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Introduction Contribution

Contribution

Propose a New Method that can precisely predict the distribution of S&P
500 index return.

Make the First Attempt to forecast the stock return distribution by
combining quantile regression models with volatility-based models.
access market risk, make optimal portfolio choices, option pricing, and delta hedging.

Uncover the Connection between macro-finance variables and the stock
return dynamics.
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Introduction Motivation

Motivation

Need a precise estimate of the stock return distribution:
hard to find a consistently superior model.

seek answers from forecast combination.

Contradictory findings on the predictive power of Macro-finance
variables:
pros: French and Stambaugh (1987), and Campbell and Shiller (1988), Lettau and Ludvigson

(2002).
cons: Welch and Goyal (2008), Bossaerts and Hillion (1999), Campbell and Thompson (2008), and

Lettau and Van Nieuwerburgh (2008).
new pros: Cenesizoglu and Timmermann (2008): Macro-finance variables can predict other

quantiles of the stock return density.
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Introduction Methodology

Methodology

Two Steps:
1 First, combine density forecasts made by quantile regressions using 11 macro-finance

variables or their principal components.
2 Second, combine these density forecasts with various volatility-based models. The

combination rule is to maximize some indicator of the predictive accuracy.

The N Macro-Finance Variables are:
Finance Variables: (1) dividends(D), (2) earnings(E), (3) stock variance(svar),

(4) book-to-market ratio(b/m), (5) net equity expansion(ntis),
(6) term spread(tms), (7) default yield spread(dfy).

Macroeconomic Variables: (8) inflation(infl), (9) unemployment rate(ume),
(10) industrial production growth(ip), (11) non-farm payroll(nfp).

Yizhen Zhao (Johns Hopkins University) Job Talk 02/22/13 4 / 48



Introduction Main Findings

Main Findings

Two Main Findings:
1 Density Forecasting: The combined density forecast using both

macro-finance variables and volatility-based models performs the best.
2 Portfolio Management: The certainty equivalent return can be up to

0.35% per month higher than can be obtained with the EGARCH
Student’s-t model.
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Introduction Presentation Outline

Outline

1 Model Specification and Estimation
2 Forecasting Combination and Comparison
3 Option Trading Implication
4 Portfolio Management Performance
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Model Specification and Estimation Forecast Specification

Forecast Specification

Data: Continuously compounded S&P 500 index return,

yt = 100 · log(pt/pt−1).

Data Frequency: Monthly.

Forecasting Method: Recursive, Out-of-Sample.

Sample Period: January, 1950 to December, 2011.

Forecasting Horizon: One Month Ahead Forecast.

Yizhen Zhao (Johns Hopkins University) Job Talk 02/22/13 7 / 48



Model Specification and Estimation Forecasting Models Preview

Forecasting Models

Models in Five Classes

Conditioning on Macro-Finance Variables
Model Class Features Models

I Quantile density forecast: MF non-parametric, model combination 11

II Quantile density forecast: PCA non-parametric, single model 3

Conditioning on Return Information Alone
Model Class Features Models

III Exponential GARCH Models parametric, fat-tail, leverage effect 8

IV Stochastic Volatility Models better capture return-volatility relationship 4

V Realized Volatility Models semi-parametric; use high-frequency data 4

Measure of Predictive Accuracy: the Log Predictive Likelihood
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Model Specification and Estimation Measure of Predictive Accuracy

Log Predictive Likelihood
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Predictive Density: 0.48394

Density Forecast of a Particular Model

Log Predictive Likelihood: sum of the Log Predictive Density.
Predictive Density: the higher, the better.
Parallel to Root-Mean-Squared Error (RMSE) for a point forecast.
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Model Specification and Estimation Forecast Combination Rule: The Idea

Forecast Combination Rule

Optimal Prediction Pool: parallel to optimal portfolio construction.

The Combination Objective:
To maximize the Log Predictive Likelihood.

