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Abstract 

The purpose of this paper is to empirically examine whether movements in two important 
measurements of the aggregates money supply, M1 and M2, help in predicting future 
movements in the stock market. We use single-equation multivariate autoregressive models, 
with the optimal lag order selected using the Akaike Information Criterion, and run two types 
of Granger causality tests across sequences of moving windows of fixed length. The rolling 
window estimation results indicate that there is a good deal of instability in the lag order of 
these models when the federal funds rate is used as one of the conditioning variables.  The 
causality test results suggest a rather strong causal link from money to stock prices once data 
from the 1960’s and early-to-mid 1970’s are excluded.  The evidence in favor of causality from 
M2 to stock prices is much weaker.  Our results suggest caution may be warranted in 
interpreting “full sample” results on the Granger-causal relationship between money and stock 
prices. 
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1.  Introduction 

           Participants in financial markets often focus their attention on actions taken by the 

Federal Reserve Board. The Fed is responsible for setting monetary policy and overseeing 

many aspects of the country’s banking system. Based upon reports in the business press, it 

appears that many economic agents believe that Fed policy has strong effects on financial 

markets. In order to reduce the risk of their financial decisions, many players in financial 

markets, such as professional money managers, financial analysts, and individual households, 

condition their actions on expectations of future monetary policy. 

 Roughly every six weeks, the Fed’s Open Market Committee (FOMC) meets to decide 

the future direction of monetary policy.  Under the current monetary policy regime, the 

outcome of each FOMC meeting is a decision about whether or not to adjust the Fed’s target 

for the federal funds rate.  Such decisions have well-understood effects on the growth of the 

nation’s money supply. 

The purpose of this paper is to empirically examine whether actions of the Fed, 

expressed in terms of money supply growth, have predictable effects on stock market behavior.  

We investigate whether movements in two important measures of the aggregate money supply, 

M1 and M2, help in predicting future movements in the stock market.  Specifically, this paper 

examines whether money growth rates "Granger-cause" stock returns.  One variable is said to 

Granger-cause another if prediction of the current value of the latter is helped by using past 

values of the former.  This stems from Granger’s (1969) argument that if event Y is the “cause” 

of event X, then the event Y should precede the event X. 

A good deal of earlier research concludes that changes in lagged values of money 

supply growth have an impact on changes in stock prices; see, for example, Abdullah and 
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Hayworth (1993), Jones and Uri  (1987), and Rogalski and Vinso (1977).  In contrast, other 

researchers have found that stock prices respond only to unanticipated changes in past values 

of the money supply; see, for example, Pearce and Roley (1983), Sorensen (1982), and 

Davidson and Froyen (1982). 

While such conflicting results can be found throughout the literature on the relationship 

between stock prices and money, all of this work is subject to the criticism that Swanson 

(1998) makes of standard causality studies.  In particular, Swanson (1998) emphasizes the 

importance of taking into account the possible time variation in any Granger-causal 

relationship and argues in favor of using “moving” or “rolling” windows of data in such 

studies, in contrast to the standard use of “full samples.”  Accordingly, the main contribution of 

this paper is to examine the question of Granger causality from money to stock prices using a 

sequence of moving windows. 

The rest of this paper is organized as follows. Section 2 discusses the theoretical 

background, presenting two competing hypotheses about the relationship between money 

supply movements and stock prices. Section 3 describes the stock market data, presents a set of 

summary statistics, and carries out a univariate time series modeling exercise on stock returns.  

The data added to make the analysis multivariate are discussed in Section 4, which also 

presents the econometric framework used for causality testing.  Section 5 reports the empirical 

findings and conclusions are given in Section 6. 
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2.  Theoretical Considerations 

     Empirical results from previous research about the Granger-causal relationship between 

money and stock returns are related to two competing hypotheses. One is referred to as the 

“monetary portfolio hypothesis.”  According to this argument, the money supply has causal, 

yet indirect, effects on stock price.  The basis of this view is the fact that financial investors 

hold many kinds of assets in addition to money and are likely to respond to money supply 

changes by adjusting their portfolio of assets.  So, when money supply increases generate 

short-term interest decreases, driving down the yield on bonds, it’s assumed that investors will 

shift from bonds to stocks, resulting in an increase in stock prices; the reverse holds for money 

supply decreases. 

