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Abstract: Checking parameter stability of econometric models is a long standing problem. Almost

all existing structural change tests in econometrics are designed to detect abrupt breaks. Little

attention has been paid to smooth structural changes, which may be more realistic in economics.

We propose a consistent test for smooth structural changes as well as abrupt structural breaks

with known or unknown change points. The idea is to estimate smooth time-varying parameters

by local smoothing and compare the fitted values of the restricted constant parameter model and

the unrestricted time-varying parameter model. The test is asymptotically pivotal and does not

require prior information about the alternatives. A simulation study highlights the merits of the

proposed test relative to a variety of popular tests for structural changes. In an application, we

strongly reject the stability of univariate and multivariate stock return prediction models in the

post war and post oil-shocks periods.
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1. INTRODUCTION

Detection of structural changes in economic relationships is a long standing problem in econo-

metrics. However, most existing tests are designed for abrupt structural breaks. As Hansen

(2001) points out, “it may seem unlikely that a structural break could be immediate and might

seem more reasonable to allow a structural change to take a period of time to take effect”. In-

deed, technological progress, preference change and policy switch are some leading driving forces

of structural changes that usually exhibit evolutionary changes in the long term.

During the past two decades, time-varying time series models have appeared as a novel tool

to capture the evolutionary behavior of economic time series. A leading example is the Smooth

Transition Regression (STR) model developed by Lin and Ter
..
asvirta (1994). By the use of a

transition function, the STR model allows both the intercept and slope to change smoothly over

time. Parametric models for time-varying parameters lead to more effi cient estimation if the

coeffi cient functions are correctly specified. However, economic theories usually do not suggest

any concrete functional form for time-varying parameters; the choice of a functional form is

somewhat arbitrary. A nonparametric time-varying parameter time series model is introduced

by Robinson (1989, 1991) and further studied by Orbe, Ferreira and Rodriguez-Poo (2000, 2005)

and Cai (2007). One advantage of this nonparametric model is that little restriction is imposed

on the functional forms of the time-varying intercept and slope, except for the condition that they

evolve over time smoothly. Motivated by its flexibility, we will use this model as the alternative

to test smooth structural changes for a linear regression model.

To our knowledge, there are only two tests designed explicitly for smooth structural changes

in the literature. Farley, Hinich and McGuire (1975) construct an F test by comparing a linear

time series model with a parametric alternative whose slope is a linear function of time. Lin

and Ter
..
asvirta (1994) develop LM type tests against a STR alternative. An undesired feature of

these tests is that they use a specific parametric time-varying parameter model. While these tests

have best power against the assumed alternative, no prior information about the true alternative

is usually available for practitioners. In such scenarios, it is highly desirable to develop consistent

tests that have good power against all-round alternatives of structural changes.

This paper proposes a new consistent Wald-type test for smooth structural changes as well as

abrupt structural breaks. The test complements the existing tests for abrupt structural breaks

and avoids the diffi culty associated with whether there are multiple breaks and/or whether break-

points are unknown. We estimate smooth-changing parameters by local linear regression and

compare them with the OLS parameter estimator. The proposed Wald-type test can be viewed

as a generalization of Hausman’s (1978) test from the parametric framework to the nonparametric

framework. A generalized Chow’s (1960) F -type test could also be constructed by comparing

the sums of squared residuals (SSRs) between the restricted constant parameter model and the
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unrestricted time-varying parameter model (see Chen and Hong (2008) for details). Interestingly,

unlike Chow’s (1960) test, which is optimal in the context of the classical linear regression model

with i.i.d. normal errors, the generalized Chow test is no longer optimal. We show that the

generalized Hausman test is asymptotically more powerful than the generalized Chow test. For

this reason, this paper focuses on the generalized Hausman test.

Compared with the existing tests for structural breaks in the literature, the proposed test has

a number of appealing features. First, it is consistent against a large class of smooth time-varying

parameter alternatives as well as multiple sudden structural breaks with unknown break points.

Second, no prior information on a structural change alternative is needed. In particular, we do

not need to know whether the structural changes are smooth or abrupt, and in the cases of abrupt

structural breaks, we do not need to know the dates or the number of breaks. Third, different

frommany tests for structural breaks in the literature, the proposed test is asymptotically pivotal.

The only inputs required are the OLS and local linear time-varying parameter estimators. The

latter is in fact a locally weighted least squares estimator. Hence, any standard econometric

software can be used to implement the test. Fourth, because only local information is employed

in estimating parameters at each time point, the proposed test has symmetric power against

structural breaks that occur either in the first or second half of the sample period. In contrast,

some existing tests (e.g., Brown, Durbin and Evans’(1975) CUSUM test) have different powers

against structural breaks that have same sizes but occur at different time points. Fifth, unlike

such tests as Andrews’(1993) supremum test and Bai and Perron’s (1998) double maximum test,

no trimming of the boundary region near the end points of the sample period is needed for our

test. Moreover, as a by-product, the nonparametric local linear estimators of the time-varying

parameters can provide insight into the stability of the economic relationship.

In Section 2, we introduce the framework and state the hypotheses of interest. Section 3

describes our approach and the form of the test statistic. Section 4 derives the asymptotic null

distribution and Section 5 investigates the asymptotic power. In Section 6, a simulation study is

conducted to assess the reliability of the asymptotic theory in finite samples. Section 7 applies our

test to stock return predictability models and documents strong evidence against model stability.

Section 8 concludes. All mathematical proofs are collected in the Supplemental Appendix.

2. HYPOTHESES OF INTEREST

Consider the data generating process (DGP)

Yt = X′tαt + εt, t = 1, .., T, (2.1)

where Yt is a dependent variable, Xt is a d × 1 vector of explanatory variables, αt is a d × 1
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possibly time-varying parameter vector, εt is an unobservable disturbance with E(εt|Xt) = 0

almost surely (a.s.), d is a fixed positive integer, and T is the sample size. The regressor vector

Xt can contain exogenous explanatory variables and lagged dependent variables. Thus, both

static and dynamic regression models are covered.

Like the bulk of the literature on structure changes, we are interested in testing constancy of

the regression parameter in (2.1). The null hypothesis of interest is

H0 : αt = α for some constant vector α ∈ Rd and for all t.

The alternative hypothesis HA is that H0 is false. Under H0, the unknown constant parameter
vector α can be consistently estimated by (e.g.) the OLS estimator

α̂ = arg min
α∈Rd

T∑
t=1

(Yt −X′tα)2. (2.2)

Under the alternative HA, αt is a time-varying parameter vector. Examples include Chow’s

(1960) single break model, Hall and Hart’s (1990) deterministic trend model, Lin and Ter
..
asvirta’s

(1994) STR model. Tests for parametric structural change alternatives (e.g., Lin and Ter
..
asvirta’s

(1994) LM tests) have best power against the assumed alternative. Unfortunately, usually no

prior information about the structural change alternative is available in practice. To cover a wide

range of alternatives, we consider the following smooth time-varying parameter model:

Yt = X′tα (t/T ) + εt, t = 1, ..., T, (2.3)

where α : [0, 1] → Rd is an unknown smooth function except for a finite number of points over
[0, 1]. Discontinuities of α(·) at a finite number of points in [0, 1] allow abrupt structural changes.

