Forecasting the Stock Return Distribution Using Macro-Finance Variables

Yizhen Zhao

Department of Economics Johns Hopkins University

East Carolina University Greenville, North Carolina, February 22, 2013

02/22/13 1 / 48

• • = • • = •

Contribution

Contribution

Propose a New Method that can precisely predict the distribution of S&P 500 index return.

- **Make the First Attempt** to forecast the stock return distribution by combining quantile regression models with volatility-based models. *access market risk, make optimal portfolio choices, option pricing, and delta hedging.*
- Uncover the Connection between macro-finance variables and the stock return dynamics.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Motivation

- Need a precise estimate of the stock return distribution: hard to find a consistently superior model. seek answers from forecast combination.
- Contradictory findings on the predictive power of Macro-finance variables:

pros: French and Stambaugh (1987), and Campbell and Shiller (1988), Lettau and Ludvigson (2002).

cons: Welch and Goyal (2008), Bossaerts and Hillion (1999), Campbell and Thompson (2008), and Lettau and Van Nieuwerburgh (2008).

new pros: Cenesizoglu and Timmermann (2008): Macro-finance variables can predict other quantiles of the stock return density.

Methodology

Methodology

Two Steps:

- First, combine density forecasts made by quantile regressions using 11 macro-finance variables or their principal components.
- Second, combine these density forecasts with various volatility-based models. The combination rule is to maximize some indicator of the predictive accuracy.

The N Macro-Finance Variables are:

- Finance Variables: (1) dividends(D), (2) earnings(E), (3) stock variance(svar), (4) book-to-market ratio(b/m), (5) net equity expansion(ntis), (6) term spread(tms), (7) default yield spread(dfy).
- Macroeconomic Variables: (8) inflation(infl), (9) unemployment rate(ume), (10) industrial production growth(ip), (11) non-farm payroll(nfp).

イロト 不得 とくほ とくほう

Main Findings

Main Findings

Two Main Findings:

- Density Forecasting: The combined density forecast using both macro-finance variables and volatility-based models performs the best.
- Portfolio Management: The certainty equivalent return can be up to 0.35% per month higher than can be obtained with the EGARCH Student's-t model.

Outline

- Model Specification and Estimation
- Processing Combination and Comparison
- Option Trading Implication
- Portfolio Management Performance

Forecast Specification

• Data: Continuously compounded S&P 500 index return,

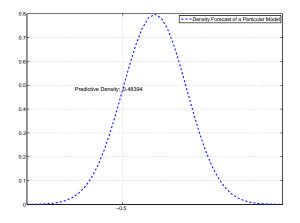
 $y_t = 100 \cdot \log(p_t/p_{t-1}).$

- Data Frequency: Monthly.
- Forecasting Method: Recursive, Out-of-Sample.
- Sample Period: January, 1950 to December, 2011.
- Forecasting Horizon: One Month Ahead Forecast.

Forecasting Models

Models in Five Classes

Conditioning on Macro-Finance Variables


	Model Class	Features	Models	
Ι	Quantile density forecast: MF	non-parametric, model combination	▶ 11	
II	Quantile density forecast: PCA	non-parametric, single model	▶ 3	

Conditioning on Return Information Alone

	Model Class	Features	Models	
III	Exponential GARCH Models	parametric, fat-tail, leverage effect	▶ 8	
IV	Stochastic Volatility Models	better capture return-volatility relationship	▶ 4	
V	Realized Volatility Models	semi-parametric; use high-frequency data	▶ 4	

• Measure of Predictive Accuracy: the Log Predictive Likelihood

Log Predictive Likelihood

- Log Predictive Likelihood: sum of the Log Predictive Density.
- **Predictive Density**: *the higher, the better.*
- Parallel to Root-Mean-Squared Error (RMSE) for a point forecast.

Forecast Combination Rule

• Optimal Prediction Pool: parallel to optimal portfolio construction.

• The Combination Objective: *To maximize the Log Predictive Likelihood*.

- The optimal pool typically includes a mix of models.
- Each model contributes a strength that balances some weakness of the other models entering the optimal pool.
- The rule fundamentally differs from Bayesian Model Averaging and Conventional Forecast Competition.