The “efficient markets hypothesis” offers an alternative view about the relationship 

between money supply movements and stock prices.  In this framework the current stock price 

reflects all publicly available information about future economic fundamentals affecting the 

stock’s value.  Since such information includes lagged values of the money supply, the 

marginal effect of lagged values of money in helping predict future stock movements should be 

zero.  That is, the efficient markets hypothesis implies that money does not Granger-cause 

stock prices.  

The existence of these competing and arguably well-reasoned hypotheses about the 

Granger-causal relationship between money and stock prices implies that an empirical 

investigation of this question has substantive importance.  First, such an exercise has the 

potential to establish whether the data favor one of these theories over the other.  Second, it 

may help shed light on whether profit-making opportunities are systematically left unexploited 

in the stock market. 
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3.  The Stock Market Data 

 The Standard & Poor’s 500 Composite Index (S&P500) is one of the most commonly 

used indicators of stock market activity.  It is a weighted average of the prices of stocks 

selected from two major national stock exchanges and the over-the-counter market. This stock 

price index is expected to reflect current stock market conditions and a special committee of 

the Standard and Poor’s Corporation is responsible for deciding which specific stocks to 

include. 

 The S&P500 index is the measure of stock market activity used in this paper. Granger-

causality tests were also computed, however, for both the Dow Jones Industrial Average and 

the New York Stock Exchange Index.  But since these findings were quite similar, not 

surprisingly, to those for the S&P500, only the S&P500 results are reported.  

The S&P500 data used are monthly and cover the 1960:01-1999:10 sample period. 

Monthly returns in the S&P500 index are used in estimation of the models considered in this 

paper.  The stock returns series for observation t, ts , is measured by the first difference of the 

natural logarithm of the S&P500 index 

      st   =   (1 - L) ln(S&P500t),    (1) 

where L is the lag operator. 

 While this transformation is standard in the literature, it also has the benefit of 

eliminating the trend behavior in this time series.  Removal of this nonstationarity is crucial for 

this paper’s analysis, since it is well known that use of nonstationary series in time series 

regressions can generate spurious correlation and induce bias in the OLS estimators of model 

parameters. 
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 The top graph in Figure 1 is a time series plot of the general tendencies of the natural 

logarithm of the S&P500 over the 1960:01-1999:10 sample period. This graph shows that the 

series increases slowly from 1960 to 1980 and increases quickly from 1981 to 1999. That is, 

the slope of the series is positive all the time and is steeper during last 20 years. The bottom 

graph in Figure 1 presents monthly returns series of the S&P500 for the same sample period. 

The monthly stock returns appear to be stationary. There is no apparent trend and the variance 

of the series seems roughly constant.   

 Figure 2 shows a histogram and some summary statistics for the monthly stock returns 

series. The histogram looks asymmetric and negatively skewed, as the skewness statistic of 

-0.63 indicates. Compared against a value of 3 for the normal distribution, the sample kurtosis 

of 5.05 indicates the distribution of monthly stock returns has fat tails. Jointly, the skewness 

and kurtosis results cause the Jarque-Bera test to reject the normality null hypothesis with a p-

value of less than .101 6−×  The sample mean of the monthly S&P500 index returns is 0.65 

percent, which implies an annual return of approximately 8.1 percent.  

 The sample autocorrelation function (acf) and sample partial autocorrelation function 

(pacf) are helpful diagnostic tools used to identify time series models for a given time series. 

The sample autocorrelation at lag k for a time series }{ tx with zero mean is estimated by 

      ,
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is the estimate of the autocovariance at lag k.  It is assumed that }{ tx is stationary, so that the 

autocorrelation coefficient at lag k is the correlation coefficient between values of }{ tx  k 

periods apart.  The sample partial autocorrelations are calculated from the solution of the Yule-

Walker equations, expressing the partial autcorrelations as a function of the autocorrelations.  

The pacf at lag k gives a measure of the correlation between tx  and ,ktx −  conditional on the 

values of .,,, 121 −−−− kttt xxx �     

 The estimated correlogram for the stock return series is shown in Figure 3.  The left 

panel shows the estimated acf, which cuts off after lag 1.  This is the classic pattern of a 

univariate moving average model of order 1 (MA(1)).  An MA(1) model is given by 

,1−⋅+= tttx εθε     (4) 

where ),,0(~ 2σε WNt  i.e., 1−tε  is a white-noise process. 

