v0) such that
P (v0)− v > P (v) or P (v) + v < P (v0). Note that P (0) < P (v0) by definition of
v0. Since P is continuous, there exists v > 0 such that P (v) + v < P (v0).
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D. Monotonicity of Maximisers

In this section, we provide some intuition behind Quah’s result. We then show how
the contracting problem (at any equity level v) may be viewed as an optimisation
problem, and describe fully transformed problems that are equivalent in the sense
that the contracting and transformed problems have identical solutions. Showing
that the transformed problem has maximisers monotone in v allows us to establish
the monotonicity of the solutions to the contracting problem.

D.1. Comparative Statics for Constrained Optimisation

We now provide a simplified version of and some of the intuition behind Quah’s
results. It is helpful to begin with some classical results from the theory of monotone
comparative statics. Let (X,&) be a lattice, with ∨ and ∧ respectively denoting the
least upper and greatest lower bounds. The strong set order, &p on 2X induced
by &, is defined as follows: S &p T if, and only if, for any x ∈ S and y ∈ T , x∨y ∈ S
and x ∧ y ∈ T . We can now state a result which tells us that larger constraint sets
imply the set of maximisers increases. For two subsets S and T of X, and for a
supermodular function U : X → R, arg maxx∈S U(x) &p arg maxx∈T U(x). Notice
now that in a setting where, say, X = Rn

+ and & is the standard Euclidean order,
and S and T are budget sets at different wealth levels, S and T cannot be ordered
in the strong set order.

But suppose now that there is a family of orders C on X such that X
is a lattice with respect to each order in the family C, and the function U is
supermodular with respect to the order & for each order &∈ C. Consider now, the
two budget sets S and T . If the family of orders C is rich enough that S &p T for
some &∈ C, then we would still be able to say something about the monotonicity
of the set of maximisers. This is precisely the observation of Quah (2007): If X
is a convex sublattice of Rn, endowed with the usual order >, and U : X → R
is supermodular and concave, then, there exists a family of orders C on X such
that U is supermodular with respect to each order in C, and C is rich enough
that a large class of constraint sets, for instance budget sets, can be ordered in the
strong set order induced by some order in C. Again, the key idea is that given two
constraint sets (that are well behaved, for instance two budget sets at different
wealth levels), there is an order &∈ C such that the budget sets can be ordered in
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the strong set order induced by &. Since U is supermodular with respect to all the
orders in C, the monotonicity result follows.

We now present the construction of the family of orders . For each i = 1, . . . , n,
there is a one-parameter family of partial orders (&i

t)t∈[0,1] on X such that U is
supermodular with respect to &i

t for all t ∈ [0, 1], that is, U is supermodular
with respect to each partial order in the family. In particular, the partial order
&i
t induces least upper and greatest lower bounds ∨it and ∧it that are defined as:

x ∨it y := y if xi 6 yi and x ∨it y := tx+ (1− t)(x ∨ y) if xi > yi. Similarly, define
x ∧it y := x if xi 6 yi and x ∧it y := ty + (1− t)(x ∧ y) if xi > yi.

Formally, let Ci := {&i
t: t ∈ [0, 1]} and say

x ∧ y x ∧it y
y

x ∨ y
x ∨it y

x
that U is Ci-supermodular if it is supermodular with
respect to the order &i

t for each &i
t∈ Ci. Then, U

is C-supermodular if it is Ci-supermodular for all
i = 1, . . . , n. To gain some intuition for this definition,
notice first that if t = 0, C-supermodularity reduces
to the standard notion of supermodularity. But for
U to be Ci-supermodular for some i, we require that
U(x) − U(x ∧it y) 6 U(x ∨it y) − U(y), that is, we require supermodularity with
respect to the backward bending parallogram in the figure.

To see the advantage of the family of orders (&i
t)t∈[0,1], i = 1, . . . , n, consider

two budget sets S := {x ∈ Rn
+ : 〈q, x〉 6 w} and T := {x ∈ Rn

+ : 〈q, x〉 6 w′},
where w > w′ are wealth levels and q is a price vector. Then, it can be shown that
there exists a t∗ ∈ [0, 1] such that S &i,p

t∗ T , that is, S dominates T in the strong
set order induced by the order &i

t∗ for each i. But since U is supermodular with
respect to the order &i

t∗ , we now see that arg maxx∈S U(x) &i,p
t∗ arg maxx∈T U(x).