1 The optimal pool typically includes a mix of models.
2 Each model contributes a strength that balances some weakness of the

other models entering the optimal pool.
3 The rule fundamentally differs from

Bayesian Model Averaging and
Conventional Forecast Competition.
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Model Specification and Estimation Forecasting Models

Forecasting Models: Class I

I. Quantile Density Forecasts
Each quantile of yt is predicted by

Q̂τ (yt|xi,t−1) = β̂i0(τ) + β̂i1(τ)yt−1 + β̂i2(τ)xi,t−1. for i = 1 . . . ,N.

Estimation of β̂i (Koenker and Park (1996)):
MM Algorithm.

A fine grid of quantiles: τ = 1%, . . . , 99%.
Three ways to construct the predictive distribution.

1 non-parametric kernel smoothing. X
2 direct method: finite sample, quantile crossing. ×
3 interpolation: doesn’t work in real-time ×

FORECAST COMBINATION
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Model Specification and Estimation Forecasting Models

Forecast Combination: An Example

An Illustration of Forecast Combination
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Inflation: 0.0132
Dividend: 0.0093
Book−to−Market Ratio: 0.0068
Term−Spread: 0.0060
Comb.Macro: 0.0077

FORECAST COMBINATION RULE
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Model Specification and Estimation Forecasting Models

Forecasting Models: Class II

II. Three Single-Model Forecast:
The First r Principal Components of xt−1︸︷︷︸

N×1

.

Q̂τ (yt|xt−1) = β̂0(τ) + β̂1(τ)yt−1 + β̂2(τ) ft−1︸︷︷︸
r×1

.

Ando and Tsay (2011) Quantile-Varying Factor

Q̂τ (yt|xt−1) = β̂0(τ) + β̂1(τ)yt−1 + β̂2(τ) fτ,t−1︸ ︷︷ ︸
r(τ)×1

.

Multivariate Forecast

Q̂τ (yt|xt−1) = β̂0(τ) + β̂1(τ)yt−1 + β̂2(τ) xt−1︸︷︷︸
N×1

.
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Model Specification and Estimation Forecasting Models

Forecasting Models: Class III

III. EGARCH models

yt = µY + σY exp(

k∑
i=1

hi,t/2)εj,t

hi,t = αihi,t−1 + βi(|εj,t−1| − (2/π)1/2) + γiεj,t−1.

i, j = 1 . . . , k, and k = 1, 2: up to two volatility components.

εt is Gaussian, Student’s t or Generalized Error Distribution.

If γi < 0, the model captures the Leverage Effect.
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Model Specification and Estimation Forecasting Models

Forecasting Models: Class IV

IV. Stochastic Volatility (SVOL) Models

yt = exp(ht/2)εt,

ht = µ+ φ(ht−1 − µ) + ηt, t = 1, . . . ,T.

ηt = ρεt +
√

1− ρ2ut, ut ∼ N(0, 1).(
εt

ηt

) ∣∣ (ρ, σ) ∼ i.i.d. N2(0,Σ),

Σ =

(
1 ρσ
ρσ σ2

)
.

The Basic SVOL Model: εt is Normal and ρ = 0.

Fat-tailed SVOL Model: εt follows a Student’s-t distribution.

The Correlated SVOL Model: ρ 6= 0, Leverage Effect.
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Model Specification and Estimation Forecasting Models

Forecasting Models: Class V

V. Realized Volatility Model
The monthly variance is calculated using the equation.

σ2
t =

Nt∑
i=1

r2
it + 2

Nt∑
i=2

ritri−1t.

σ2
t is then treated as the Realized Volatility (RV) in modeling the return:

yt+1 = µt + σtεt, (1)

logσ2
t = φ0 + φ1 logσ2

t−1 + ut. (2)

φ0, and φ1 are estimated via OLS. µt is estimated by MLE.