The right panel in Figure 3 presents the estimated pacf, which cuts off after lag 1.  This 

is the classic pattern of a univariate pure autoregressive model of order 1 (AR(1)).  An AR(1) 

model is given by 

,1 ttt xx εα +⋅= −     (5) 

where ).,0(~ 2σε WNt  

 If either the MA(1) parameter θ or the AR(1) parameter α is sufficiently small, then 

both the sample acf and pacf for the stock returns series are consistent with either an MA(1) or 

AR(1) univariate data generating process.  Since at lag 1 both the estimated autocorrelation and 

partial autocorrelation exceed the 95% confidence bounds, it is clear that the stock returns is 

not a white-noise process.  This suggests that there is some predictability of the 1-step-ahead 

values of stock returns. 
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Given the dynamics characterized by Figure 3, an AR(1) model was estimated for the 

stock returns series. The estimated equation for the 1960:02-1999:10 sample period is 

   ,26.047.0ˆ 1
)04.0(

−⋅+= tt ss     (6) 

where the standard error of the AR(1) coefficient appears in parentheses. The adjusted R2 for 

this model is 0.068. The p-value for the t-test that the AR(1) coefficient equals zero is less than 

10-4 and the p-value for the F-test of the same null hypothesis is less than 10-6. These extremely 

small p values are consistent with the correlogram results in Figure 3. The point estimate for 

the AR(1) coefficient, 0.26, implies that the stock returns series is stationary. 

The Durbin-Watson statistic is 1.85, a value which is consistent with the residuals of 

the estimated AR(1) model being white-noise. As a further check, the sample acf for these 

AR(1) residuals is presented in Figure 4. The estimated acf at each displacement is quite close 

to zero and falls within the 95 percent confidence interval for the null hypothesis that the series 

is white-noise. 

These results suggest that an AR(1) model provides a good fit to the stock returns 

series, capturing the relatively small departure from white-noise in the series. Since the AR(1) 

residuals are white-noise, it would appear that augmenting equation (6) with lagged values of 

other variables, including money growth, would not improve the fit obtained. This issue is 

explored in the next section.  

  

4.  Model Specification and Granger Causality Testing 

The two measures of the money supply used in this paper are M1 and M2. M1 equals 

currency plus all checkable deposits. M2 includes everything in M1 plus funds in some 

interest-bearing accounts. These two variables are graphed in Figure 5, which shows that these 
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two series tend to trend upwards in a similar pattern.  The difference between them appears to 

be stationary, suggesting that M1 and M2 are cointegrated.  That is, there is a linear 

combination of these two nonstationary series which is stationary, suggesting that there is a 

long-run stable relationship between M1 and M2. 

As mentioned above, use of nonstationary time series in OLS regressions can induce 

serious bias and spurious correlation. Since the M1 and M2 series are clearly nonstationary, the 

growth rates of these two series are used for the causality regressions.  These money supply 

growth rates are graphed in Figure 6. 

To run the causality tests, the univariate autoregressive stock returns model is 

augmented by adding lags of either M1 or M2. But since these variables could possibly serve 

as a proxy for some omitted variable, several other variables are also included in the causality 

regressions.  First, additional lags of stock returns are used. 

Second, lags of an interest rate variable are also included. Since, on many grounds, 

interest rate movements have important implications for construction of optimal financial asset 

portfolios, it is reasonable to include interest rates in the analysis. In the causality test 

regressions, lags of either the Moody’s Aaa corporate bond rate or the federal funds rate are 

also added to the model.  The Moody’s Aaa rate is the average interest rate on the long-term 

bonds of top-rated corporations. The federal funds rate is the interest rate charged to banks 

which borrow reserves from other member banks of the Federal Reserve system.  

The two interest rates used are graphed in Figure 7. The Aaa rate is generally above the 

federal funds rate from 1960:01 to 1999:10. There were exceptions to this, especially during 

the Federal Reserve Board's announced shift to a monetary stock targeting regime in the late 



 

 

9 

1979 to late 1982 period. Since there is no clear trending behavior in these series, it is 

presumed that these time series are stationary. 

Third, we also include the monthly growth rates in the Consumer Price Index (CPI) in 

the causality regressions. These CPI growth rates are a measure of inflation.  This series is 

graphed in Figure 8 and also appears to be stationary. 

To run a test for Granger causality from money to stock prices, two regressions are run.  