This model is introduced by Robinson (1989, 1991) and its nonparametric estimation has

been considered in Robinson (1989, 1991), Orbe et al. (2000, 2005) and Cai (2007).1 It avoids

restrictive parameterization of α(·). The specification that parameter α(·) is a function of ratio
t/T rather than time t only is a common scaling scheme in the literature (e.g., Phillips and

Hansen 1990). The reason for this requirement is that a nonparametric estimator for αt will not

be consistent unless the amount of data on which it depends increases, and merely increasing

the sample size will not necessarily improve estimation of αt at some fixed point t, even if some

smoothness condition is imposed on αt. The amount of local information must increase suitably

if the variance and bias of a nonparametric estimator of αt are to decrease suitably. A convenient

way to achieve this is to regard αt as ordinates of smooth function α(·) on an equally spaced
1These authors consider pointwise consistent nonparametric estimation of time-varying parameters α(t/T ) and

σ2(t/T ), where var(εt) = σ2(t/T ). They do not consider testing parameter constancy.
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grid over [0, 1], which becomes finer as T →∞, and consider estimation of α(τ) at fixed points

τ ∈ [0, 1]. Consistent estimation of model (2.3) is considered in Robinson (1991) and Cai (2007)

using local constant smoothing and local linear smoothing respectively.

The specification of αt = α(t/T ) does not regard the sampling of (Yt,X
′
t)
′ as taking place on a

grid on [0, 1], which would make the preservation of independence or weak dependence properties

as T increases implausible. We note that the device of taking (Yt,X
′
t )′ to be observations at

intervals 1/T on a continuous process on [0, 1] that itself is independent of T would not work

because it does not achieve the accumulation of new information as T increases, which is needed

for consistency. Making parameter αt depend on T is common in econometrics. A well-known

example is local power analysis, where local alternatives are specified as a function of T.

Model (2.3) includes the class of locally stationary autoregressive models in Dahlhaus (1996):

Yt = α0 (t/T ) +

p∑
j=1

αj (t/T )Yt−j + εt,

where εt = σ(t/T )vt and vt ∼ i.i.d.N(0, 1). A locally stationary process is a nonstationary time

series whose behavior can be locally approximated by a stationary process. In time series analysis,

it is often assumed that nonstationary economic time series can be transformed, by removing

time trends and/or taking differences, into a stationary process. In fact, the transformed series

may still not be stationary, even after trending components are removed. Locally stationary time

series models nicely fill this gap and provide new insight into modelling economic time series.

We will assume that α(·) is continuous except for a finite number of points on [0, 1]. In other

words, we permit α(·) to have finitely many discontinuities. Hence, single structural break or
multiple breaks with known or unknown break points, as often considered in this literature, are

special cases of model (2.3). For example, suppose α(·) is a jump function, namely,

α (τ) =

{
α0, if τ ≤ τ 0,

α1, otherwise.

Then we obtain the single break model originally considered in Chow (1960).

3. NONPARAMETRIC TESTING

We now propose a consistent test for smooth structural changes. Recall that under H0,
we have a constant parameter regression model Yt = X′tα + εt, where α can be consistently

estimated by the OLS estimator α̂ in (2.2). Under the alternative HA, αt = α(t/T ) is changing

over time. The OLS estimator α̂ is no longer suitable because there exists no parameter α such

that E(Yt|Xt) = X′tα a.s. under HA. However, a nonparametric estimator can consistently

estimate the time-varying parameter αt.
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Various nonparametric methods could be used to estimate αt. Robinson (1991) and Cai

(2007) study the pointwise consistency and asymptotically normality of the kernel and local

linear estimators respectively. Here, we use local linear smoothing, which includes the kernel

method as a special case. Cai (2007) shows that although the kernel and local linear estimators

share the same asymptotic properties at the interior points, the latter converges faster than the

former in the boundary regions near the end points of the sample period. The use of local linear

smoothing is quite suitable in the present context.2 In particular, structural changes near the

boundary regions are notoriously diffi cult to detect, as shown by many previous works in the

literature (e.g., Chu, Hornik and Kuan 1995). Unlike many existing tests, no trimming is needed

for the local linear smoother, which can estimate structural changes near boundary regions for

suffi ciently large samples. Thus, it is expected to give better power in such cases.

Put Zst =
(
1, s−t

T

)′
, and kst = k

(
s−t
Th

)
, where the kernel k(·) : [−1, 1]→ R+ is a prespecified

symmetric probability density, and h ≡ h(T ) is a bandwidth such that h → 0 and Th → ∞ as

T →∞. For notational simplicity, we have suppressed the dependence of Zst and kst on T and
h. Examples of k(·) include the uniform, Epanechniov and quartic kernels.
We note that although local linear smoothing can enhance the convergence rate of the as-

ymptotic bias in the boundary regions [1, Th] ∪ [T − Th, T ] from h to h2, the scale is different

from that of an interior point. As shown in Cai (2007), the asymptotic bias at an interior point is

proportional to h2
∫ 1
−1 u

2k(u)du while that at a boundary point is proportional to h2b(c), where

b(c) = (µ22c − µ1cµ3c)/(µ0cµ2c − µ21c), µic =
∫ 1
−c u

ik(u)du, i = 0, 1, 2, 3 and 0 < c < 1. Although

the convergence rate is the same as in the interior region, the asymptotic variance at a boundary

point tends to be larger, because fewer observations contribute to the estimator in the bound-

ary regions. These differences would complicate the form of our test statistics. Moreover, the

observations contained in the boundary regions [1, Th] ∪ [T − Th, T ] are rather substantial. For

example, if h = (1/
√

12)T−1/5 is used, then about 23%, 17% and 10% of the observations fall

into the boundary regions when the sample size T = 100, 500 and 5, 000 respectively.

To make the behavior of the local linear estimator at boundary points similar to that at

interior points, we follow Hall and Wehrly (1991) to reflect the data in the boundary regions,

obtaining pseudodata Xt = X−t, Yt = Y−t for −bThc ≤ t ≤ −2, where bThc denotes the integer
part of Th, and Xt = X2T−t, Yt = Y2T−t for T + 1 ≤ t ≤ T + bThc. We use the synthesized
data (i.e., the union of the original data and the pseudodata) to estimate αt. By construction,

symmetric data points are available in the original boundary regions [1, Th]∪ [T−Th, T ]. Besides

2Both local linear smoothing and the conventional kernel method are local smoothing. Global smoothing (e.g.,
series approximation) is another class of nonparametric method. The coeffi cient function α(·) may not have a
nice shape and many terms are needed when using a serial approximation, which complicates the estimation. On
the other hand, structural change is the local behavior of parameters and hence local smoothing is expected to
have better approximation in many cases.

5



in nonparametric regression estimation, this method has also been described as “reflection about

the boundaries”by Cline and Hart (1991) in nonparametric density estimation. It has not been

used to estimate time-varying coeffi cients in the previous literature.

The local linear parameter estimator is obtained by minimizing the local SSR:

min
β∈R2d

t+bThc∑
s=t−bThc

kst

[
Ys − α′0Xs − α′1

(
s− t
T

)
Xs

]2
=

t+bThc∑
s=t−bThc

kst(Ys − β′Qst)
2, (3.1)

where β = (α′0, α
′
1)
′ is a 2d × 1 vector, αj is a d × 1 coeffi cient vector for ( s−t

T
)jXs, j = 0, 1,

Qst = Zst ⊗ Xs is a 2d × 1 vector, and ⊗ is the Kronecker product. Note that the device of
using pseudodata does not affect the estimation at interior points [Th, T − Th]. By solving the

optimization problem in (3.1), we obtain the solution:

β̂t =

 t+bThc∑
s=t−bThc

kstQstQ
′
st

−1 t+bThc∑
s=t−bThc

kstQstYs, t = 1, ..., T. (3.2)

This is a locally weighted least square estimator. As pointed out by Cai (2007), the local linear

estimator could be regarded as the OLS estimator of the transformed model

k
1/2
st Ys = k

1/2
st X

′
sα0 + k

1/2
st

(
s− t
T

)
X′sα1 + k

1/2
st εs, s = 1, ..., T.

