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Abstract

In this paper, I compare the results from a laboratory experiment, in which

individuals could allocate their funds between a risky asset and a risk-free

zero return fund, with stochastic dynamic optimization policies based on

expected utility maximization. Specifically, I focus on the predictions based

on a negative exponential and concave quadratic utility. In addition, I look

at the applicability of a rather exotic functional form to the experimental two

security portfolio life cycle decision problem. However, the expected utility

theorem has some implications which are not conform with field observations

[Mar52], [Kah79], [Rab00], and [Rab01]. Therefore, an alternative theory

[Kah79] is critically reviewed that avoids the less arguable implications of

expected utility theory [Tve92]. Moreover, possible solutions are derived for

a two asset portfolio decision problem in order to show the effects of the

different models.



CONTENTS 1

Contents

1 Introduction 4

2 Theoretical Framework 6

2.1 The Portfolio Selection Problem . . . . . . . . . . . . . . . . . 6

2.1.1 Mean–Variance Analysis . . . . . . . . . . . . . . . . . 6

2.1.2 Expected Value Decision Principle . . . . . . . . . . . . 9

2.1.3 Expected Utility Principle . . . . . . . . . . . . . . . . 9

2.2 The Intertemporal Model . . . . . . . . . . . . . . . . . . . . . 11

2.3 Behavior Under Risk . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Measures of Risk Aversion . . . . . . . . . . . . . . . . 16

3 Experimental Aspects 18

3.1 Description of the Portfolio . . . . . . . . . . . . . . . . . . . 18

3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The Allocation Problem . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Power Utility Function . . . . . . . . . . . . . . . . . . 20

3.3.2 Negative Exponential Utility Function . . . . . . . . . 22

3.3.3 Quadratic Utility Function . . . . . . . . . . . . . . . . 22

3.3.4 Expo-Power Utility Function . . . . . . . . . . . . . . . 23

3.3.5 Cumulative Prospect Theory Value Function . . . . . . 24

3.4 Stochastic Dynamic Optimization . . . . . . . . . . . . . . . . 25

4 Results 29

4.1 IRRA utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 CRRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Prospect Theory . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 35



CONTENTS 2

A Maple Source Codes 36

A.1 Dyn-Expo.mws . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2 Dyn-Quadratic.mws . . . . . . . . . . . . . . . . . . . . . . . . 37