The unrestricted model, in which lags of money growth help predict future values of the stock 

returns, is given by 

,)( ,1
1

0 titiitiiti
i

itit eprmss +⋅+⋅+⋅+⋅+= −−−
=

−∑ γδβαα
λ

                  (7)  

,,,1 Ttt �=  and where ts is the monthly growth rate of stock price for period t, tm  is the money 

growth rate for period t, tr  is the interest rate for period t, tp  is the monthly growth rate of the 

CPI in period t, α0, αi , βi,  δi and γi (for i = 1,2,...,λ) are coefficients to be estimated, and te ,1  is a 

white-noise error term. The parameter λ is the lag order of the model and is determined by the 

Akaike Information Criterion (AIC) 

   ,ˆ}/2{exp 2σ⋅= TkAIC      (8) 

where 2σ̂  is the estimated residual variance of the model. 

The restricted model, in which lags of money growth do not help predict future 

movements in stock returns, is specified as follows  

,)( ,2
1

0 titiitiit
i

it eprss +⋅+⋅+⋅+= −−−
=
∑ γδαα

λ

  (9) 

,,,1 Ttt �=  and where te ,2  is a white-noise error term. 
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 To run the standard test of Granger causality from money growth rates to stock returns, 

an F-test is run to see if the restrictions imposed in equation (9) can be rejected against the 

unrestricted model given by equation (7).  If these restrictions can be rejected, then it is 

concluded that “money Granger-causes stock returns.” This test is one of the tests used in this 

paper.  Following Swanson (1998), another test of Granger causality used is based on a 

comparison of AIC values for estimated versions of equations (7) and equation (9).  In 

particular, if the model “with money” (i.e., equation (7)) has a lower AIC value than the 

equation “without money” (i.e., equation (9)), it is concluded that “money Granger-causes 

stock returns.” 

 Following Swanson (1998), we use rolling fixed-length windows of data, to allow for 

the possibility that the relationships modeled by equations (7) and (9) may be evolving over 

time.  This allows us to examine how sensitive the Granger causality tests are to the particular 

sample used. 

 We use both 10-year and 15-year fixed-length moving windows and they are 

constructed as follows.  The first 10-year window covers the 1960:01-1969:12 sample period.  

To form the second 10-year window we move one observation ahead for both the initial and 

last observations, i.e., the second 10-year window covers the 1960:02-1970:01 sample period.  

We continue in this manner until we obtain the last 10-year window, i.e., the last 10-year 

window covers the 1989:11-1999:10 sample period.  This yields 359 10-year windows.  Using 

a similar strategy in the 15-year window case generates 299 15-year windows. 

 For each window we impose the same lag length λ in models (7) and (9).  This lag 

length is determined by the AIC as follows.  For each window we estimate 12 versions of the 
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unrestricted model (7) by allowing λ to range from .12,,2,1 �   We then use the value of λ 

which generates the lowest AIC values across the 12 estimated models. 

Given that we use two measures of the money supply, M1 and M 2, and two measures 

of the interest rate, there are four versions of equations (7) and (9) to estimate for each fixed-

length window.  Given that we use both 10-year and 15-year fixed-length windows, this gives 

us eight cases, four for each type of fixed-length window.  These cases are listed in the first 

column of Table 1. 

 

5.  Empirical Results 

Choosing the optimal lag order is important for time series modeling. If too small a lag 

is chosen, the misspecification will cause the OLS point estimates to be biased and can leave a 

good deal of serial correlation remaining in the residuals.  If too large a lag is chosen, OLS 

estimation is inefficient.  As noted above, in this paper we select the lag order for our models 

using the AIC. 

Figure 9 shows the lag order λ selected for each model across all moving windows.  

Each point in the time series plots shows the lag order selected for the window ending in the 

observation corresponding to that point. For example, for the 10 year windows the first data 

point of 1969:12 represents the last observation of the first window, 1960:01-1969:12. 