Hence the estimation can be implemented by standard econometric software.

Put e1 = (1, 0)′. Then the local linear estimator for αt is given by

α̂t = (e′1 ⊗ Id)β̂t, t = 1, ..., T. (3.3)

We note that with the reflection method for the boundary regions, one can also use the kernel

method, which is equivalent to a local linear estimation with the restriction α1 = 0. The test

statistic has the same asymptotic distribution for both local constant and linear estimators.

With α̂t, we can construct a Wald-type test by comparing the OLS and nonparametric re-

gression estimators. This can be interpreted as a generalized Hausman’s (1978) test. Hausman’s

(1978) test is a convenient specification test that compares two parameter estimators, where

one is effi cient but inconsistent under the alternative, and the other is ineffi cient but consistent

under the alternative. Here we extend Hausman’s (1978) idea from a parametric regression to a

nonparametric time-varying parameter regression, where the OLS regression estimator X′tα̂ can

be viewed as an effi cient estimator for E(Yt|Xt), and the nonparametric time-varying parameter

regression estimator X′tα̂t can be viewed as an ineffi cient but consistent estimator for E(Yt|Xt)
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under HA. We compare these parametric and nonparametric fitted values via a sample quadratic

form:

Q̂ =
1

T

T∑
t=1

(X′tα̂t −X′tα̂)2.

The statistic Q̂ converges to 0 under H0, but to a strictly positive constant under HA, giving

the test asymptotic unit power. Any significant departure of Q̂ from 0 is evidence of structural

changes.3 Formally, our generalized Hausman test is a standardized version of Q̂ :

Ĥ =
(
T
√
hQ̂− ÂH

)
/

√
B̂H , (3.4)

where ÂH = h−1/2CAtrace(Ω̂M̂−1), B̂H = 4CBtrace(M̂−1Ω̂M̂−1Ω̂), CA = T−1h−1Σ
bThc
j=−bThc

(1− |j|
T

)k( j
Th

)[k( j
Th

) + h
∫ 1
−1 k

(
j
Th

+ 2u
)
du] =

∫ 1
−1 k

2 (u) du+ o(1), CB = T−1h−1ΣT−1
j=1 (1− j

T
)

[
∫ 1
−1 k(u)k(u + j

Th
)du]2 =

∫ 1
0

[
∫ 1
−1 k(u)k(u + v)du]2dv + o(1), M̂ = T−1ΣT

t=1XtX
′
t, and Ω̂ =

T−1ΣT
t=1ε̂

2
tXtX

′
t. Note that CA and CB are independent of the random sample {Xt, Yt}Tt=1.

The factors ÂH and B̂H are approximately the mean and variance of T
√
hQ̂. They have taken

into account the impact of conditional heteroscedasticity and higher order serial dependence

in the residual {εt} . As a result, the Ĥ test is robust to conditional heteroscedasticity and

time-varying higher order conditional moments of unknown form in {εt}. If εt is conditional
homoscedastic, ÂH and B̂H can be simplified to h−1/2dCAσ̂

2 and 4dCBσ̂
4 respectively, where

σ̂2 = T−1ΣT
t=1(Yt −X′tα̂t)2 is the residual variance estimator.

4. ASYMPTOTIC DISTRIBUTION

To derive the asymptotic distribution of Ĥ, we impose the following regularity conditions.

Assumption A.1: {X′t, εt}′ is a (d+ 1)×1 stationary β-mixing process with mixing coeffi cients
{β(j)} satisfying Σ∞j=1j

2β (j)
δ

1+δ < C for some 0 < δ < 1.

Assumption A.2: {εt} is a martingale difference sequence (m.d.s.) such that E (εt|Ft−1) = 0

and E(ε2t ) = σ2, where Ft−1 = {Xt,Xt−1, ..., εt−1, εt−2, ...} .
Assumption A.3: (i) The d × d matrix M = E(XtX

′
t) is finite and positive definite; (ii)

E(X8
ti) <∞ for i = 1, ..., d; (iii) E (Y 8

t ) <∞.
Assumption A.4: α̂ is a parameter estimator such that

√
T (α̂ − α∗) = OP (1), where α∗ =

p limT→∞ α̂ and α∗ = α under H0, where α is given in H0.
Assumption A.5: k : [−1, 1]→ R+ is a symmetric bounded probability density function.
Assumption A.6: The bandwidth h = cT−λ for 0 < λ < 1 and 0 < c <∞.

3Alternatively, we could compare α̂t and α̂ directly and the asymptotic derivation is similar. However, multi-
plying the coeffi cients by Xt gives comparison between fitted values of the restricted and unrestriced models and
the asymptotic pivatality of our test.
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The β-mixing condition in Assumption A.1 imposes restriction on temporal dependence in

{X′t, εt}′. Assumption A.2 allows dynamic regression models where Xt contains both exogenous

and lagged dependent variables, and conditional heteroscedasticity of unknown form.4 We note

that our m.d.s. assumption is weaker than Lin and Ter
..
asvirta’s (1994), who assume that {εt} is a

m.d.s. with limt→∞E(ε2t |Ft−1) = σ2. Assumption A.2 requires that the linear regression model is

correctly specified under H0 and the violation of correct model specification may lead to spurious
rejection of model stability. Assumption A.3 are moment conditions on Xt and Yt, commonly

assumed in the regression literature. It could be relaxed to allow time-varying moments (i.e.,

M(t/T ) = E(XtX
′
t) is a function of standardized time t/T ) at the cost of more tedious proof

and test statistic. Assumption A.4 holds for any
√
T -consistent estimator for α under H0. We

allow but are not restricted to the OLS estimator α̂ in (2.2).

Assumption A.5 implies
∫ 1
−1 k(u)du = 1,

∫ 1
−1 uk(u)du = 0 and

∫ 1
−1 u

2k(u)du < ∞. All exam-
ples noted in Section 3 satisfy this assumption. It is possible to use kernels with infinite support,

such as the Gaussian kernel k(u) = 1√
2π

exp(−1
2
u2), −∞ < u <∞. However, we only use kernels

with bounded support to simplify our analysis. Assumption A.6 implies h → 0 and Th → ∞.
This is the standard condition for bandwidth and covers the optimal rate h ∝ T−

1
5 of the non-

parametric estimation for αt. In practice, h can be chosen via a simple rule-of-thumb approach,

namely h = (1/
√

12)T−
1
5 , where 1/

√
12 is the standard deviation of U(0, 1), which could be

viewed as the limiting distribution of the grid points t
T
, t = 1, ..., T, as T → ∞. More sophisti-

cally, an automatic method such as cross-validation (CV) may be used. Define a “leave-one-out”

estimator α̂−t = (e′1⊗Id)β̂−t, where β̂−t = (Σ
t+bThc
s=t−bThc,s 6=tkstQstQ

′
st)
−1Σ

t+bThc
s=t−bThc,s 6=tkstQstYs. Then

a data-driven choice of h is ĥCV = arg minc1≤h≤c2 CV (h), where CV (h) = ΣT
t=1(Yt−X′tα̂−t)2.We

investigate this method in the simulation study.

We now state the asymptotic distribution of Ĥ under H0.

Theorem 1: Suppose Assumptions A.1−A.6 and H0 hold. Then (i) Ĥ
d→ N(0, 1) as T → ∞.

(ii) Suppose in addition var(εt|Xt) = σ2 a.s., then ÂH = h−1/2dCAσ̂
2 and B̂H = 4dCBσ̂

4.