εt may follow Gaussian, Student’s t or Generalized Error Distribution.
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Forecasting Performance Comparison Forecast Comparison

Forecast Comparison: Predictive Accuracy
Table.1. Predictive Likelihood of Density Forecasts in Five Classes

Sample Periods 1959 : 01 − 2011 : 12
Class Combined Forecasts Individual Forecasts

I Combined Dividend Earnings SVAR Book to Mkt Ratio
Macro-Finance 51.99 54.56 72.73 67.80

Variables Net Equity Exp. Term Spread Default Yield Spread Inflation
76.51︸ ︷︷ ︸

3rd

67.60 67.96 75.90 66.61

Unemployment Rate Industrial Production Non-farm Payroll
70.50 77.93 78.13

II Single-Model Ando-Tsay Factor 1st. P.C. Multivariate
Multivariate Forecasts 66.20 58.89 −7.65

III Combined Gaussian (1, 1) Gaussian (1, 2) Gaussian (2, 1) Gaussian (2, 2)
EGARCHs 39.48 31.53 22.44 37.31

53.28 Student-t (1, 1) Student-t (2, 1) GED (1, 1) GED (2, 1)
0.00 2.86 15.74 −13.75

IV Combined SVs Gaussian SV Fat-tail SV Corr SV Fat-tail Corr SV
61.75 59.38 60.00 64.99 55.82

V Combined RVs RV-Gaussian (1) RV-Gaussian (2) RV-Student’s t RV-GED
89.99︸ ︷︷ ︸

2nd

33.09 32.71 55.68 20.39

Combine All 30 models
90.62︸ ︷︷ ︸

1st

Note: The higher is the predictive likelihood, the more precise is the forecast.
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Forecasting Performance Comparison Forecast Comparison

Forecast Comparison: Test Results I

Table.2.a Test Results: Combined Density Forecasts
Sample Periods 1959 : 01 − 2011 : 12

Models Comb.RV Comb.MF ATIC Comb.SV 1st.PC Comb.EGARCH Multivariate
Comb.All 0.11 2.07 2.67 2.84 3.71 4.07 5.48
Asy. p-value (0.46) (0.02∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗)
Boot. p-value [0.46] [0.02∗] [0.01∗] [0.01∗] [0.00∗] [0.00∗] [0.00∗]
Comb.RV 1.37 2.23 2.58 3.02 3.22 4.75
Asy. p-value (0.09) (0.01∗) (0.00∗) (0.00∗) (0.00∗) (0.00∗)
Boot. p-value [0.08] [0.02∗] [0.01∗] [0.00∗] [0.00∗] [0.00∗]
Comb.MF 1.41 1.27 2.10 2.14 4.73
Asy. p-value (0.08) (0.10) (0.02∗) (0.02∗) (0.00∗)
Boot. p-value [0.08] [0.11] [0.02∗] [0.02∗] [0.00∗]
ATIC. Factor 0.41 1.15 1.13 3.78
Asy. p-value (0.34) (0.12) (0.13) (0.00∗)
Boot. p-value [0.34] [0.11] [0.12] [0.00∗]
Comb.SV 0.26 0.70 3.33
Asy. p-value (0.40) (0.24) (0.00∗)
Boot. p-value [0.39] [0.22] [0.00∗]

Note:When the sample stops at December, 2008, and the comparison is set between Comb.All and Comb.RV , the
Amisano and Giacomini (2007) Test Statistic is positive and significant, in favor of Comb.All. When the comparison is set between

Comb.All and any individual model, AG test-stat is always positive and significant. detail
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Forecasting Performance Comparison Forecast Comparison

Predictive Accuracy Contribution

Weight of Macro-Finance Variables in Comb.All
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Forecasting Performance Comparison Forecast Comparison

Predictive Accuracy Contribution

Comb.All

Centers at (0.4237,0.5763)

Macro−Finance Variables: 42% Accuracy

Volatility Models: 58% Accuracy
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Forecasting Performance Comparison Forecast Comparison