The left-side set of graphs in Figure 9 cover the cases for which M1 is used as the 

money stock measure and the right-side set of graphs cover the cases for which M2 is used as 

the money stock measure.  The upper four graphs cover the cases in which the Aaa rate is used 

as the interest rate variable, and the bottom four graphs cover the cases in which the federal 

funds rate is used.  
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The results in Figure 9 show that the AIC-specified models are more stable across the 

windows using the Aaa rate relative to using the federal funds rate. Further, the Aaa models 

(models using the Aaa rate as the interest rate variable) estimated with 15-year moving 

windows appear to be a bit more stable than those estimated with 10-year moving windows, 

especially for Aaa models using M2 as the money measure.  Given the small degree of serial 

correlation present in the stock returns data for the full-sample period (see Figure 3), though, it 

is a bit surprising that the lag order λ selected by the AIC is so often so high; for example, the 

bottom two graphs in Figure 9 show that the value of λ selected by the AIC for the Aaa models 

in the 15-year case is almost always greater than or equal to 10. 

In contrast to the Aaa case, there is no clear evidence that the FF models (models using 

the federal fund rate as the interest rate measure) estimated with 15-year windows are more 

stable than those estimated with 10-year windows.  The two most stable cases for the FF 

models are represented by the set of windows with final observation past 1985:12 in the first 

two graphs on the left side of Figure 9, i.e., for (roughly) the second set of windows for the FF 

models using M1 as the money supply measure. The FF models using M2 as the money stock 

measure appear to be the most unstable over time. 

A standard check of model accuracy in time series modeling is to examine if the 

residuals from the estimated model appear to be white-noise.  Failure to obtain white-noise 

residuals is an indicator that the model is misspecified.  The Ljung-Box Q-statistic can be used 

to test the null hypothesis that the residual series is white noise.  More specifically, the 

Q-statistic can be used to test the null hypothesis that the first m residual autocorrelations are 

jointly equal to zero.  The Ljung-Box Q-statistic is computed as follows 
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where T is the sample size of the residual series and kr  is the estimated residual autocorrelation 

at lag k as defined in equation (2).  Under the null hypothesis of white noise, the Q-statistic is 

distributed as a Chi-squared random variable with m degrees of freedom.  The second column 

of Table 1 reports the number of windows across the eight cases of interest for which the null 

hypothesis of white-noise residuals for equation (7) is rejected via the Q-test at the 10% 

significance level.  The results show that the white-noise null is not rejected for any out of the 

658 windows examined (recall that there are a total of 359 10-year windows and 299 15-year 

windows).  Thus, we conclude that model selection via the AIC yields estimated models that 

capture well the serial correlation in the stock returns series for each fixed-length window. 

 The third column of Table 1 reports the results of the AIC-based Granger causality 

tests.  There are three interesting results which stand out.  First, for four out of the eight 

specifications of equations (7) and (9), it is found that money Granger-causes stock returns for 

more than half of the fixed-length windows examined.  Second, these four specifications are 

those in which M1 is used as the measure of the money supply.  Third, the results do not 

appear to be sensitive to use of a 10-year versus 15-year fixed-length window and seem to be 

robust across the two different interest rate measures.  On the whole, then, the AIC-based 

results provide a good deal of evidence that prediction of future movements in stock returns is 

helped by conditioning on lagged values of money growth. 

 The last three columns of Table 1 report the results from the more standard F-test of 

Granger causality.  These results are not directly comparable to the AIC-based results, since 

there is no threshold significance level at which it is in some sense “optimal” to examine the 

results.  As must be the case, the rejection frequencies of the no-causality null hypothesis 

increase as the nominal significance level increases.  At the 10% significance level the F-test 
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results appear to match quite well those obtained using the AIC.  Accordingly, the evidence in 

favor of causality from money growth rates to stock  returns once again is strongest using M1 

and is arguably robust across the length of the fixed-length window and interest rate measure 

employed. 

The graphs in Figure 10 show time series plots of the Granger causality F-test p-value 

for each class of model across the fixed-length window samples. Since the null hypothesis is 

that money does not Granger-cause stock returns, low p-values imply that there is strong 

evidence that money Granger-causes stock returns. 

These graphs allow us to examine how the degree of Granger causality documented in 

Table 1 varies across time.  We see that p-values in the left-side graphs, representing the cases 

in which M1 is used as the money supply measure, tend to be much lower than those in the 

right-side graphs.  But this fact just mirrors the results reported in Table 1.  The new 

information provided by these graphs is that we are able, in several cases, to identify a rather 

an apparent shift over time in the nature of the Granger-causal relationship between money 

growth rates and stock returns.  In particular, for three out of the four cases using M1 (i.e., for 

all except the M1 FF model with 10-year rolling fixed windows), the p-values for the no 

Granger-causality null hypothesis are generally quite low once the fixed-length windows end at 

a data point in the relatively late 1980’s and beyond. 