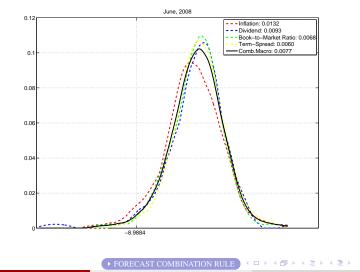
< ロ > < 同 > < 回 > < 回 > < 回 >

Forecasting Models: Class I

I. Quantile Density Forecasts

• Each quantile of y_t is predicted by

$$\hat{Q}_{\tau}(y_t|x_{i,t-1}) = \hat{\beta}_{i0}(\tau) + \hat{\beta}_{i1}(\tau)y_{t-1} + \hat{\beta}_{i2}(\tau)x_{i,t-1}. \quad \text{for } i = 1..., N.$$


- Estimation of $\hat{\beta}_i$ (Koenker and Park (1996)): *MM Algorithm*.
- A fine grid of quantiles: $\tau = 1\%, \ldots, 99\%$.
- Three ways to construct the predictive distribution.
 - り non-parametric kernel smoothing. 🗸
 - 2) direct method: finite sample, quantile crossing. imes
 - ${\mathfrak G}$ interpolation: doesn't work in real-time imes

▶ FORECAST COMBINATION

< ロ > < 同 > < 三 > < 三 >

Forecast Combination: An Example

An Illustration of Forecast Combination

 $N \times 1$

Forecasting Models: Class II

II. Three Single-Model Forecast:

• The First **r** Principal Components of \mathbf{x}_{t-1} .

$$\hat{Q}_{\tau}(y_t|\mathbf{x}_{t-1}) = \hat{\beta}_0(\tau) + \hat{\beta}_1(\tau)y_{t-1} + \hat{\beta}_2(\tau)\underbrace{\mathbf{f}_{t-1}}_{\mathbf{r}\times 1}.$$

• Ando and Tsay (2011) Quantile-Varying Factor

$$\hat{Q}_{\tau}(y_t|\mathbf{x}_{t-1}) = \hat{\beta}_0(\tau) + \hat{\beta}_1(\tau)y_{t-1} + \hat{\beta}_2(\tau)\underbrace{\mathbf{f}_{\tau,t-1}}_{\mathbf{r}(\tau)\times 1}.$$

Multivariate Forecast

$$\hat{Q}_{\tau}(y_t|\mathbf{x}_{t-1}) = \hat{\beta}_0(\tau) + \hat{\beta}_1(\tau)y_{t-1} + \hat{\beta}_2(\tau)\underbrace{\mathbf{x}_{t-1}}_{N\times 1}.$$

イロン イロン イヨン イヨン

Forecasting Models: Class III

III. EGARCH models

$$y_t = \mu_Y + \sigma_Y \exp(\sum_{i=1}^k h_{i,t}/2)\varepsilon_{j,t}$$

$$h_{i,t} = \alpha_i h_{i,t-1} + \beta_i (|\varepsilon_{j,t-1}| - (2/\pi)^{1/2}) + \gamma_i \varepsilon_{j,t-1}.$$

• i, j = 1..., k, and k = 1, 2: up to two volatility components.

- ε_t is Gaussian, Student's t or Generalized Error Distribution.
- If $\gamma_i < 0$, the model captures the *Leverage Effect*.

Forecasting Models: Class IV

IV. Stochastic Volatility (SVOL) Models

$$y_t = \exp(h_t/2)\varepsilon_t,$$

$$h_t = \mu + \phi(h_{t-1} - \mu) + \eta_t, \quad t = 1, \dots, T.$$

$$\eta_t = \rho\varepsilon_t + \sqrt{1 - \rho^2}u_t, \quad u_t \sim N(0, 1).$$

$$\begin{pmatrix} \varepsilon_t \\ \eta_t \end{pmatrix} \mid (\rho, \sigma) \sim i.i.d. \quad \mathcal{N}_2(0, \Sigma),$$

$$\Sigma = \begin{pmatrix} 1 & \rho\sigma \\ \rho\sigma & \sigma^2 \end{pmatrix}.$$

- *The Basic SVOL Model*: ε_t is Normal and $\rho = 0$.
- *Fat-tailed SVOL Model*: ε_t follows a Student's-t distribution.
- The Correlated SVOL Model: $\rho \neq 0$, Leverage Effect.

・ロト ・四ト ・ヨト ・ヨト

Forecasting Models: Class V

V. Realized Volatility Model

The monthly variance is calculated using the equation.

$$\sigma_t^2 = \sum_{i=1}^{N_t} r_{it}^2 + 2 \sum_{i=2}^{N_t} r_{it} r_{i-1t}.$$

 σ_t^2 is then treated as the **Realized Volatility** (**RV**) in modeling the return:

$$y_{t+1} = \mu_t + \sigma_t \varepsilon_t, \tag{1}$$

$$\log \sigma_t^2 = \phi_0 + \phi_1 \log \sigma_{t-1}^2 + u_t.$$
 (2)

• ϕ_0 , and ϕ_1 are estimated via OLS. μ_t is estimated by MLE.

• ε_t may follow *Gaussian*, *Student's t* or *Generalized Error Distribution*.