In sum, by making stronger requirements of the function U , we introduce a
family of orders C on X such that U is C-supermodular, that is supermodular
with respect to each order in C. For any two budget sets that differ in wealth,
there exists an order such that one dominates the other in the induced strong
set order. This allows us to show that the set of maximisers is increasing in the
induced strong set order. Needless to say, this is but a sampling (and simplistic
account) of the results in Quah (2007). He generalises these ideas to allow for
ordinal notions (recall that our function U is concave and supermodular, both
cardinal notions), and more general constraint sets (our discussion is restricted
to budget sets). Notice in particular that budget sets are lower contour sets of
functions of the form 〈q, x〉, which are increasing, convex and submodular functions
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of x, and in light of the observation that supermodularity with respect to the
standard order on Rn and concavity imply supermodularity with respect to an
entire family of orders, this suggests we can consider constraint sets of the kind
described above, namely constraint sets that are the lower contour sets of increasing,
convex and submodular functions.

D.2. The Problem at Hand

The first thing to notice is that the optimisation problems we are interested in
take the following form:

[G] max
x∈X

U(x) s.t. Ax 6 v1

where 1 = (1, . . . , 1), X ⊂ Rn
+ is a convex sublattice, and A is an m× n matrix.

Typically, especially in the applications we have in mind, the matrix A will have
negative entries. We will make the following standing assumptions about the
objective: U is concave, supermodular and strictly increasing.

Suppose instead, that we are solving the problem

[N] max
x∈Rn

+
U(x) s.t. Âx 6 v1

where 1 = (1, . . . , 1), and Â is an m× n matrix that is nonnegative, that is each
entry âij > 0, and U is concave and supermodular. For each i = 1, . . . ,m, define
the linear functional fi as fi(x) = 〈âi, x〉 = ∑n

j=1 âijxj. Define also the function
g : Rn

+ → R as
g(x) = max{f1(x), . . . , fm(x)}

Proposition D.1. The function h(y) = max{y1, . . . , yn} is submodular.

Proof. Example 2.6.2, Topkis (1998, p 46), shows that x 7→ min{αixi : i =
1, . . . , n} where αi 6 0 for i = 1, . . . , n, is supermodular on Rn. Now, h(x) =
max{x1, . . . , xn} = −min{−x1, . . . ,−xn}. But x 7→ min{−x1, . . . ,−xn} is super-
modular, therefore h is submodular.

Our second proposition says that the constraint set is the lower contour set
of an increasing, convex and submodular function.
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Proposition D.2. Let fi be a positive linear functional, representing a row of the
matrix Â as above, so that fi > 0, for each i = 1, . . . ,m. Then, the function

g(x) = max{f1(x), . . . , fm(x)}

is increasing, convex and submodular in x.

Proof. The proof is a simple consequence of a lemma in Topkis (1998). Let X be a
lattice, fi(x) increasing and supermodular, Zi ⊂ R, the range of fi that is convex
for i = 1, . . . , n, and h(z1, . . . , zn) supermodular in (z1, . . . , zn) on×n

i=1 Zi, and is
decreasing and convex in zi for i = 1, . . . , n, and for all z−i ∈ Z−i. Then, lemma
2.6.4 from Topkis (1998, p 56) says that h

(
f1(x), . . . , fn(x)

)
is supermodular on

X.

Suppose now that fi is a positive linear functional for each i = 1, . . . , n, so
that the domain of fi is Zi = R. Then, g(x) = max{f1(x), . . . , fm(x)} is clearly
increasing and convex. All that remains to be shown is that g is submodular.
Notice that g(x) = −min{−f1(x), . . . ,−fm(x)}. Let h : Rn → R be defined
as h(z) = min{−z1, . . . ,−zn}, so that it satisfies the hypotheses of the lemma
stated above. Then, h

(
f1(x), . . . , fn(x)

)
= min{−f1(x), . . . ,−fm(x)} = −g(x) is

supermodular. Therefore, g is submodular on Rn, as required.

Notice that x ∈ Rn
+ satisfies Âx 6 v1 if, and only if, g(x) 6 v1. Recall

also that U is concave and supermodular. Then, our optimisation problem can be
rewritten as

[N] max
x∈Rn

+
U(x) s.t. g(x) 6 v1

where g is as defined above.

Therefore, by Proposition 4 and Theorem 2 of Quah (2007), the solution set
is monotone in v. In particular, if U is strictly concave (which implies the solution
is unique), the solution is monotone in v.

In the next section, we shall show that in the problems that concern us, we
can replace the general matrix A (which could have negative entries) by a matrix
Â that has only nonnegative entries without affecting the set of solutions of the
optimisation problem.
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D.3. Some Equivalent Problems

We will now show that problems of type (G) can be rewritten as problems of type
(N), and are therefore amenable to analysis. First some terminology. A set E ⊂ Rn

is polyhedral if it can be written as the intersection of a finite collection of closed
halfspaces. It is a polytope if it is a bounded polyhedron.