 

6.  Conclusions 

In an important paper, Swanson (1998) documented a good deal of time variation in the 

Granger-causal relationship between money and output.  Following Swanson’s (1988) lead, we 

have used a moving fixed-length window approach in examining the question of whether there 

is a Granger-causal link between money and stock prices.  On the whole our results suggest 
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that such a strategy is warranted, since we have detected a good deal of movement over time in 

the nature of this relationship.  Accordingly, “full sample” results reported earlier in the 

literature may not be robust when subjected to a rolling fixed-window analysis of the type 

carried out in this paper. 

In addition to documenting the existence of this time variation, our results suggest the 

choice of the monetary measure used matters a good deal.  In particular, we have found that the 

evidence in favor of money Granger-causing stock prices is much stronger when M1, as 

opposed to M2, is used.  Further, we have documented that the evidence in favor of M1 

Granger-causing stock returns is much stronger once windows of data from the 1960’s and 

early-to-mid 1970’s are excluded from the analysis. 

Topics for future study include an investigation into exactly why the Granger causality 

results are sensitive to use of data from the earlier part of this dataset.  In addition, in light of 

the fact that this paper’s analysis has been all “in-sample,” it would be interesting to examine 

whether inclusion of lagged values of money supply growth rates help in “out-of-sample” 

forecasting.  While in-sample comparisons of models with and without money indeed are 

standard in the literature on Granger causality, it is important to note Granger’s argument that 

the notion of Granger causality is inherently a statement about out-of-sample predictability; 

see, for example, his interview in Phillips (1997). 
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Table 1 
 

Residual White Noise and Granger Causality Tests 
 
___________________________________________________________________________________________ 
 
         Cases                                          Residual White noise test                          Causality Tests                                    
                                                                                                                 AIC Test              F01          F05          F10     
___________________________________________________________________________________________ 
 
1. M1, FF, 10                                                      0                        0.63                  0.04         0.25         0.47   
 
2. M1, FF, 15                                                      0                             0.62                  0.22         0.46         0.61 
 
3. M2, FF, 10                                                      0                                     0.40                  0.06         0.11         0.19 
 
4. M2, FF, 15                                                      0                                     0.11                  0.00         0.06         0.09 
 
5. M1,AAA, 10                                                   0                                     0.64                  0.20         0.50         0.57 
 
6. M1,AAA, 15                                                   0                                     0.55                  0.35         0.52         0.54 
 
7. M2, AAA, 10                                                  0                                     0.27                  0.08         0.12         0.14 
 
8. M2, AAA, 15                                                  0                                     0.14                  0.00         0.07         0.12                
___________________________________________________________________________________________                 
 
Notes: This table presents the results of carrying out the Granger causality tests using moving fixed-length windows over the 1960:01-1999:10 
period.  The dependent variable in each model estimated is the 1-month return of the S&P500 index.  The first column indicates the money 
stock measure, interest rate, and fixed window length used for the 8 cases studied.  For each model lags of both stock returns and the CPI 
inflation rate were also included as explanatory variables.  The second column shows the number of windows for each the white-noise null 
hypothesis was rejected at the 10% significance level using the Ljung-Box test on the equation (7) residual acf evaluated at the first 12 lags.  
The third column presents the fraction of fixed-length windows for which the “model with money” (equation (7) in the text) has a lower AIC 
value than the “model without money” (equation (9) in the text).  The last three columns report the fraction of windows for which the non-
causality null hypothesis was rejected via the F-test at the 1%, 5%, and 10% significance levels. 
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Figure 1 
 

Time Series Plots of (Log) S&P500 Index and S&P500 Monthly Returns, 1960:01-1999:10 

 
 
Notes:  The top panel shows a time series plot of the (natural) log of the S&P500 stock market index.  The bottom panel shows a time series 
plot of the monthly returns, defines as (100 times) the log-first difference, of the S&P500 index. 
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Figure 2 
 

Histogram and Summary Statistics for Monthly Returns of S&P500 Index, 1960:01-1999:10 
 

 
Notes:  The left panel shows the histogram of the monthly returns of the S&P500 stock market index.  Some summary statistics are given in 
the right panel.  The distribution of stock returns is skewed and leptokurtotic, leading to a strong rejection of the null hypothesis that the 
returns are normally distributed. 
 