Forecast Comparison: Predictive Accuracy

Table.1. Predictive Likelihood of Density Forecasts in Five Classes

		Sample Perioa	s 1959 : 01 - 2011 : 12						
Class	Combined Forecasts	Individual Forecasts							
Ι	Combined	Dividend	Earnings	SVAR	Book to Mkt Ratio				
	Macro-Finance	51.99	54.56	72.73	67.80				
	Variables	Net Equity Exp.	Term Spread	Default Yield Spread	Inflation				
	76.51	67.60	67.96	75.90	66.61				
	<u>~</u>								
	3rd								
		Unemployment Rate	Industrial Production	Non-farm Payroll					
		70.50	77.93	78.13					
П	Single-Model	Ando-Tsay Factor	1st. P.C.	Multivariate					
	Multivariate Forecasts	66.20	58.89	-7.65					
III	Combined	Gaussian (1, 1)	Gaussian (1, 2)	Gaussian $(2, 1)$	Gaussian (2, 2)				
	EGARCHs	39.48	31.53	22.44	37.31				
	53.28	Student- $t(1, 1)$	Student- $t(2, 1)$	GED(1, 1)	GED(2, 1)				
		0.00	2.86	15.74	-13.75				
IV	Combined SVs	Gaussian SV	Fat-tail SV	Corr SV	Fat-tail Corr SV				
	61.75	59.38	60.00	64.99	55.82				
V	Combined RVs	RV-Gaussian (1)	RV-Gaussian (2)	RV-Student's t	RV-GED				
	89.99	33.09	32.71	55.68	20.39				
	~								
	2nd								
	Combine All 30 models								
	90.62								
	1 <i>st</i>								

Sample Periods 1959 : 01 - 2011 : 12

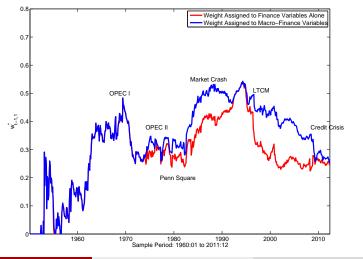
Note: The higher is the predictive likelihood, the more precise is the forecast.

Forecast Comparison: Test Results I

Sample Periods 1959 : 01 – 2011 : 12							
Models	Comb.RV	Comb.MF	ATIC	Comb.SV	1st.PC	Comb.EGARCH	Multivariate
Comb.All	0.11	2.07	2.67	2.84	3.71	4.07	5.48
Asy. p-value	(0.46)	(0.02^*)	(0.00^*)	(0.00^*)	(0.00^*)	(0.00^*)	(0.00^*)
Boot. p-value	[0.46]	[0.02*]	[0.01*]	[0.01*]	$[0.00^*]$	$[0.00^*]$	$[0.00^*]$
Comb.RV		1.37	2.23	2.58	3.02	3.22	4.75
Asy. p-value		(0.09)	(0.01^*)	(0.00^*)	(0.00^*)	(0.00^*)	(0.00^*)
Boot. p-value		[0.08]	[0.02*]	[0.01*]	$[0.00^*]$	$[0.00^*]$	$[0.00^*]$
Comb.MF			1.41	1.27	2.10	2.14	4.73
Asy. p-value			(0.08)	(0.10)	(0.02^*)	(0.02^*)	(0.00^*)
Boot. p-value			[0.08]	[0.11]	$[0.02^*]$	$[0.02^*]$	$[0.00^*]$
ATIC. Factor				0.41	1.15	1.13	3.78
Asy. p-value				(0.34)	(0.12)	(0.13)	(0.00^*)
Boot. p-value				[0.34]	[0.11]	[0.12]	$[0.00^*]$
Comb.SV					0.26	0.70	3.33
Asy. p-value					(0.40)	(0.24)	(0.00^*)
Boot. p-value					[0.39]	[0.22]	$[0.00^*]$

Table.2.a Test Results: Combined Density Forecasts

Note: When the sample stops at December, 2008, and the comparison is set between Comb.All and Comb.RV, the

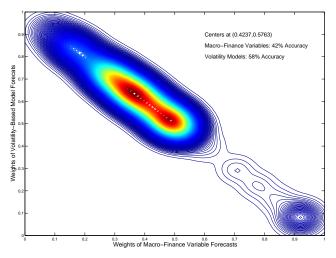

Amisano and Giacomini (2007) Test Statistic is positive and significant, in favor of Comb.All. When the comparison is set between

Comb.All and any individual model, AG test-stat is always positive and significant.