B Graphs and Tables 38



LIST OF TABLES 3

List of Tables

1 Versions of the risky security with expected yield, µ(R) = 0.05 18

2 Optimal Dynamic Investment Decisions . . . . . . . . . . . . . 28

3 OLS Regression Results . . . . . . . . . . . . . . . . . . . . . 30

4 Average Terminal Wealth in Lab Dollars . . . . . . . . . . . . 32

5 Optimal Investment Shares of a CRRA Power Utility . . . . . 33

6 Rg as a function of Rb, for different values of κ, τ = 0.9 . . . . 34

7 Experimental Strings . . . . . . . . . . . . . . . . . . . . . . . 50

List of Figures

1 Power- (solid grey) and Expo-Power-Utility (dashed black) . . 21

2 Dynamic Flowchart of the Experiment . . . . . . . . . . . . . 26

3 Total and Invested Funds (First Session, First Group) . . . . . 38

4 Total and Invested Funds (First Session, Second Group) . . . 39

5 Total and Invested Funds (Second Session, First Group) . . . 40

6 Total and Invested Funds (Second Session, Second Group) . . 41

7 Total and Invested Funds (Third Session, First Group) . . . . 42

8 Total and Invested Funds (Third Session, Second Group) . . . 43

9 Investment Shares (First Session, First Group) . . . . . . . . . 44

10 Investment Shares (First Session, Second Group) . . . . . . . 45

11 Investment Shares (Second Session, First Group) . . . . . . . 46

12 Investment Shares (Second Session, Second Group) . . . . . . 47

13 Investment Shares (Third Session, First Group) . . . . . . . . 48

14 Investment Shares (Third Session, Second Group) . . . . . . . 49

15 Aggregate Shares, All Sessions . . . . . . . . . . . . . . . . . . 51

16 CRRA Shares . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



1 INTRODUCTION 4

1 Introduction

Individual’s consumption and investment decisions under risk as in the port-

folio selection model are subject to many considerations. Clearly, an in-

vestor’s preferences and their implications are important for the evaluation

of investment opportunities (e.g. risky securities). In this paper, I review the

general portfolio selection problem, both the two period and the life cycle

decision problem. According to the expected utility theory, which is common

in the financial economics literature, an investor’s decision is characterized

by possible payoffs and their respective probabilities: Individuals act as if

they ascribe a numerical value (called utility) to each possible outcome and

then make choices among alternatives with known odds in order to maximize

expected utility. Risk aversion is commonly assumed on part of the economic

decision makers (investors). By the expected utility principle, the only ex-

planation for risk aversion is a concave utility function, i.e. lower marginal

utility for additional wealth at high wealth levels (rich person) compared

with low wealth levels (poor person). However, in a recent article, the author

points out that ”for any concave utility function, even very little risk aver-

sion over modest stakes implies an absurd degree of risk aversion over large

stakes” [Rab00]. Expected utility theory ”says that people will not be averse

to risks involving monetary gains and losses that do not alter lifetime wealth

enough to affect significantly the marginal utility one derives from that life-

time wealth” [Rab01]. We keep these limitations in mind when analyzing the

life cycle portfolio experiment in terms of expected utility theory.

In a life cycle investment problem, decisions made now usually affect fu-

ture payoffs. In general, a decision made today in order to maximize current

wealth without considering future possible outcomes may not automatically

be the optimal investment policy for the multi period investment problem.

Possible dynamic programming solutions are derived based on different func-
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tional utility forms. The findings are applied and compared to a laboratory

experiment where individuals could choose between money cash holdings and

investment in a risky asset. Liquidity preference theory describes why bal-

ances are held in cash rather than in earning assets [Tob58].

Section 2.1 discusses the portfolio selection problem from the perspec-

tive of the Expected Return-Variance Rule and the Expected Utility Maxim.

The single period decision model is laid out and the finite life cycle deci-

sion is reviewed in some detail in section 2.2. The experimental portfolio is

described in chapter 3 and moreover, theoretical predictions of different func-

tional forms of the utility function and value function [Kah79] are presented.

In chapter 4, I compare the theoretical predictions with the experimental

results and show the applicability of the proposed models. The findings are

summarized and discussed in the last section.
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2 Theoretical Framework

2.1 The Portfolio Selection Problem

In this section, I review the concepts and applicability of different portfolio

selection criteria, i.e. the expected returns – variance of returns rule and

the expected utility maxim. Moreover, I lay out the intertemporal dynamic

programming portfolio selection model introduced by [Sam69] and [Mer69].

2.1.1 Mean–Variance Analysis

The theory of portfolio analysis was first introduced by Markowitz in the early

1950s [Mar52]. The expected returns – variance of returns rule (EV-Rule)

implies that an investor can ”gain expected return by taking on variance, or

reduce variance by giving up expected return” [Mar52], which entails that

the investor will diversify among different securities. However, likewise im-

portant, the EV-Rule takes into account the special case where investment

in a single security is the preferred portfolio. In the following, the portfo-

lio selection problem is presented for a range of securities as reported by

Markowitz.