As in the problem (G), let A be anm×nmatrix, where a1j > 0 for j = 1, . . . , n.
Then, the set Ev

1 := {x ∈ Rn
+ : Ax 6 v1} is a polytope, and hence also polyhedral.

Notice that Ev
1 = vE1

1 , that is, the set of solutions to the linear inequalities is
homogeneous in v.

Corollary 19.3.2 of Rockafellar (1970) says that the sum of two convex
polyhedral sets is also convex polyhedral. Therefore, Ev

2 = Ev
1 + Rn

− = Ev
1 − Rn

+ is
also convex and polyhedral. Therefore, Ev

2 can be written as the intersection of a
finite collection of closed half spaces, ie there is a matrix Ã such that Ev

2 = {x ∈
Rn : Ãx 6 b}, where b ∈ Rm

++. Our first claim is that Ã is nonnegative, ie ãij > 0
for each i, j. In what follows, let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith unit vector
(when Rn has the standard basis).

Proposition D.3. The matrix Ã defined above is nonnegative.

Proof. Notice first that x ∈ Ev
2 implies x − ei ∈ Ev

2 , for all i = 1, . . . , n. To see
this, recall that x ∈ Ev

2 if, and only if, there exist x0 ∈ Ev
1 and y ∈ Rn

+ such that
x = x0− y. But y+ ei ∈ Rn

+, and by definition of Ev
2 , x0− (y+ ei) ∈ Ev

2 . Therefore,
x− ei = x0 + (y − ei) ∈ Ev

2 , as claimed.

To prove the proposition, let us now assume that ãij < 0. By definition
of Ã, there exists x ∈ Rn such that 〈ãi, x〉 = v, ie x lies on the hyperplane
defined by ãi that has value v. From the assumption that ãij < 0, it follows that
〈ãi, x− ei〉 = v − ãij > v, which implies x − ei /∈ Ev

2 , which is a contradiction.
Therefore, Ã is nonnegative, as claimed.

Since the function U is only defined on Rn
+, we introduce the domains

Dv
i := Ev

i ∩ Rn
+, for i = 1, 2. Thus, each Dv

i is a polytope. We now show that
enlarging the domain does not change the set of solutions to (G).

Proposition D.4. Let Dv
1 , Dv

2 and U be defined as above, where U is strictly
increasing. Then, x∗ ∈ arg maxx∈Dv

1
U(x) if, and only if x∗ ∈ arg maxx∈Dv

2
U(x).
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Proof. Let x∗1 ∈ arg maxx∈Dv
1
U(x) and suppose first that x∗1 /∈ arg maxx∈Dv

2
U(x).

Then, there exist y ∈ Dv
1 , z ∈ Rn

+ such that y − z ∈ Dv
2 and U(y − z) > U(x∗1).

But U is strictly increasing, so U(y) > U(y − z) > U(x∗1), which is a contradiction.

For the converse, suppose x∗2 ∈ arg maxx∈Dv
2
U(x). Clearly, if x∗2 /∈ Dv

1 , there is
z ∈ Rn

+ such that x∗2 + z ∈ Dv
1 ⊂ Dv

2 , and moreover, U(x∗2) < U(x∗2 + z). Therefore,
we must have that x∗2 ∈ Dv

1 . But this implies x∗2 ∈ arg maxx∈Dv
1
U(x), as desired.

We have therefore shown that Ev
2 can be written as Ev

2 := {x ∈ Rn : Ãx 6 b},
where b ∈ Rm

++. It is easy to see that each bi > 0, because if this were not the case,
we would have {x : 〈ãi, x〉 6 bi} ∩ Rn

+ = ∅, which would imply Ev
1 is not a subset

of Ev
2 , a contradiction.

Define now the new matrix Â = [âij] by âij = ãij/(bi/v). It is easy to see
that Ev

2 = {x ∈ Rn : Âx 6 v1}. Moreover, Â is nonnegative, as in problem (N).

D.4. Coda

Consider, once again, the problem

[G] max
x∈Rn

+
U(x) s.t. Ax 6 v1

where 1 = (1, . . . , 1), and A is an m× n matrix, and U is concave, supermodular
and strictly increasing. The propositions above establish that x∗ solves problem
(G) if, and only if, there is a nonnegative matrix Ã such that x∗ solves problem
(N). Therefore, the set of solutions x∗(v) is monotone in v, as desired.
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