02/22/13 18 / 48

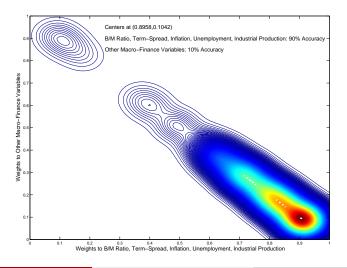
Predictive Accuracy Contribution

Weight of Macro-Finance Variables in Comb.All



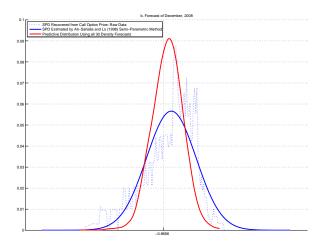
Yizhen Zhao (Johns Hopkins University)

02/22/13 19/48


Predictive Accuracy Contribution

Comb.All

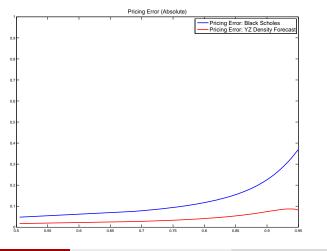
Predictive Accuracy Contribution


Comb.Macro

Physical Density vs. Risk Neutral Density

The Difference Reflects the Risk Premium

at the End of November, 2008



Yizhen Zhao (Johns Hopkins University)

Comparison of Pricing Error

The Pricing Error of Comb.All is Smaller

April, 2008

Yizhen Zhao (Johns Hopkins University)

02/22/13 23 / 48

An Asset Pricing Model

An investor maximizes

$$U(W_{t+1}) = \frac{W_{t+1}^{1-\gamma}}{1-\gamma},$$

$$W_{t+1} = W_t + a_t W_t R_{t+1} + (1-a_t) W_t R_{f,t}$$

$$\equiv W_t (1 + a_t R_{t+1}^e + R_{f,t}).$$

- no short-sale case: $0 \le a_t \le 1$
- *short-sale allowed case*: $a_t \leq 0$, two types of margin restriction.
- *risk aversion* level γ ranges from 1 to 200.

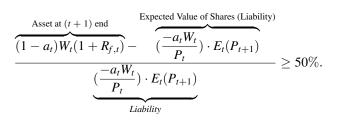
A Portfolio Study

Optimal Portfolio Weight

Portfolio weights at the end of month *t*:

$$a_{t}^{*} = \arg \max_{a_{t}} \int_{-\infty}^{+\infty} \underbrace{\frac{[W_{t}(1 + a_{t}R_{t+1}^{e} + R_{f,t})]^{1-\gamma}}{1-\gamma}}_{\text{Utility Function}} \underbrace{f(R_{t+1}^{e}|\mathcal{F}_{t})}_{\text{Density of Excess Return}} dR_{t+1}^{e}.$$
$$= \arg \max_{a_{t}} \sum_{i=1}^{S} \frac{[W_{t}(1 + a_{t}R_{t+1}^{e} + R_{f,t})]^{1-\gamma}}{1-\gamma} P(\mathbf{r}_{i-1} < R_{t+1}^{e} \le \mathbf{r}_{i}|\mathcal{F}_{t}).$$

• a_t^* is chosen to *Maximize the Expected Utility*.


• $[\mathbf{r}_0, \ldots, \mathbf{r}_{i-1}, \mathbf{r}_i, \ldots, \mathbf{r}_S]$ is a sequence of possible realizations of R_{t+1}^e .

<ロト <四ト < 三ト < 三ト = 三

Margin Restriction on Short Sale

When the Short-Sale is permitted, two types of Margin Restriction:

- I. $-1 \le \mathbf{a}_t^* \le 1$: $a_t^* < 0$ means that the investor short sells shares at *t* to invest in risk-free asset. $a_t^* \ge -1$ implies that the value of shares borrowed at *t* cannot exceed the the investor's wealth.
- II. A maintenance margin of 50%: the equity in the investor's account must be at least 50% of the value of her short-position.

Measure the Economic Gain

• Optimal portfolio weights, a_t^* , give rise to a realized utility next period

$$U(W_{t+1}^*) = \frac{[W_t(1+a_{t+1}^*R_{t+1}^e+R_{f,t})]^{1-\gamma}}{1-\gamma}.$$

• The economic value of the density forecasts can be measured by the **Certainty** Equivalent Rate of Return (CER):

$$CER = \left[(1 - \gamma) \frac{1}{T - q} \sum_{t=q+1}^{T} U(W_t^*) \right]^{1/(1 - \gamma)} - 1.$$

Yizhen Zhao (Johns Hopkins University)

02/22/13 27 / 48

Three Representative Forecasts

A. Comb.MF: the combined forecast of macro-finance variables

- uses information from Macro-finance variables alone
- combines multiple non-parametric data generating processes.

B. Comb.RV: the combined forecast of realized volatility models

- has the best performance among all volatility-based models.
- uses return information alone
- combines multiple parametric data generating processes.
- C. Comb.All: the combined forecast of all 30 models
 - combines multiple data generating processes as well as various sources of information.