Predictive Accuracy Contribution

Comb.Macro

Centers at (0.8958,0.1042)

B/M Ratio, Term−Spread, Inflation, Unemployment, Industrial Production: 90% Accuracy

Other Macro−Finance Variables: 10% Accuracy
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Option Trading Implication Physical Density vs. Risk Neutral Density

Physical Density vs. Risk Neutral Density

The Difference Reflects the Risk Premium
at the End of November, 2008
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SPD Recovered from Call Option Price: Raw Data
SPD Estimated by Ait−Sahalia and Lo (1998) Semi−Parametric Method
Predictive Distribution Using all 30 Density Forecasts
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Option Trading Implication Comparison of Pricing Error

Comparison of Pricing Error

The Pricing Error of Comb.All is Smaller
April, 2008
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Pricing Error: Black Scholes
Pricing Error: YZ Density Forecast
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Portfolio Management Performance A Portfolio Study

An Asset Pricing Model

An investor maximizes

U(Wt+1) =
W1−γ

t+1

1− γ
,

Wt+1 = Wt + atWtRt+1 + (1− at)WtRf ,t

≡ Wt
(
1 + atRe

t+1 + Rf ,t
)
.

no short-sale case: 0 ≤ at ≤ 1

short-sale allowed case: at ≤ 0, two types of margin restriction.

risk aversion level γ ranges from 1 to 200.
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Portfolio Management Performance A Portfolio Study

Optimal Portfolio Weight

Portfolio weights at the end of month t:

a∗t = arg max
at

∫ +∞

−∞

[Wt(1 + atRe
t+1 + Rf ,t)]

1−γ

1− γ︸ ︷︷ ︸
Utility Function

f (Re
t+1|Ft)︸ ︷︷ ︸

Density of Excess Return

dRe
t+1.

= arg max
at

S∑
i=1

[Wt(1 + atRe
t+1 + Rf ,t)]

1−γ

1− γ
P(ri−1 < Re

t+1 ≤ ri|Ft).

a∗t is chosen to Maximize the Expected Utility.

[r0, . . . , ri−1, ri, . . . , rS] is a sequence of possible realizations of Re
t+1.
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Portfolio Management Performance A Portfolio Study

Margin Restriction on Short Sale

When the Short-Sale is permitted, two types of Margin Restriction:

I. −1 ≤ a∗t ≤ 1: a∗t < 0 means that the investor short sells shares at t to invest in
risk-free asset. a∗t ≥ −1 implies that the value of shares borrowed at t cannot
exceed the the investor’s wealth.

II. A maintenance margin of 50%: the equity in the investor’s account must be at
least 50% of the value of her short-position.

Asset at (t + 1) end︷ ︸︸ ︷
(1− at)Wt(1 + Rf ,t)−

Expected Value of Shares (Liability)︷ ︸︸ ︷
(
−atWt

Pt
) · Et(Pt+1)

(
−atWt

Pt
) · Et(Pt+1)︸ ︷︷ ︸

Liability

≥ 50%.
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Portfolio Management Performance A Portfolio Study

Measure the Economic Gain

Optimal portfolio weights, a∗t , give rise to a realized utility next period

U(W∗t+1) =
[Wt(1 + a∗t+1Re

t+1 + Rf ,t)]
1−γ

1− γ
.

The economic value of the density forecasts can be measured by the Certainty
Equivalent Rate of Return (CER):

CER =
[
(1− γ)

1
T − q

T∑
t=q+1

U(W∗t )
]1/(1−γ) − 1.
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Portfolio Management Performance A Portfolio Study

Three Representative Forecasts

A. Comb.MF: the combined forecast of macro-finance variables
uses information from Macro-finance variables alone
combines multiple non-parametric data generating processes.

B. Comb.RV: the combined forecast of realized volatility models
has the best performance among all volatility-based models.
uses return information alone
combines multiple parametric data generating processes.