As an important feature of Ĥ, the use of the restricted parametric estimator α̂ in place of

the regression parameter α under H0 has no impact on the limit distribution of Ĥ. Intuitively,
α̂ converges to α faster than the nonparametric estimator α̂t. Consequently, the asymptotic

distribution of Ĥ is solely determined by the nonparametric estimator α̂t. In small samples, the

distribution of Ĥ may not be well approximated by the asymptotic N(0,1) distribution. Accurate

finite sample critical values can be obtained via bootstrap; see Section 6 for more discussion.

5. ASYMPTOTIC POWER
4Assumption A.2 rules out linear regression models with endogeneity. For such cases, we could compare a

two-stage least square (2SLS) estimator and a local 2SLS estimator, and construct a test statistic accordingly.
This is left for future research.
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To study the asymptotic power of Ĥ under HA, we impose the following assumption:

Assumption A.7: The coeffi cient function α : [0, 1] → Rd is continuous except for a finite

number of discontinuity points on [0, 1] and supu0∈(0,1)
∥∥∥limu→u+0

α (u)− limu→u−0
α (u)

∥∥∥ ≤ C.

This allows both smooth structural changes and abrupt structural breaks with known or

unknown break points. For abrupt structural breaks, the break size is bounded.

Theorem 2: Suppose Assumptions A.1−A.7 hold. Then for any sequence of nonstochastic
constants {MT = o(T

√
h)}, P (Ĥ > MT )→ 1 under HA as T →∞.

Theorem 2 suggests that Ĥ is consistent against all alternatives toH0 at any given significance
level, subject to Assumption A.7. Thus, for T suffi ciently large, Ĥ can detect any structural

changes, including those occur close to the starting and ending points of the sample period

because no trimming is used. This is rather appealing because no prior information about the

alternative is available in practice. It avoids the blindness of searching for possible alternatives of

structural changes. We note that for (and merely for) simplicity, stationarity for Xt is assumed

under HA. One could allow Xt to be a locally stationary process.

To gain more insight into the power property of Ĥ, we consider two classes of local alternatives.

Case 1 [Local Smooth Structural Change]:

H1A (jT ) : α (u) = α + jTg (u) , u ∈ [0, 1],

where g : [0, 1]→ Rd is a twice continuously differentiable vector function with supu∈[0,1] ‖g (u)‖ ≤
C and supu∈[0,1] ‖d2g (u) /du2‖ ≤ C. The term jTg(u) characterizes the departure of the smooth-

changing α(u) from α at each point u ∈ [0, 1] and jT is the speed at which the departure vanishes

to 0 as T →∞. For notational simplicity, we have suppressed the dependence of α(u) on T.

Case 2 [Local Sharp Structural Change at Some Point u0]:

H2A (bT , rT ) : α (u) = α + bTf [(u− u0) /rT ] , u ∈ [0, 1],

where u0 is a given point in [0, 1], f : R→ Rd is a twice continuously differentiable vector function
with supz∈R ‖f (z)‖ ≤ C and supz∈R ‖d2f (z) /dz2‖ ≤ C, bT = b(T ) → 0, and rT = r(T ) → 0

as T →∞. This alternative is studied by Rosenblatt (1975) and Horowitz and Spokoiny (2001)
in different contexts. Under H2A(bT , rT ), the coeffi cient function α(u) eventually becomes a

nonsmooth spike at location u0 (i.e., a sudden break) as T → ∞, due to the existence of the
shrinking width parameter rT . Here, rT controls the sharpness of the structural change around

u0, and bT is the speed at which the departure of α(u) from α at each point u ∈ [0, 1] vanishes

to 0 as T →∞. For concreteness, we use OLS estimation under H0 in Theorem 3 below.
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Theorem 3: Suppose Assumptions A.1—A.6 hold and let α̂ be the OLS estimator. (i) Under

H1A (jT ) with jT = T−1/2h−1/4, Ĥ
d→ N(δ1, 1) as T → ∞, where δ1 = [

∫ 1
0
g (u)′Mg (u) du −∫ 1

0
g (u)′ duM

∫ 1
0
g (u) du]/

√
BH , where BH = 4trace(M−1ΩM−1Ω)

∫ 1
0

[
∫ 1
−1 k(u)k(u + v)du]2dv,

M = E (XtX
′
t) and Ω = E(ε2tXtX

′
t). (ii) Under H2A (bT , rT ) with bT → 0, rT → 0, b2T rT =

T−1h−1/2 and h = o (rT ) , Ĥ
d→ N(δ2, 1) as T →∞, where δ2 = [

∫∞
−∞ f (z)′Mf (z) dz]/

√
BH .5

Our test has nontrivial power against the class of smooth alternatives H1A (jT ) with rate

jT = T−1/2h−1/4, which is slightly slower than the parametric rate T−1/2 as h→ 0.6 In contrast,

parametric tests such as Andrews’(1993) supremum and Bai and Perron’s (1998) double maxi-

mum tests can have nontrivial power against H1A (jT ) with jT = T−1/2. Thus, these parametric

tests could be more powerful than ours against the smooth alternatives H1A (jT ). This is the

cost we have to pay to construct a consistent smoothed test Ĥ.

However, our test can have better power than the aforementioned parametric tests against

the class of nonsmooth sharp alternatives H2A(bT , rT ) for suitable sequences of bT and rT . For

example, suppose we choose h = T−1/5, rT = T−1/5 (ln lnT )ε and bT = T−7/20 (ln lnT )−ε/2

for small ε > 0. Since bT rT = o
(
T−1/2

)
, it is not diffi cult to show that the noncentrality

parameters of the aforementioned parametric tests converge to 0 as T → ∞. In this case, our
test is asymptotically more powerful than those parametric tests under H2A(bT , rT ).

In the classical normal linear regression model, Chow’s (1960) F test enjoys the optimal

power property against a single structural break. We can also construct a generalized Chow’s

F -type test by comparing the SSRs between the restricted constant parameter model and the

unrestricted time-varying parameter model, namely

Ĉ =
[√

h(SSR0 − SSR1)− ÂC
]
/

√
B̂C ,

where SSR0 = ΣT
t=1(Yt − X′tα̂)2, SSR1 = ΣT

t=1(Yt − X′tα̂t)2, ÂC and B̂C are some suitable

centering and scaling factors (see Chen and Hong (2008)). Interestingly, this optimality property

disappears for Ĉ in the present nonparametric setup, because it is asymptotically less powerful

than Ĥ under the same local or global alternative. This is established in Theorem 4 below.

Theorem 4: (i) Suppose the conditions of Theorem 3 hold and the same kernel k(·) and band-
width h are used for both the Ĥ and Ĉ tests. Then Ĥ is asymptotically more effi cient than

Ĉ under both H1A(jT ) and H2A(bT , rT ) respectively. (ii) Suppose Assumptions A.1—A.7 hold.

5It may first seem odd that the noncentrality parameter δ2 does not depend on the given location point
u0 ∈ [0, 1]. This is due to the fact thatM is not time-varying. If we allow for the time-varying second moment of
Xt, δ2 would depend on u0.

6We note that no "curse of dimensionality" problem exists here as the nonparametric regression is implemented
with respect to the scalar t/T.
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Then Ĥ is asymptotically more effi cient than Ĉ in terms of the Bahadur asymptotic effi ciency

criterion.