Three Representative Forecasts

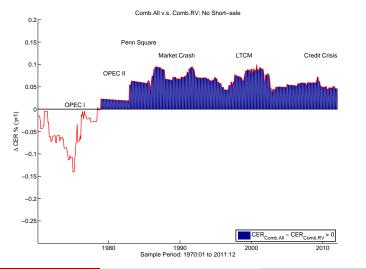
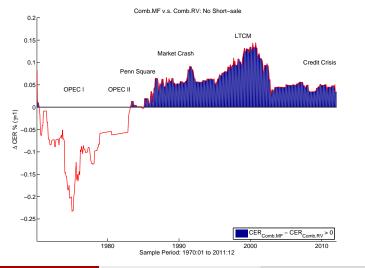
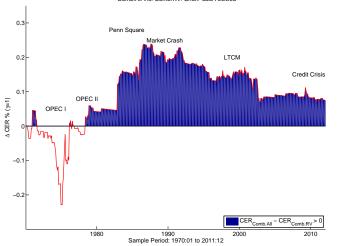

		Risk Aversion						
Models	Strategy	$\gamma = 1$	$\gamma = 2$	$\gamma = 3$	$\gamma = 4$	$\gamma = 5$	$\gamma = 10$	$\gamma = 100$
Comb.All	no short-sale	0.16	0.13	0.13	0.11	0.10	0.05	0.00
	short-sale	0.35	0.27	0.27	0.25	0.23	0.13	0.00
	(margin = 0.5)	0.33	0.25	0.25	0.23	0.20	0.01	0.00
Comb.RV	no short-sale	0.11	0.12	0.11	0.09	0.08	0.04	0.00
	short-sale	0.26	0.29	0.27	0.25	0.22	0.12	0.01
	(margin = 0.5)	0.25	0.28	0.27	0.25	0.20	0.12	0.00
Comb.MF	no short-sale	0.15	0.11	0.07	0.06	0.05	0.02	0.00
	short-sale	0.34	0.27	0.23	0.20	0.18	0.09	0.00
	(margin = 0.5)	0.33	0.26	0.22	0.19	0.17	0.09	0.00
ATIC. Factor	no short-sale	0.12	0.12	0.11	0.06	0.05	0.02	0.00
	short-sale	0.20	0.17	0.16	0.14	0.11	0.04	0.00
	(margin = 0.5)	0.21	0.17	0.16	0.15	0.11	0.01	0.00
Comb.SV	no short-sale	0.05	0.08	0.09	0.08	0.07	0.05	0.00
	short-sale	0.13	0.14	0.18	0.19	0.17	0.11	0.00
	(margin = 0.5)	0.12	0.14	0.17	0.18	0.15	0.02	0.00
Comb.EGARCH	no short-sale	0.10	0.11	0.11	0.09	0.07	0.02	0.00
	short-sale	0.24	0.24	0.23	0.20	0.16	0.08	0.01
	(margin = 0.5)	0.20	0.20	0.21	0.19	0.15	0.07	0.01

Table.3.a The Difference in CER by 2011 December (% per month)

Note: In no-short sale case, CER of the benchmark model fluctuates between 0.36 and 0.39 and converges to 0.37. In short-sale allowed case, CER of the benchmark model fluctuates between 0.17 and 0.26 and converges to 0.37.

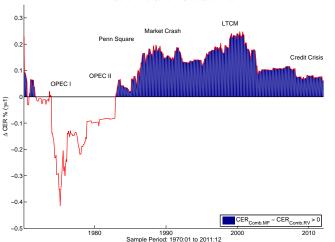

Comb.All vs. Comb.RV: no short-sale

Comb.All Obtains Higher CER than Comb.RV


Comb.MF vs. Comb.RV: no short-sale

Comb.MF Obtains Higher CER than Comb.RV

Comb.All vs. Comb.RV: short-sale allowed


Comb.All Obtains Higher CER than Comb.RV

Comb.All v.s. Comb.RV: Short-sale Allowed

Comb.MF vs. Comb.RV: short-sale allowed

Comb.MF Obtains Higher CER than Comb.RV

Comb.MF v.s. Comb.RV: Short-sale Allowed

Why Macro-Finance Variables Help?

Compare density forecasts over A Particular Region of Interest:

• The censored likelihood(csl) score function (Diks 2011):

$$S^{csl}(\hat{f}_{t}; y_{t+1}) = \underbrace{I(y_{t+1} \in A_{t+1}) \cdot \log \hat{f}_{t}(y_{t+1})}_{\text{A good forecast should have high density if } y_{t+1} \text{ falls in } A_{t+1},}_{\text{H}} + \underbrace{(1 - I(y_{t+1} \in A_{t+1})) \cdot \log (1 - \int_{A_{t+1}} \hat{f}_{t}(\mathbf{y}) d\mathbf{y})}_{\text{H}}$$

and assign low probability to A_{t+1} when y_{t+1} not in A_{t+1}

• The test statistic takes the same form as Amisano and Giacomini (2007) test above.