In general, a portfolio can be represented by the vector

�X = (X1, X2, . . . , Xν , . . . , Xn)
T , (1)

where Xν denotes the fraction of an investor’s total assets invested in the νth

security, i.e. the ratio of amount invested in security ν, wν , to total available

assets, w. Note that
∑n

ν=1 Xν = 1. For simplicity, assume Xν ≥ 0 ∀ν, i.e.

short sales are not allowed. The investor considers the returns, Rν , of the

securities (ν = 1, . . . , n) to be random variables with expected yield µν . The

overall yield of an investor’s portfolio can thus be written as

R =
n∑

ν=1

RνXν . (2)
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The covariance between two securities ν and µ is σνµ. Notice the variance

of security ν is σνν = V ar(Rν). Then, the quadratic form of the variance of

the portfolio is

V ar(R) = σ2
R =

∑
ν

∑
µ

XνXµσνµ, (3)

which can also be written in matrix notation as V ar(R) = �XT · σ · �X with

variance-covariance matrix σ.

In general, the fractions Xν are subject to

E(R) = µR =
∑

ν

Xνµν (4)

(i.e. the expected return of the portfolio is the weighted sum of the sin-

gle returns) and m simultaneous linear equations σ · �X = λ · �R [Mar52]

(in matrix notation), where λ is the Lagrange multiplier. However, without

loss of generality, let m = 1, and thus
∑

ν Xν = 1 is the only constraint

to the optimization problem. According to the EV-Rule, an investor selects

among those feasible portfolios that either result in maximum expected re-

turn, E(R), holding the variance of the portfolio, V ar(R), constant, or those

for which V ar(R) is minimized, given the expected yield E(R).

The efficient set of portfolios defines all efficient portfolios within the

boundary of the attainable set in accordance with the EV-Rule [Mar52]. An

efficient set given E(R) (V ar(R)) is called isomean line (isovariance curve).

The line that combines all points on the isomean lines (i.e. variation of

E(R)), where V ar(R) is minimized (i.e. points at which the isomean lines

are tangent to the isovariance curves) is called critical line [Mar52].

Generally, an efficient set (also called dominant combination of assets)

that is a set of assets which minimizes V ar(R) for a given E(R), can be

found by solving the Lagrangian [Tob58]

∑
ν

∑
µ

XνXµσνµ − λ

(∑
κ

RκXκ − E(R)

)
=

min

{ �X} . (5)
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Consider for instance a portfolio with two securities. The model can thus

be summarized in the following equations:

E(R) = X1µ1 + X2µ2 (6)

V ar(R) = X2
1σ11 + X2

2σ22 + 2X1X2σ12 (7)

X1 + X2 = 1 (8)

X12 ≥ 0 . (9)

Notice equations 8 and 9 denote the constraints in this two security model.

Rewriting equation 9 as X2 = 1−X1 and plugging this into equations 6 and

7 allows to express the yield and variance of the portfolio in terms of X1:

E(R) = X1(µ1 − µ2) + µ12 (10)

V ar(R) = X2
1 (σ11 + σ22 − 2σ12) + 2X1(σ12 − σ22) + σ22 . (11)

Thus, X1 and X2 can be written in terms of the expected returns:

Xν = (−1)ν−1 (E(R) − µν)

µ1 − µ2

, (12)

where ν = 1, 2 and (µ1 �= µ2). The fractions to be invested in security 1 and

2 can be written as functions of the components of the variance-covariance

matrix according to

0 = X2
ν (σ11 + σ22 − 2Xν(σ12 − σνν) + (σνν − V ar(R)), (13)

for ν = 1, 2. An investor acting according to the EV-Rule can choose among

combinations of E(R) and V ar(R) dependent upon her fixed proportions of

assets X1 and X2. For instance, solving equation 5 gives the optimal fraction

to be invested in security ν = 1 and 2, holding E(R) constant:

Xν =
(σνν − σ12) · E(R) · Rν

R2
1(σ22 − σ12) + R2

2(σ11 − σ12)
. (14)

The portfolio selection problem (equation 5) can be solved accordingly

for n ≥ 2.
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2.1.2 Expected Value Decision Principle