Theorem 4 (i) suggests that Ĥ is more effi cient than Ĉ in terms of the Pitman asymptotic

effi ciency criterion, which is suitable for local power analysis. Theorem 4(ii) shows that the

relative effi ciency of Ĥ over Ĉ carries over to the global alternative. The Pitman (Pitman 1979)

and Bahadur (Bahadur 1960) asymptotic relative effi ciency criteria are the limit ratios of the

sample sizes required by the two tests to achieve the same asymptotic p-value under the same

local or global alternative respectively. Theorem 4 implies that under the same set of conditions,

including the same local or global alternative, the same bandwidth and kernel, the generalized

Hausman test is asymptotically more effi cient than the generalized Chow test.

Intuitively, the relative effi ciency of Ĥ over Ĉ follows because the direct comparison of fitted

values between the restricted and unrestricted models has a smaller variation than the comparison

of the SSRs between two models. To see this, we decompose

SSR0 − SSR1 = 2
T∑
t=1

(α̂t − α̂)′Xtεt +
T∑
t=1

(X′tα̂t −X′tα̂)2 + Remainder term. (5.1)

The asymptotic distribution of Ĉ is jointly determined by the first two terms in (5.1), whose

total variance is larger than the variance of the second term, thus causing lower power than Ĥ.

The asymptotic distribution of Ĥ is determined by the second term of (5.1) only.

The relative effi ciency of Ĥ over Ĉ is sizable. It can be shown that with the choice of

bandwidth h = cT−λ, both Pitman and Bahadur relative effi ciencies of Ĥ to Ĉ are

RE(Ĥ : Ĉ) =

{∫ 1

−1

[
2k (v)−

∫ 1

−1
k (u) k (u+ v) du

]2
dv/

∫ 1

−1

[∫ 1

−1
k (u) k (u+ v) du

]2
dv

} 1
2−λ

.

Suppose the bandwidth rate parameter λ = 1/5, which gives the optimal bandwidth rate for

estimating α(t/T ). Then for most commonly used kernels, such as the uniform, Epanechniov and

quartic kernels, we have RE(Ĥ : Ĉ) = 2.80, 2.04, 1.99 respectively.

Caution may be taken when the generalized Hausman and Chow tests reject H0. It is possible
that the rejection is due to a nonlinear relationship or other model misspecifications rather than

structural changes. For example, the choice of an inappropriate functional form and omitted

variables can result in spurious structural changes. Of course, this is not particular to the

proposed tests, but relevant to all existing tests for structural breaks.

6. FINITE SAMPLE PERFORMANCE
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We now compare the finite sample performances of the proposed tests and those of Lin and

Ter
..
asvirta (1994), Andrews (1993), Bai and Perron (1998) and Elliott and Müller (2006).

To examine the size of all tests under H0, we consider the following DGP:
DGP S.1 [No Structural Change]:{

Yt = 1 + 0.5Xt + εt,

Xt = 0.5Xt−1 + νt, νt ∼ i.i.d.N (0, 1) .

To examine robustness of tests, we consider three cases for the regression error εt : (i) εt ∼
i.i.d.N (0, 1) ; (ii) εt =

√
htut, ht = 0.2 + 0.5ε2t−1, ut ∼ i.i.d.N (0, 1) ; (iii) εt =

√
htut, ht =

0.2 + 0.5X2
t , ut ∼ i.i.d.N (0, 1) . Note that var (εt|Xt) 6= σ2 under Case (iii). We generate 5, 000

data sets of the random sample {Xt, Yt}Tt=1 for T = 100, 250 and 500 respectively.

We use the uniform kernel for both Ĥ and Ĉ tests. Our simulation experience suggests that

the choice of k(·) has little impact on the performance of the tests. For space, we report results
based on the simple rule-of-thumb bandwidth h = (1/

√
12)T−

1
5 , which attains the optimal rate

for local linear fitting.7 We compare Ĥ and Ĉ with a variety of popular tests, namely, Lin

and Ter
.
asvirta’s (1994) LM test based on the first order Taylor expansion, Andrews’ (1993)

supremum LM test, Bai and Perron’s (1998) UDmax test, and Elliott and Müller’s (2006)

qLL test.8 Following Andrews (1993), we choose the trimming region Π = [0.15, 0.85] for the

tests of Andrews (1993) and Bai and Perron (1998). For Bai and Perron’s (2003) test, we set

the upper bound of the number of breaks at 5. We consider both heteroscedasticity robust and

homoscedasticity-specific versions of all tests (the latter are all denoted as -het), following Elliott

and Müller (2006).

Table 1 reports the rejection rates of all tests under DGP S.1 at the 5% significance level, us-

ing asymptotic theory. Under iid and ARCH errors, both Ĥ and Ĉ overreject H0 when T = 100,

but not excessively and improve as T increases; the Ĥ and Ĉ tests derived under conditional

homoscedasticity and i.i.d. have better sizes than Ĥ-het and Ĉ-het respectively. Under con-

ditional heteroscedastic errors, the Ĥ and Ĉ tests derived under conditional homoscedasticity

display strong overrejection, as is expected. For other tests, Andrews’supremum LM is quite

conservative, especially its heteroscedasticity version. In contrast, Bai and Perron’s UDmax test

shows quite big overrejection. Overall, Lin and Ter
.
asvirta’s (1994) LM and Elliott and Müller’s

(2006) qLL tests have best sizes for small samples, but our tests also have reasonable sizes.

7We also try the rule-of-thumb bandwidth with different scaling parameters and the CV bandwidth described
in Section 4. Simulation results, reported in the Supplemental Appendix, show that empirical sizes and powers
are a bit sensitive to the bandwidth selection without bootstrap. However, the nonparametric bootstrap described
below alleviates the sensitivity to the choice of the bandwidth.

8For space, simulation results for Brown et al.’s (1975) CUSUM test, Hackl’s (1980) MOSUM test, Lin and
Ter

.
asvirta’s (1994) LM2, LM3, Andrews and Ploberger’s (1994) exponential and average LM tests, and Bai and

Perron’s (1998) WDmax test can be found in the Supplemental Appendix.
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Because the sizes of our tests using asymptotic theory differ from the nominal level in small

samples and are a bit sensitive to bandwidth selection, we consider a nonparametric bootstrap:

Step (i): Estimate the model via OLS and nonparametric regression respectively and compute

the Ĥ statistic and the nonparametric residual ε̂t = Yt−X′tα̂t; Step (ii): Obtain a wild bootstrap
residual ε̂∗t from the centered nonparametric residual ε̄t = ε̂t − T−1ΣT

t=1ε̂t and construct a boot-

strap sample {Xt, Y
∗
t }Tt=1, where Y ∗t = X′tα̂ + ε̂∗t ;

9 Step (iii): Compute the bootstrap statistic

Ĥ∗, in the same way as Ĥ, with {Xt, Y
∗
t }Tt=1 replacing the original sample {Xt, Yt}Tt=1; Step (iv):

Repeat steps (ii) and (iii) B times to obtain B bootstrap test statistics {Ĥ∗l }Bl=1, where B is

suffi ciently large; Step (v): Compute the bootstrap p-value p∗ ≡ B−1ΣB
l=11(Ĥ∗l > Ĥ).

We generate 500 data sets of random sample {Xt, Yt}Tt=1 and use B = 99 bootstrap iterations

for each simulated data set. Table 1 shows that the bootstrap indeed approximates the finite

sample distribution of test statistics more accurately. Table 7A in the Supplemental Appendix

shows that the bootstrap p-values are not sensitive to the choice of bandwidth h.

To investigate the power of all tests in detecting structural changes, we consider five alter-

natives: (i) a single break, (ii) multiple breaks, (iii) non-persistent temporal breaks, (iv) smooth

structural changes, and (v) unit root in parameters, respectively:

DGP P.1 [Single Structural Break ]:10

Yt =

{
1 + 0.5Xt + εt, if t ≤ 0.3T,

1.2 +Xt + εt, otherwise.