C. Comb.All: the combined forecast of all 30 models
combines multiple data generating processes as well as various sources of
information.
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Portfolio Management Performance A Portfolio Study

Three Representative Forecasts

Table.3.a The Difference in CER by 2011 December (% per month)

Risk Aversion
Models Strategy γ = 1 γ = 2 γ = 3 γ = 4 γ = 5 γ = 10 γ = 100

Comb.All no short-sale 0.16 0.13 0.13 0.11 0.10 0.05 0.00
short-sale 0.35 0.27 0.27 0.25 0.23 0.13 0.00

(margin = 0.5) 0.33 0.25 0.25 0.23 0.20 0.01 0.00
Comb.RV no short-sale 0.11 0.12 0.11 0.09 0.08 0.04 0.00

short-sale 0.26 0.29 0.27 0.25 0.22 0.12 0.01
(margin = 0.5) 0.25 0.28 0.27 0.25 0.20 0.12 0.00

Comb.MF no short-sale 0.15 0.11 0.07 0.06 0.05 0.02 0.00
short-sale 0.34 0.27 0.23 0.20 0.18 0.09 0.00

(margin = 0.5) 0.33 0.26 0.22 0.19 0.17 0.09 0.00
ATIC. Factor no short-sale 0.12 0.12 0.11 0.06 0.05 0.02 0.00

short-sale 0.20 0.17 0.16 0.14 0.11 0.04 0.00
(margin = 0.5) 0.21 0.17 0.16 0.15 0.11 0.01 0.00

Comb.SV no short-sale 0.05 0.08 0.09 0.08 0.07 0.05 0.00
short-sale 0.13 0.14 0.18 0.19 0.17 0.11 0.00

(margin = 0.5) 0.12 0.14 0.17 0.18 0.15 0.02 0.00
Comb.EGARCH no short-sale 0.10 0.11 0.11 0.09 0.07 0.02 0.00

short-sale 0.24 0.24 0.23 0.20 0.16 0.08 0.01
(margin = 0.5) 0.20 0.20 0.21 0.19 0.15 0.07 0.01

Note: In no-short sale case, CER of the benchmark model fluctuates between 0.36 and 0.39 and converges to 0.37.
In short-sale allowed case, CER of the benchmark model fluctuates between 0.17 and 0.26 and converges to 0.37.
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Portfolio Management Performance The Comparison of CER

Comb.All vs. Comb.RV: no short-sale

Comb.All Obtains Higher CER than Comb.RV
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Portfolio Management Performance The Comparison of CER

Comb.MF vs. Comb.RV: no short-sale

Comb.MF Obtains Higher CER than Comb.RV
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Portfolio Management Performance The Comparison of CER

Comb.All vs. Comb.RV: short-sale allowed

Comb.All Obtains Higher CER than Comb.RV
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Portfolio Management Performance The Comparison of CER

Comb.MF vs. Comb.RV: short-sale allowed

Comb.MF Obtains Higher CER than Comb.RV
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Portfolio Management Performance Story on the Right Tail

Why Macro-Finance Variables Help?

Compare density forecasts over A Particular Region of Interest:

The censored likelihood(csl) score function (Diks 2011):

Scsl(f̂t; yt+1) = I(yt+1 ∈ At+1) · log f̂t(yt+1)︸ ︷︷ ︸
A good forecast should have high density if yt+1 falls in At+1,

+ (1− I(yt+1 ∈ At+1)) · log
(
1−

∫
At+1

f̂t(y)dy
)

︸ ︷︷ ︸
and assign low probability to At+1 when yt+1 not in At+1

.