So far, the portfolio selection problem has only been considered under the EV-

Rule without looking at the odds of possible asset payoffs. However, portfolio

selection is a situation involving risk. Investors choose among so called lotter-

ies η (gambles) that are described by their payoffs (R1, . . . , Rn) and respective

probabilities of occurrence (p1, . . . , pn) : η = {(R1, . . . , Rn), (p1, . . . , pn)}.
Let an individual’s investment decision be characterized by the determination

of the probabilities of possible asset payoffs [Hua88]. Then, by the expected

value decision principle, an investor maximizing the expected value of the

portfolio, consequently, will always put all available assets in the security

with the greatest expected return or will be indifferent between portfolios

that only contain securities with same greatest expected yield [Mar91]. The

expected value of a portfolio �X can be expressed as

E( �X) =

n∑
ν

pν

∑
µ

XµR
ν
µ =

∑
µ

Xµ

n∑
ν

pνR
ν
µ =

∑
µ

Xµµµ. (15)

2.1.3 Expected Utility Principle

A common descriptive model of decision making under risk in the finan-

cial economics literature is the expected utility principle (EU-maxim), which

includes the expected value principle as special case. According to the EU-

maxim, the investor ascribes a real number (called utility) to each possible

outcome, and among risky alternatives chooses the one with the highest ex-

pected value of utility [Mar91].

An investor can be represented by her preference relation defined on an

aggregation of investment plans (lotteries) [Hua88]. Suppose there is a pre-

ordering on the set of lotteries that satisfies the following axioms [Ing87]. For

any arbitrary lotteries η, ω, and ξ:

Completeness – either η � ω or ω � η or η ∼ ω, i.e. either η is at least
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good as ω, or ω is at least good as η, or the investor is indifferent

between η and ω.

Reflexivity – for every lottery η � η.

Transitivity – if η � ω and ω � ξ, then η � ξ, i.e. if η is preferred to ω

and ω is preferred to ξ, then η is preferred to ξ.

Continuity – if η � ω and ω � ξ then there is a number λ ∈ [0, 1] such

that ω ∼ λ · η + (1 − λ) · ξ. Note λ is unique unless η ∼ ξ.

Independence 1 – let η = {(R1, . . . , Rν , . . . , Rn), (p1, . . . , pn)} and

ω = {(R1, . . . , ξ, . . . , Rn), (p1, . . . , pn)} then η ∼ ω if Rν ∼ ξ.

If ξ = {(Rν
1 , . . . , R

ν
m), (pν

1, . . . , p
ν
m)} is another lottery, then η ∼ ω ∼

{(R1, . . . , Rν−1, R
ν
1 , . . . , R

ν
m, Rν+1, . . . , Rn), (p1, . . . , pν−1, p

ν
1, . . . , p

ν
m,

pν+1, . . . , pn)}.

Dominance – let η = {(R1, R2), (p1, 1−p1)} and ω = {(R1, R2), (p1, 1−p2)},
then given R1 > R2: η is strictly preferred to ω (η � ω) if and only if

p1 > p2.

A preference relation has an expected utility representation if the above ax-

ioms are satisfied. Moreover, a so called von Neumann-Morgenstern utility

function u(η) (VNM ) exists with the expected utility property representing

the investor’s risk preferences over different lotteries [Jeh01]. Lottery η is

preferred over lottery ω if and only if the expected utility of payoff vector �R

of η exceeds the expected utility of payoff vector �R′ of ω [Hua88]:

E[u(�R)] ≥ E[u( �R′)], (16)

where the expected utility EU(η) = E[u(�R)] can be written as

EU(η) =
∑

ν

pνuν =
∑

ν

pνu

(∑
κ

XκR
κ
ν

)
, (17)

1Notice that the independence axiom is often violated in empirical experiments [Hua88].
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i.e. the utilities of likely outcomes are weighted by their probabilities. In

other words, based on a set of axioms of preference ordering including the

independence axiom, the expected utility principle describes decision making

under risk, which implies that a VNM expected utility function represents

the ordering that is linear in probabilities. The investment decision is thus

dependent upon the functional forms of the VNM utility (see section 2.3).