DGP P.2 [Multiple Structural Breaks]:

Yt =


0.6 + 0.3Xt + εt, if 0.1T ≤ t ≤ 0.2T or 0.7T ≤ t ≤ 0.8T,

1.5 +Xt + εt, if 0.4T ≤ t ≤ 0.5T ,

1 + 0.5Xt + εt, otherwise.

DGP P.3 [Non-persistent Temporal Structural Breaks]:

Yt =

{
1 + 0.5Xt + εt, if t ≤ 0.4T or t ≥ 0.6T,

1.5 +Xt + εt, otherwise.

DGP P.4 [Smooth Structural Changes]:

Yt = F (τ) (1 + 0.5Xt) + εt,

9We generate a wild bootstrap residual according to the formula that ε̂∗t = aε̄t with probability 1− a/
√

5 and
ε̂∗t = (1− a)ε̄t with probability a/

√
5, where a = (1 +

√
5)/2.

10For robustness, we consider different locations of structural changes. For space, results are reported in the
Supplemental Appendix.
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where τ = t
T
and F (τ) = 1.5− 1.5 exp

[
−3 (τ − 0.5)2

]
.

DGP P.5 [Unit Root in Parameters]:

Yt = ρ1t + ρ2tXt + εt,

where ρjt = ρjt−1 + ujt, ujt ∼ i.i.d.N (0, 1) , and j = 1, 2.

For each of DGPs P.1-P.5, we generate 1,000 data sets of the random sample {Xt, Yt}Tt=1 for
T = 100, 250 and 500 respectively. Table 2 reports the rejection rates of all tests with empirical

critical values (ECVs) under DGPs P.1-P.5 at the 5% level. We first consider the deterministic

single break (DGP P.1), namely, a single break with a given break point and size. For the interior

break point, all tests have power against DGP P.1, although Andrews’(1993) sup-LM -het is most

powerful among all heteroscedasticity-robust tests. The Ĥ-het test performs slightly better than

LM -het, UDmax-het and qLL-het tests when T is small. Results for the single break at t = 0.1T

are report in the Supplemental Appendix. Here, Ĥ-het outperforms LM -het, UDmax-het, sup-

LM -het and qLL-het tests. We note that all homoscedasticity-specific tests are more powerful

than their heteroscedasticity-robust counterparts, and Ĥ is more powerful than Ĉ under DGP

P.1, confirming our theory.

Next, we consider multiple breaks. Under DGP P.2, the Ĥ and Ĉ tests dominate all other

tests. Lin and Ter
..
asvirta’s LM test has no power even when T = 500. Bai and Perron’s

UDmax test improve a lot upon Andrews’ (1993) single break test, which confirms Perron’s

(2006) observation that "while the test for one break is consistent against alternatives involving

multiple changes, its power in finite samples can be rather poor".

Under DGP P.3, the break lasts only for some period of time. The Ĥ and Ĉ tests outperform

other tests for all sample sizes. Lin and Ter
..
asvirta’s LM test has low or little power. UDmax

and qLL tests perform slightly worse than ours but better than Andrews’(1993) sup-LM test.

DGP P.4 is an alternative with non-monotonic smooth structural changes. This is a STR

model considered in Lin and Ter
..
asvirta (1994), where the transition function is a second-order

logistic function. Not surprisingly, Lin and Ter
..
asvirta’s LM test, which is based a first-order

Taylor expansion, has no power. Our tests and qLL test outperform other tests.

Finally, we consider the alternative with unit root in parameters (DGP P.5). Again, the Ĥ

test outperforms all other tests. The qLL test is slightly less powerful than Ĥ, but more powerful

than LM and sup-LM tests. In most cases, tests using bootstrap critical values have similar

power to tests using ECVs.

To sum up, (i) the empirical sizes of the Ĥ and Ĉ tests are larger than the nominal levels,

but they improve as the sample size increases. Under conditional homoscedastic errors, the

homoscedasticity-specific tests, Ĥ and Ĉ, have better sizes than heteroscedasticity-robust tests
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Ĥ-het and Ĉ-het respectively. Under conditional heteroscedasticity errors, Ĥ-het and Ĉ-het

continue to have reasonable levels, but homoscedasticity-specific tests strongly overreject the

correct model. Other homoscedasticity-specific and heteroscedasticity-robust tests have similar

patterns. (ii) Our tests have reasonable all-around power against both smooth and abrupt

structural changes. They outperform all other tests in detecting smooth structural changes; they

have good power against various multiple structural breaks, including the alternatives where the

break occurs near the boundary of the sample period. (iii) Our tests are not always the most

powerful in detecting each of the alternatives considered. However, they have relatively omnibus

power against all five DGPs, provided the sample size is suffi ciently large. Tests for parametric

smooth structural changes are powerful against the specified alternatives but they may have

low power if the polynomial order is not high enough; tests with the trimmed range also have

a danger of omitting breaks occurring near the boundary of the sample period; and tests for

single break may have rather poor power against alternatives involving multiple breaks. (iv)

The generalized Hausman test Ĥ is more powerful than the generalized Chow test Ĉ in most

cases, confirming our asymptotic theory. (v) The heteroscedasticity-robust generalized Hausman

and Chow tests have similar power to their homoscedasticity-specific counterparts respectively

in most cases. This feature is not shared by other tests.

7. STABILITY OF RETURN PREDICTION MODELS

Stock return predictability is an important yet controversial issue in empirical finance. Nu-

merous studies document the predictability of stock returns using various lagged financial and

macroeconomic variables, such as the dividend price ratio, earning price ratio, book to market

ratio, term spread, default premium, interest rates, inflation rate as well as corporate payout and

financing activity. Most existing works focus on in-sample tests.

A recent critique that challenges the conventional wisdom of return predictability emphasizes

that predictive regressions have poor out-of-sample performance. Welch and Goyal (2008) show

that all aforementioned financial and macroeconomic variables fail to yield better out-of-sample

forecasts of the US equity premium than the simple historical mean equity returns. This striking

finding triggers vigorous debates in the profession. One possible reason that significant in-sample

evidence of predictability is often accompanied by weak or insignificant out-of-sample evidence of

predictability is the existence of structural changes. Indeed, Clark and McCracken (2005) present

analytical evidence on the effects of structural breaks on the tests for equal forecast accuracy

and encompassing, as used in Welch and Goyal (2008), and show that out-of-sample predictive

evidence can be harder to detect because the results of out-of-sample tests are highly dependent

on the timing of the predictability.

We now use our tests to check whether the predictive regression of stock returns is stable

15



over time. Some existing studies have considered structural breaks in the equity premium but

results are mixed. For example, Kim, Morley and Nelson (2005) find a one-time structural break

in the equity premium in the 1940s but no additional breaks in the postwar period. Paye and

Timmermann (2006) examine the stability of return prediction models for 10 OECD countries.

They find strong evidence against stability in a multivariate regression with the dividend yield,

short rate, term spread and default spread, but in the univariate regressions, they find fairly weak

evidence on instability in the dividend yield regression or default premium regression. Using

Elliott and Müller’s (2006) test, Rapach and Wohar (2006) cannot reject structural stability in 3

of the 8 predictive regressions (the price earning ratio, term spread and short rate) for S&P 500

returns. As emphasized by Paye and Timmermann (2006), all existing tests focus on occasional,

large shifts in coeffi cients rather than a gradual evolution. We will avoid this restriction by using

our tests, which have power against both smooth structural changes and sudden breaks.