 
 
 
 
 
 

Figure 3 
 

Estimated Correlogram for Monthly Returns of S&P500 Index, 1960:01-1999:10 
 

 
Notes: The left graph shows the estimated autocorrelation function (acf) of the monthly stock returns of the S&P500 index, 1960:01-1999:10. 
The right graph shows the estimated partial autocorrelation function (pacf) of the same series.  The unbroken lines give, for each lag, an 
asymptotic 95% confidence interval for the null hypothesis that the series is white noise.  Both the estimated acf and pacf imply that this stock 
returns series is not white noise.  This estimated correlogram is consistent with both an AR(1) data generating process, with a relatively small 
AR(1) coefficient, and an MA(1) data generating process. 
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Figure 4 
 

Estimated Autocorrelation Function for Residuals of AR(1) Model Fitted to S&P500 Monthly 
Returns, 1960:01-1999:10 

 

 
Notes:  This graph shows the estimated autocorrelation function of the residuals for an AR(1) model fitted to the monthly stock returns of the 
S&P500 index, 1960:01-1999:10.  The unbroken lines give, for each lag, an asymptotic 95% confidence interval for the null hypothesis that 
the series is white noise. 
 

 
 
 
 

Figure 5 
 

Time Series Plots of (Log) M1 and M2, 1960.01-1999:10 

 
Note:  This graph shows the time series plot for the (natural )logarithm of the M1 and M2 monetary aggregates over the sample period 
1960:01-1999:10.  The general trending behavior in these series appear to be quite similar.  Also, the difference between them appears to be 
stationary, suggesting that the two series are cointegrated, as is expected. 
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Figure 6 
 

Time Series Plots of M1 and M2 Growth Rates, 1960:01-1999:10 
 

 
 

Notes:  These two graphs present time series plots of the M1 (upper graph) and M2 (lower graph) growth rates, computed as (100 times) the 
log-first difference of M1 and M2, respectively, for the sample period 1960:01-1999:10. 
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Figure 7 
 

Time Series Plots of the Aaa Rate and Federal Funds Rate, 1960:01-1999:10 
 

 
Notes:  This graph shows time series plots of the Moody's Aaa rate (the average interest rate on the bonds of top-rated corporations) and the 
federal funds rate, 1960:01-1999:10.  While the Aaa rate is generally above the federal funds rate, there were several periods in which the 
reverse was true, especially during the Federal Reserve Board's announced shift to a monetary stock targeting regime in the late 1979 to late 
1982 period. 
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Figure 8 
 

Time Series Plot of Monthly Growth Rates in the CPI 

 
 
Notes:  This is a time series plot of the monthly growth rates, calculated as (100 times) the log-first differences, of the CPI.  These values need 
to be compounded to impute the implied annual inflation rate. 
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Figure 9 
 

Time Series Plots of the AIC-Selected Lag Order Across Different Models and Across Sample Windows of 
Length 10 and 15 Years 

 

 
Notes:  These graphs for the lag order λ  for equation (7) for each model estimated for each sample window.  The models vary according to the 
monetary stock measure (M1 or M2), the interest rate (the Aaa or federal funds rate), and the window length (10 years or 15 years).  Each 
point in each time series plot shows the lag order selected for the window ending in the particular period indicated, e.g., for the 10-year 
windows, the first data point of 1969:12 represents the last observation of the first window, 1960:01-1969:12.  The results show that the 
models AIC-specified models are more stable across the windows using the Aaa rate compared to using the federal funds rate. 
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Figure 10 
 

Time Series Plots of Granger Causality F-test p-values Across Different Models and Across Sample 
Windows of Length 10 and 15 Years 

 
Notes:  These graphs show time series plots of the p-value of an F-test of the restrictions in equation (7) implied by equation (9) for each 
model estimated for each sample period.  Since for each model equation (9) implies that lags of money growth do not help predict future 
values of stock returns, this F-test is a test of the null hypothesis that money does not Granger-cause stock returns, so that low p-values imply 
that there is strong evidence that money does Granger-cause stock returns.  Each point in each time series plot shows the p-value for the null 
hypothesis of no Granger causality for the sample window ending in the particular period indicated, e.g., for the 10-year windows, the first 
data point of 1969:12 represents the last observation of the first window, 1960:01-1969:12. 
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