イロン イロン イヨン イヨン

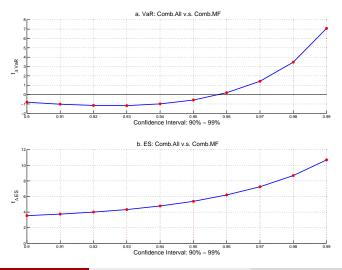
Comb.MF: Better on Right Tail

Table 2.c Diks 2011 Test Results

Sample Periods 1959 : 01 - 2011 : 12

	Upper 10% (Right Tail)							
Models	Comb.RV	Comb.SV	Comb.EGARCH	Comb.MF	ATIC			
Comb.All	2.13	1.49	1.47	-1.62	0.83			
Asy. p-value	(0.02^*)	(0.07)	(0.07)	(0.95)	(0.20)			
Models	Comb.All	Comb.SV	Comb.EGARCH	Comb.MF	ATIC			
Comb.RV	-2.13	0.43	0.74	-1.92	0.07			
Asy. p-value	(0.98)	(0.34)	(0.23)	(0.97)	(0.47)			
Models	Comb.All	Comb.RV	Comb.SV	Comb.EGARCH	ATIC			
Comb.MF	1.62	1.92	3.47	1.87	1.81			
Asy. p-value	(0.05^*)	(0.03^*)	(0.00^{*})	(0.03^*)	(0.04^*)			
			Go to Left Tail					

Measure the Market Risk

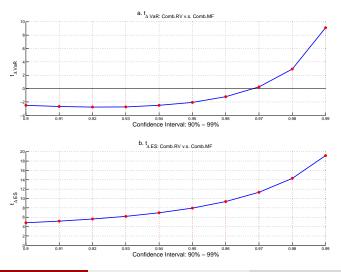

- *Value at Risk (VaR)*: the cutoff point such that a loss will not happen with probability greater than p, say, $p = 90\% \dots 99\%$.
- *The Expected Shortfall (ES)*: the expected value of the worst (1 p)% of returns.

The ES gives an idea of how bad the bad might be. VaR tells us nothing other than to expect a loss higher than VaR itself.

< ロ > < 同 > < 三 > < 三 >

Risk Measure: Comb.All vs. Comb.MF

Risk Measure of Comb.All is Higher

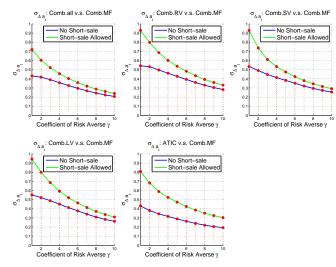


Yizhen Zhao (Johns Hopkins University)

02/22/13 37 / 48

Risk Measure: Comb.RV vs. Comb.MF

Risk Measure of Comb.RV is Higher



Yizhen Zhao (Johns Hopkins University)

02/22/13 38 / 48

Impact of Risk Aversion

Portfolio Choice Converge as γ Increases

Yizhen Zhao (Johns Hopkins University)

Conclusion

- First, combined density forecast that uses various sources of information and assimilates multiple data generating processes performs the best.
- Second, combining quantile density forecasts with macro-finance variables exhibit competitive density forecasting performance to volatility-based models.
- Third, the proposed density forecasts yields a certainty equivalent return that is up to 0.35% per month higher than can be obtained with the combined forecasts that use EGARCH Student's-t.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Forecast Combination: An Illustration

• The optimal weight vector \mathbf{w}_{t-1}^* is chosen to maximize:

$$f_{t-1}(\mathbf{w}_{t-1}) = \sum_{s=q+1}^{t-1} \log \left[\sum_{m=1}^{M} w_{t-1,m} \cdot f(y_s | \mathbf{x}_{s-1}, \mathbf{y}_{s-1}, A_m) \right].$$

- $f(y_s|\mathbf{x}_{s-1}, \mathbf{y}_{s-1}, A_m)$ is the predictive density of model A_m .
- *M* is the number of models that are being combined.
- q = 120 months: first in-sample periods.
- $\mathbf{w}_{t-1}^* = (w_{t-1,1}^*, \dots, w_{t-1,M}^*)'$ is a weight vector with nonnegative weights that sum to 1.