We consider a standard predictive regression Yt+1 = α+β′Xt+εt+1, where Yt+1 = log [(Pt+1 +Dt+1)/Pt]

−rt, Pt is the S&P 500 index, Dt is the dividend paid on the S&P 500 index, rt is the 3-month

Treasury bill rate and Xt is a predetermined predictor. Following Welch and Goyal (2008) and

Rapach, Strauss and Zhou (2009), we consider fourteen financial and economic variables: (i)

Log dividend price ratio (D/P): the log difference between dividends and the S&P 500 index,

where dividends are computed via a one year moving sum; (ii) Log dividend yield (D/Y): the

log difference between dividends and the lagged S&P 500 index; (iii) Log earnings price ratio

(E/P): the log difference between earnings and the lagged S&P 500 index, where earnings are

computed via a one year moving sum; (iv) Log dividend payout ratio (D/E): the log difference

between dividends and earnings; (v) Stock variance (SVAR): the sum of squared daily returns on

the S&P 500 index; (vi) Book-to-market ratio (B/M): the ratio of book value to market value for

the Dow Jones Industrial Average; (vii) Net equity expansion (NTIS): the ratio of twelve-month

moving sums of net issues by NYSE-listed stocks to the total end-of-year market capitalization

of NYSE stocks; (viii) Treasury bill rate (TBL): the 3 month treasury bill rate; (viiii) Long-term

yield (LTY): the long-term government bond yield; (x) Long-term return (LTR): the return on

long-term government bonds; (xi) Term spread (TMS): the difference between the long-term

yield and the Treasury bill rate; (xii) Default yield spread (DFY): the difference between BAA-

and AAA-rated corporate bond yields; (xiii) Default return spread (DFR): the difference between

long-term corporate bond and long-term government bond returns; (xiiii) Inflation (INFL): the

CPI-based inflation rate in the previous period. All data are from Welch and Goyal (2008).

We apply our tests to monthly and quarterly stock returns and compare them with the

UDmax and qLL tests, which have overall good finite sample performance in our simulation

study and have been used in Paye and Timmermann (2006) and Rapach and Wohar (2006). We

consider the post war sample: January 1947 to December 2005 and the post oil-shocks subsample:
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January 1976 to December 2005.

Table 3 reports the bootstrap p-values of heteroscedasticity-robust and homoscedasticity-

specific versions of our tests, UDmax and qLL for univariate predictor regressions with each

of the above fourteen predictors using monthly data. The bootstrap p−values, based on 499

bootstrap iterations, are computed as described in Section 6. For robustness, we mainly focus on

heteroscedasticity-robust tests although homoscedasticity-specific tests generally yield smaller

p-values. For the whole sample, we find strong evidence against the model stability for all

predictors considered: all bootstrap p−values of our tests and qLL tests are smaller than 1%. It

is also evident from the figures in the Supplemental Appendix that the nonparametric estimators

of the slope coeffi cient β for all univariate predictor regressions do change over time. For the

subsample of 1976 to 2005, our Ĥ test is able to reject the model stability of all predictors except

E/P at the 10% level and all except D/P, D/Y, E/P and ITY at the 5% level. Bai and Perron’s

(1998) UDmax and Elliott and Müller’s (2006) qLL tests also yield strong rejection in the whole

sample. However, for the post oil-shocks subsample, UDmax cannot reject E/P and B/M, and

qLL cannot reject D/P, D/Y and E/P at the 10% level.

Next, we test the stability of popular multivariate predictor models, including two bivariate

predictor regressions with D/P and TBL, D/P and E/P, one trivariate predictor regression with

D/P, E/P and TBL, one quadrivariate predictor regression with D/P, TBL, TMS and DFR.

The bivariate and trivariate models have been studied by Ang and Bekaert (2007), and the

quadrivariate model has been studied by Paye and Timmermann (2006). The strong evidence

of model instability in the whole sample carries over to the multivariate predictor regressions.

Our tests reject the stability of all multivariate models at all conventional significance levels;

UDmax is able to reject all multivariate models at the 5% level but qLL does not find structural

break in the trivariate predictor regression. For the post oil-shocks subsample, our tests and

UDmax have similar p-values: they reject the bivariate predictor regression with D/P and TBL,

the trivariate and quadrivariate predictor regressions at the 5% level, and the bivariate predictor

regression with D/P and E/P at the 10% level. On the other hand, qLL test finds no evidence

against model stability for bivariate predictor regressions.

Tables 9A in the Supplemental Appendix summarizes the results for quarterly data, where

the evidence against stability is a bit weaker for univariate predictor regressions. For the whole

sample, our heteroscedasticity-robust Ĥ test rejects all univariate predictor regressions except

E/P, D/E, LTR and INFL at the 5% level; UDmax cannot reject E/P and B/M and qLL cannot

reject E/P, D/E and INFL at the 5% level. For the subsample, all tests can barely find evidence

against model stability for univariate predictor regressions: our tests can only reject the null

with D/P, UDmax can only marginally reject the stability of DFR and qLL rejects none. We

conjecture that the weak evidence against model stability is mainly due to the small sample size.
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However, interestingly, our tests firmly reject the stability hypothesis for all multivariate models

in both periods considered. In particular, the p-values of our tests are essentially 0 for the whole

sample. In comparison, UDmax is able to reject all except the quadrivariate model and qLL is

only able to reject the bivariate predictor regression with D/P and E/P at the 10% level for the

whole sample; for the subsample, qLL is able to reject the trivariate and quadrivariate models

but UDmax does not find any evidence against model stability.

To sum up, our tests strongly reject the stability of univariate and multivariate return pre-

diction models in the post war and the post oil-shocks sample periods. Our findings support

the argument of Rapach et al. (2009) that "model uncertainty and instability seriously impair

the forecasting ability of individual predictive regression models". The rejection may be due to

model misspecification and how to reconstruct the models needs further investigation.

8. CONCLUSION

Detection and identification of structural breaks have attracted a great amount of attention in

econometrics over the past several decades. We have contributed to this literature by proposing a

nonparametric Wald-type test for smooth structural changes as well as abrupt structural breaks.

Our test has intuitive appeal because it can be regarded as the generalization of Hausman’s

(1978) test from a parametric context to a nonparametric context. It is asymptotically pivotal,

does not require trimming data, does not require prior information on the alternative, and is

consistent against all smooth structural changes as well as multiple abrupt structural breaks.

Simulation studies show that the proposed test performs reasonably in finite samples. We apply

the proposed test to stock return prediction models and find strong evidence against model

stability.

Extensions of the proposed method to linear regression models with nonstationary regressors

or serially correlated and endogenous errors with time-varying variances are possible. Moreover,

our approach can be adopted to test whether an ARMA model or a GARCH model has smooth

structural changes, using the log-likelihood criterion. Also, it can be used to test whether a time

trend follows a polynomial of time, with the stochastic component being a weakly stationary but

not necessarily m.d.s.. All these are left for future research.
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Table 1. Empirical Levels of Tests 
 

t ~i.i.d.N(0,1) t ~ARCH(1) ))(,0(~| ttt XfNX  
 100 250 500 100 250 500 100 250 500 

BCV 

Ĥ -het .058 .072 .038 .064 .050 .048 .058 .050 .062 

Ĥ  .066 .076 .040 .076 .048 .050 .086 .082 .084 

Ĉ -het .064 .060 .046 .058 .044 .056 .066 .052 .062 

Ĉ  .066 .066 .046 .070 .044 .060 .094 .074 .078 

ACV 

Ĥ -het .095 .078 .053 .116 .087 .066 .120 .092 .071 

Ĥ  .079 .071 .047 .097 .080 .062 .350 .428 .471 

Ĉ -het .066 .053 .042 .077 .060 .051 .081 .061 .048 

Ĉ  .052 .047 .035 .067 .050 .048 .243 .288 .328 

 
LM-het .043 .054 .048 .044 .047 .053 .045 .045 .050 
LM .046 .054 .049 .052 .048 .052 .150 .168 .177 