The test statistic takes the same form as Amisano and Giacomini (2007) test
above.
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Portfolio Management Performance Story on the Right Tail

Comb.MF: Better on Right Tail

Table 2.c Diks 2011 Test Results
Sample Periods 1959 : 01− 2011 : 12

Upper 10% (Right Tail)
Models Comb.RV Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.All 2.13 1.49 1.47 −1.62 0.83
Asy. p-value (0.02∗) (0.07) (0.07) (0.95) (0.20)

Models Comb.All Comb.SV Comb.EGARCH Comb.MF ATIC
Comb.RV −2.13 0.43 0.74 −1.92 0.07

Asy. p-value (0.98) (0.34) (0.23) (0.97) (0.47)
Models Comb.All Comb.RV Comb.SV Comb.EGARCH ATIC

Comb.MF 1.62 1.92 3.47 1.87 1.81
Asy. p-value (0.05∗) (0.03∗) (0.00∗) (0.03∗) (0.04∗)

Go to Left Tail
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Portfolio Management Performance Story on the Left Tail

Measure the Market Risk

Value at Risk (VaR): the cutoff point such that a loss will not happen
with probability greater than p, say, p = 90% . . . 99%.

The Expected Shortfall (ES): the expected value of the worst (1− p)%
of returns.

The ES gives an idea of how bad the bad might be. VaR tells us nothing other
than to expect a loss higher than VaR itself.
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Portfolio Management Performance Story on the Left Tail

Risk Measure: Comb.All vs. Comb.MF

Risk Measure of Comb.All is Higher
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Portfolio Management Performance Story on the Left Tail

Risk Measure: Comb.RV vs. Comb.MF

Risk Measure of Comb.RV is Higher

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
−4

−2

0

2

4

6

8

10

Confidence Interval: 90% − 99%

t Δ 
V

aR
a. tΔ VaR: Comb.RV v.s. Comb.MF

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

2

4

6

8

10

12

14

16

18

20

Confidence Interval: 90% − 99%

t Δ 
E

S

b. tΔ ES: Comb.RV v.s. Comb.MF

Yizhen Zhao (Johns Hopkins University) Job Talk 02/22/13 38 / 48



Portfolio Management Performance Risk Aversion and Portfolio Choice

Impact of Risk Aversion

Portfolio Choice Converge as γ Increases
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Conclusion

Conclusion

1 First, combined density forecast that uses various sources of information
and assimilates multiple data generating processes performs the best.

2 Second, combining quantile density forecasts with macro-finance
variables exhibit competitive density forecasting performance to
volatility-based models.

3 Third, the proposed density forecasts yields a certainty equivalent return
that is up to 0.35% per month higher than can be obtained with the
combined forecasts that use EGARCH Student’s-t.
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Appendix Forecast Combination Rule

Forecast Combination: An Illustration

The optimal weight vector w∗t−1 is chosen to maximize:

ft−1(wt−1) =

t−1∑
s=q+1

log
[ M∑

m=1

wt−1,m · f (ys|xs−1, ys−1,Am)
]
.

f (ys|xs−1, ys−1,Am) is the predictive density of model Am.
M is the number of models that are being combined.
q = 120 months: first in-sample periods.

w∗t−1 = (w∗t−1,1, . . . ,w
∗
t−1,M)′ is a weight vector with nonnegative

weights that sum to 1.

BACK TO GRAPH
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Appendix Forecast Comparison Test

Forecast Comparison: Difference-in-Likelihood Test

Amisano and Giacomini (2007) Test: Test Results

Test statistic:

AGq,T ≡
∆Lt(yt+1)

σ̂/
√

(T − q)
,

where

∆Lt(yt+1) ≡
1

T − q

T∑
t=q+1

Lt(yt+1)

=
1

T − q

T∑
t=q+1

log f (yt+1|xt, yt)− log g(yt+1|xt, yt).