BACK TO GRAPH

イロト 不得 とくき とくき とうき

Forecast Comparison: Difference-in-Likelihood Test

Amisano and Giacomini (2007) Test: <a>Test Results

Test statistic:

$$AG_{q,T} \equiv \frac{\Delta \overline{L}_t(y_{t+1})}{\hat{\sigma}/\sqrt{(T-q)}},$$

where

$$\begin{aligned} \Delta \overline{L}_t(y_{t+1}) &\equiv & \frac{1}{T-q} \sum_{t=q+1}^T L_t(y_{t+1}) \\ &= & \frac{1}{T-q} \sum_{t=q+1}^T \log f(y_{t+1} | \mathbf{x}_t, \mathbf{y}_t) - \log g(y_{t+1} | \mathbf{x}_t, \mathbf{y}_t). \end{aligned}$$

• The Null vs. The Alternative:

$$H_0: E[\Delta L_t(y_{t+1})] = 0$$
 vs. $H_A: E[\Delta L_t(y_{t+1})] > 0.$

イロト イポト イヨト イヨト

Table.2.b Test Results: Combine All v.s. Individual Models

Model Class	Individual Density Forecasts						
RVs	RV-Gaussian (1)	RV-Gaussian (2)	RV-Student's t	RV-GED			
AG stat	1.66	1.60	3.69	2.22			
Asy. p-value	(0.05^*)	(0.06)	(0.00^*)	(0.01^*)			
Boot. p-value	[0.01*]	[0.03*]	$[0.00^*]$	$[0.00^*]$			
SVs	Gaussian SV	Fat-tailed SV	Corr SV	Fat-tailed Corr SV			
AG stat	2.88	2.90	2.51	3.06			
Asy. p-value	(0.00^*)	(0.00^*)	(0.01^*)	(0.00^*)			
Boot. p-value	$[0.02^*]$	[0.03*]	$[0.00^*]$	$[0.00^*]$			
EGARCHs	Gaussian (1, 1)	Gaussian (1, 2)	Gaussian $(2, 1)$	Gaussian (2, 2)			
AG stat	3.92	2.82	3.59	4.02			
Asy. p-value	(0.00^*)	(0.00^*)	(0.00^*)	(0.00^*)			
Boot. p-value	$[0.00^*]$	$[0.00^*]$	$[0.00^*]$	$[0.00^*]$			
	Student-t $(1, 1)$	Student-t $(2, 1)$	GED(1, 1)	GED(2, 1)			
AG stat	6.59	6.44	3.78	3.49			
Asy. p-value	(0.00^*)	(0.00^*)	(0.00^*)	(0.00^*)			
Boot. p-value	$[0.00^*]$	$[0.00^*]$	$[0.00^*]$	$[0.00^*]$			
Combined MFs	Dividend	Earnings	SVAR	Book to Mkt Ratio			
AG stat	3.43	3.57	1.85	2.26			
Asy. p-value	(0.00^*)	(0.00^*)	(0.03^*)	(0.01^*)			
Boot. p-value	$[0.00^*]$	$[0.00^*]$	[0.03*]	$[0.01^*]$			
	Net Equity Exp.	Term Spread	Default Yield Spread	Inflation			
AG stat	2.34	2.27	1.87	2.14			
Asy. p-value	(0.01*)	(0.01^*)	(0.03^*)	(0.02^*)			
Boot. p-value	[0.01*]	$[0.01^*]$	$[0.04^*]$	$[0.00^*]$			
	Unemployment Rate	Industrial Production	Non-farm Payroll				
AG stat	1.94	1.32	1.33				
Asy. p-value	(0.03^*)	(0.09)	(0.09)				
Boot. p-value	$[0.02^*]$	[0.09]	[0.08]	✓ back			

Sample Periods 1959 : 01 - 2011 : 12

イロト イポト イヨト イヨト

Comb.All: Better on Left Tail

Table 2.c Diks 2011 Test Results

Sample Periods 1959 : 01 – 2011 : 12

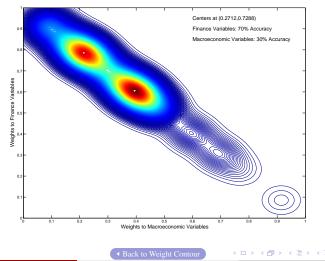
	Lower 10% (Left Tail)						
Models	Comb.RV	Comb.SV	Comb.EGARCH	Comb.MF	ATIC		
Comb.All	0.87	2.94	4.33	2.20	2.90		
Asy. p-value	(0.19)	(0.00^*)	(0.00^*)	(0.01^*)	(0.00^*)		
Models	Comb.All	Comb.SV	Comb.EGARCH	Comb.MF	ATIC		
Comb.RV	-0.87	2.50	3.34	1.26	2.29		
Asy. p-value	(0.19)	(0.01^*)	(0.00^*)	(0.10^*)	(0.01^*)		
Models	Comb.All	Comb.SV	Comb.EGARCH	Comb.MF	ATIC		
Comb.MF	-2.20	-1.26	1.27	1.91	1.89		
Asy. p-value	(0.99)	(0.90)	(0.10)	(0.03)	(0.03)		