 
Sup-LM-het .018 .035 .043 .013 .029 .037 .010 .022 .034 
Sup-LM .029 .043 .045 .048 .050 .055 .205 .282 .330 

 
UDMax-het .138 .085 .067 .153 .082 .066 .260 .132 .096 
UDMax .051 .052 .050 .095 .072 .068 .338 .393 .431 

 
qLL-het .060 .050 .051 .081 .067 .055 .060 .058 .054 
qLL .065 .055 .052 .088 .074 .061 .454 .503 .514 

Notes: (1) Ĥ  and re the generalized Hausman and Chow tests, LM is Lin and Teräsvirta’s (1994) LM test based on the first-order Taylor expansion; 
Sup-LM is Andrews’ (1993) supremum LM test; UDMax is Bai and Perron’s (1998) double maximum test; qLL is Elliott and Müller’s (2006) efficient 
test based on a “quasi local level” model. *-het denotes the heteroscedasticity-robust version of the corresponding * test. (2) BCV: bootstrap critical 
values; ACV: asymptotic critical values. (3) 5% significance level.  
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Table 2. Empirical Powers of Tests  
 DGP P.1 DGP P.2 DGP P.3 DGP P.4 DGP P.5 
 Single Break Multiple Breaks Non-persistent Temporal 

Breaks 
Smooth Changes Unit-root-in-parameters 

 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500 
BCV 

  Ĥ -het .416 .848 .998 .288 .682 .948 .328 .762 .980 .414 .910 .998 .610 .988 .998 

  Ĥ  .436 .856 .998 .304 .690 .956 .342 .788 .982 .454 .912 .998 .636 .988 .998 

  -het Ĉ .330 .704 .962 .268 .664 .966 .324 .726 .946 .380 .804 .986 .550 .990 .998 

   Ĉ .340 .726 .968 .268 .682 .970 .334 .728 .958 .388 .828 .986 .568 .990 .998 

ECV 

  Ĥ -het .416 .857 .990 .308 .646 .954 .319 .748 .990 .443 .884 .998 .617 .983 1.00 

  Ĥ  .416 .857 .990 .306 .665 .957 .325 .765 .987 .452 .886 .998 .626 .987 1.00 

  -het Ĉ .314 .728 .972 .276 .615 .942 .306 .693 .971 .378 .786 .992 .555 .982 1.00 

   Ĉ .352 .731 .972 .296 .621 .949 .330 .700 .977 .401 .793 .992 .564 .985 1.00 

 
  LM-het .404 .814 .993 .052 .054 .061 .059 .058 .059 .065 .055 .059 .557 .889 .971 
  LM .458 .853 .993 .053 .045 .061 .046 .050 .046 .074 .072 .063 .585 .896 .972 

 
  Sup-LM-het .427 .888 .999 .115 .231 .478 .129 .330 .665 .215 .598 .942 .563 .945 .999 
  Sup-LM .501 .923 1.00 .145 .286 .554 .143 .348 .708 .281 .675 .964 .623 .964 .999 

 
  UDMax-het .393 .871 .996 .183 .400 .773 .236 .634 .973 .258 .683 .978 .524 .785 .966 
  UDMax .494 .922 1.00 .240 .556 .914 .262 .736 .993 .345 .781 .989 .631 .815 .978 

 
  qLL-het .376 .865 .996 .217 .637 .928 .222 .709 .968 .418 .892 .997 .613 .979 1.00 
  qLL .428 .873 .996 .297 .657 .942 .324 .734 .976 .440 .897 .997 .645 .983 1.00 

Notes: (1) Ĥ  and are the generalized Hausman and Chow tests, LM is Lin and Teräsvirta’s (1994) LM test based on the first-order Taylor expansion; Sup-
LM is Andrews’ (1993) supremum LM test; UDMax is Bai and Perron’s (1998) double maximum test; qLL is Elliott and Müller’s (2006) efficient test based on 
a “quasi local level” model. *-het denotes the heteroscedasticity-robust version of the corresponding * test. (2) BCV: bootstrap critical values; ECV: empirical 
critical values. (3) 5% significance level.  
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Table 3. Stability test for monthly excess return 
 Ĥ -het Ĥ  Ĉ -het  Ĉ  UDmax-

het 
UDmax qLL-het qLL 

Univariate Predictor Regressions 
 1947 January – 2005 December 

D/P .000 .000 .000 .000 .000 .000 .000 .000 
D/Y .002 .002 .000 .000 .000 .000 .000 .000 
E/P .006 .006 .006 .004 .016 .000 .000 .000 
D/E .000 .000 .000 .000 .000 .000 .000 .000 

SVAR .000 .000 .000 .000 .000 .000 .000 .000 
B/M .000 .000 .000 .000 .000 .000 .000 .000 
NTIS .000 .000 .000 .000 .000 .000 .000 .000 
TBL .000 .000 .000 .000 .000 .000 .000 .000 
LTY .000 .000 .000 .000 .000 .000 .000 .000 
LTR .000 .000 .000 .000 .000 .000 .000 .000 
TMS .000 .000 .000 .000 .000 .000 .000 .000 
DFY .000 .000 .000 .000 .000 .000 .000 .000 
DFR .000 .000 .000 .000 .000 .000 .000 .000 
INFL .000 .000 .000 .000 .000 .000 .000 .000 

 1976 January – 2005 December 
D/P .058 .046 .016 .018 .052 .006 .459 .417 
D/Y .092 .088 .068 .056 .094 .012 .505 .425 
E/P .301 .293 .557 .559 .156 .060 .158 .150 
D/E .000 .000 .004 .002 .002 .000 .000 .000 

SVAR .000 .000 .000 .000 .010 .010 .000 .000 
B/M .036 .024 .014 .014 .110 .030 .048 .046 
NTIS .000 .000 .000 .000 .006 .000 .000 .000 
TBL .012 .010 .000 .000 .028 .004 .012 .014 
LTY .072 .066 .030 .030 .014 .002 .058 .066 
LTR .000 .000 .002 .000 .000 .000 .000 .000 
TMS .000 .000 .000 .000 .002 .000 .000 .000 
DFY .006 .004 .030 .030 .012 .000 .010 .008 
DFR .000 .000 .000 .000 .008 .002 .000 .000 
INFL .000 .000 .016 .006 .000 .000 .000 .000 

Multivariate Predictor Regressions 
 1947 January – 2005 December 

Bi 1 .000 .000 .000 .000 .008 .000 .004 .004 
Bi 2 .002 .000 .004 .002 .006 .000 .004 .004 
Tri .000 .000 .000 .000 .004 .000 .166 .130 

Quadri .000 .000 .000 .000 .030 .000 .014 .008 
 1976 January – 2005 December 

Bi 1 .006 .006 .004 .002 .034 .010 .176 .116 
Bi 2 .076 .074 .052 .044 .074 .036 .503 .471 
Tri .020 .024 .016 .016 .018 .006 .022 .026 

Quadri .042 .046 .022 .022 .012 .002 .022 .016 

Notes: (1) Ĥ  and are the generalized Hausman and Chow tests, UDMax is Bai and Perron’s (1998) 
double maximum test; qLL is Elliott and Müller’s (2006) efficient test based on a “quasi local level” model. 
*-het denotes the heteroscedasticity-robust version of the corresponding * test. (2) Bootstrap p values with 
B=499.  
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