The Null vs. The Alternative:

H0 : E[∆Lt(yt+1)] = 0 vs. HA : E[∆Lt(yt+1)] > 0.
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Appendix Forecast Comparison Results

Table.2.b Test Results: Combine All v.s. Individual Models
Sample Periods 1959 : 01 − 2011 : 12

Model Class Individual Density Forecasts
RVs RV-Gaussian (1) RV-Gaussian (2) RV-Student’s t RV-GED

AG stat 1.66 1.60 3.69 2.22
Asy. p-value (0.05∗) (0.06) (0.00∗) (0.01∗)
Boot. p-value [0.01∗] [0.03∗] [0.00∗] [0.00∗]

SVs Gaussian SV Fat-tailed SV Corr SV Fat-tailed Corr SV
AG stat 2.88 2.90 2.51 3.06

Asy. p-value (0.00∗) (0.00∗) (0.01∗) (0.00∗)
Boot. p-value [0.02∗] [0.03∗] [0.00∗] [0.00∗]
EGARCHs Gaussian (1, 1) Gaussian (1, 2) Gaussian (2, 1) Gaussian (2, 2)

AG stat 3.92 2.82 3.59 4.02
Asy. p-value (0.00∗) (0.00∗) (0.00∗) (0.00∗)
Boot. p-value [0.00∗] [0.00∗] [0.00∗] [0.00∗]

Student-t (1, 1) Student-t (2, 1) GED (1, 1) GED (2, 1)
AG stat 6.59 6.44 3.78 3.49

Asy. p-value (0.00∗) (0.00∗) (0.00∗) (0.00∗)
Boot. p-value [0.00∗] [0.00∗] [0.00∗] [0.00∗]

Combined MFs Dividend Earnings SVAR Book to Mkt Ratio
AG stat 3.43 3.57 1.85 2.26

Asy. p-value (0.00∗) (0.00∗) (0.03∗) (0.01∗)
Boot. p-value [0.00∗] [0.00∗] [0.03∗] [0.01∗]

Net Equity Exp. Term Spread Default Yield Spread Inflation
AG stat 2.34 2.27 1.87 2.14

Asy. p-value (0.01∗) (0.01∗) (0.03∗) (0.02∗)
Boot. p-value [0.01∗] [0.01∗] [0.04∗] [0.00∗]

Unemployment Rate Industrial Production Non-farm Payroll
AG stat 1.94 1.32 1.33

Asy. p-value (0.03∗) (0.09) (0.09)

Boot. p-value [0.02∗] [0.09] [0.08] back
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Appendix Story on the Left Tail

Comb.All: Better on Left Tail

Table 2.c Diks 2011 Test Results
Sample Periods 1959 : 01− 2011 : 12

Lower 10% (Left Tail)
Models Comb.RV Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.All 0.87 2.94 4.33 2.20 2.90
Asy. p-value (0.19) (0.00∗) (0.00∗) (0.01∗) (0.00∗)

Models Comb.All Comb.SV Comb.EGARCH Comb.MF ATIC
Comb.RV −0.87 2.50 3.34 1.26 2.29

Asy. p-value (0.19) (0.01∗) (0.00∗) (0.10∗) (0.01∗)
Models Comb.All Comb.SV Comb.EGARCH Comb.MF ATIC

Comb.MF −2.20 −1.26 1.27 1.91 1.89
Asy. p-value (0.99) (0.90) (0.10) (0.03) (0.03)

Back to Right Tail
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Appendix Portfolio Wealth Fluctuation

Portfolio Wealth Obtained by Comb.All

Portfolio Wealth
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Appendix Predictive Accuracy Contribution

Predictive Accuracy Contribution

Comb.Macro: Macroeconomic Variables vs. Finance Variables

Centers at (0.2712,0.7288)
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Appendix Predictive Accuracy Contribution

Density Estimation in Portfolio Study

By Density Transformation Theorem, f (Re
t+1|Ft) is estimated from:

f (Re
t+1|Ft) = | 100

Rt+1 + 1
| · f (yt+1|xt, yt,w∗t ),

because yt+1 = 100 · log(Rt+1 + 1).

Optimal Portfolio Weight
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