Back to Right Tail

イロト イポト イヨト イヨト

Portfolio Wealth Obtained by Comb.All

Portfolio Wealth



Yizhen Zhao (Johns Hopkins University)

02/22/13 45/48

Predictive Accuracy Contribution

Comb.Macro: Macroeconomic Variables vs. Finance Variables

Yizhen Zhao (Johns Hopkins University)

Job Talk

02/22/13 46/48

Density Estimation in Portfolio Study

• By *Density Transformation Theorem*, $f(R_{t+1}^e | \mathcal{F}_t)$ is estimated from:

$$f(\mathbf{R}_{t+1}^{e}|\mathcal{F}_{t}) = |\frac{100}{\mathbf{R}_{t+1}+1}| \cdot f(\mathbf{y}_{t+1}|\mathbf{x}_{t},\mathbf{y}_{t},\mathbf{w}_{t}^{*}),$$

• because $y_{t+1} = 100 \cdot \log(R_{t+1} + 1)$.

Optimal Portfolio Weight

02/22/13 47 / 48

イロト 不得 とくき とくき とうき

Reference

Reference

- Amisano, G. and R. Giacomini, "Comparing density forecasts via weighted likelihood ratio tests," Journal of Business and Economic Statistics, 2007, 25 (2), 177–190.
- Ando, T. and R.S. Tsay, "Quantile regression models with factor-augmented predictors and information criterion," *The Econometrics Journal*, 2011, 14 (1), 1–24.
- Bai, J. and S. Ng, "Determining the number of factors in approximate factor models," Econometrica, 2002, 70 (1), 191-221.
- ____ and ____, "Forecasting economic time series using targeted predictors," Journal of Econometrics, 2008, 146 (2), 304–317.
- Bollersley, T., "A conditionally heteroskedastic time series model for speculative prices and rates of return," *The review of economics and statistics*, 1987, pp. 542–547.
- Bossaerts, P. and P. Hillion, "Implementing statistical criteria to select return forecasting models: what do we learn?," *Review of Financial Studies*, 1999, 12 (2), 405–428.
- Campbell, J.Y. and R.J. Shiller, "Stock prices, earnings and expected dividends," Journal of Finance, 1988, 43, 661–676.
- ____ and S.B. Thompson, "Predicting excess stock returns out of sample: Can anything beat the historical average?," *Review of Financial Studies*, 2008, 21 (4), 1509–1531.
- Cenesizoglu, T. and A. Timmermann, "Is the distribution of stock returns predictable?," Working Paper, 2008.
- Chernozhukov, V., "Extremal quantile regression," Annals of Statistics, 2005, pp. 806-839.
- ____ and S. Du, "Extrem Quantiles and Value-at-Risk," MIT working paper 07-01, 2006.
- _____, I. Fernández-Val, and A. Galichon, "Quantile and probability curves without crossing," Econometrica, 2010, 78 (3), 1093–1125.
- Diebold, F.X., T.A. Gunther, and A.S. Tay, "Evaluating density forecasts with applications to financial risk management," *International Economic Review*, 1998, 39 (4), 863–883.
- Diks, C., V. Panchenko, and D. van Dijk, "Likelihood-based scoring rules for comparing density forecasts in tails," *Journal of Econometrics*, 2011.
- Durham, G. and J. Geweke, "Improving Asset Price Prediction when All Models are False," NBER Summer Institute, Working Group on Forecasting and Empirical Methods in Macroeconomics and Finance, 2011.
- Fama, E.F. and K.R. French, "Dividend yields and expected stock returns," Journal of Financial Economics, 1988, 22 (1), 3–25.
- _____ and ____, "Permanent and temporary components of stock prices," The Journal of Political Economy, 1988, pp. 246–273.
- Forni, M., M. Hallin, M. Lippi, and L. Reichlin, "The generalized dynamic-factor model: Identification and estimation," *Review of Economics and Statistics*, 2000, 82 (4), 540–554.
- Gaglianone, W. and L. Lima, "Constructing Density Forecasts from Quantile Regression," Journal of Money, Credit, and Banking, 2009, Forthcoming.
- Gallant, A.R., D. Hsieh, and G. Tauchen, "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, 1997, 81 (1), 159–192.

Convoke Land C Amisono "Ontimal prediction pools" Journal of Econometrics 2011 forthcoming Yizhen Zhao (Johns Hopkins University) Job Talk

02/22/13 48 / 48