Back to the portfolio selection problem, in general for N states and M

assets in the portfolio, the investor will choose Xν in order to maximize

expected utility of wealth w [Jeh01]:

max

{ �X} EU =
max

{ �X}

N∑
ν

pν ·
M∑
κ

u (w + XκR
κ
ν) (18)

That is, the investor will decide to invest Xκ in security κ in order to reach the

highest indifference curve attainable, given her feasible set of opportunities.

From equation 18 it becomes apparent that utility is ascribed to final states

of wealth rather than to changes in wealth.

2.2 The Intertemporal Model

So far, only single period models have been examined. In case of the life cy-

cle portfolio decision problem, however, investors make decisions concerning

consumption and investment over many periods. The underlying principle

is that investment decision at time τ implies a wealth transfer from period

τ to the next period τ + 1 by forming a portfolio: At each period τ , the in-

vestors invest their available funds (after consumption is made) in available

assets, in order to sell these the next period to make their consumption and

subsequent investment decisions at τ + 1 [Ing87].

For the sake of simplicity, the date of death T is assumed to be known.

Moreover, there is no reason for bequest after T . The investor is now con-

cerned not only about her current consumption but also about consumption
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in future periods. Let’s make the assumption that the utility function of

wealth is additively separable [Ing87]:

u(C1, . . . , CT−1) =
T−1∑
τ=0

u(Cτ), (19)

where u(Cτ ) is the concave VNM utility function of consumption Cτ . The

latter is a function of wealth at period τ , wτ , and the change in wealth over

time:

Cτ = wτ − wτ+1

1 + r
, (20)

with the exogeneous rate of return r. According to the EU-maxim, an in-

vestor chooses a consumption stream to maximize her expected value of total

utility over time with respect to consumption Cτ and wealth wτ [Sam69]:

max
{Cτ ,Xτ} E[u (C0, . . . , CT−1)] =

max
{Cτ ,Xτ}

T−1∑
τ=0

(1 + ρ)−τu

(
wτ − wτ+1

1 + r

)
, (21)

where ρ is the discount rate. The first order conditions of a regular interior

maximum are derived by partially differentiating equation 21 with respect to

wτ and setting the result equal to zero [Sam69]:

0 = (1 + ρ)−τu′
(

wτ − wτ+1

1 + r

)
− (1 + ρ)1−τ

(1 + r)
u′
(

wτ−1 − wτ

1 + r

)
. (22)

The first order conditions are recursive:

u′
(

wτ − wτ+1

1 + r

)
=

1 + ρ

1 + r
· u′
(

wτ−1 − wτ

1 + r

)
. (23)

Given the boundary conditions, (w0, wT ), i.e. initial funds and prescribed

wealth at T , equation 23 can be solved for concave utility functions.

Let me now lay out the portfolio decision problem over time with two as-

sets, i.e. a risky one with uncertain yield Rτ and a safe security with known

return r. The return to the former is assumed randomly distributed and

independent of returns of previous periods. Recall from the single period
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model that an investor decides to assign Xτ · wτ of her funds in the risky

asset and (1−Xτ ) ·wτ in the safe security. Hence, the expected utility max-

imization problem can be formulated in the problem’s associated maximum

value function MT−1(w0) as

MT−1(w0) =
max

{Cτ ,Xτ} E

[
T−1∑
τ=0

(1 + ρ)−τu(Cτ)

]
with (24)

Cτ = wτ − wτ+1

(1 + r)(1 − Xτ ) + XτRτ
. (25)

Being uncertain about the outcome of return Rt, the investor chooses Ct

and Xt at period t. However, today’s actions are based on the fact that at

future periods τ > t, the investor has full knowledge about the yields Rτ

and thereby wealth wτ of previous periods τ ∈ [0, t]. Allocation decisions

Cτ and Xτ are made sequentially at each period τ = 0, 1, . . . , T − 2. Thus,

at the end of the planning period (i.e. last allocation decision in a life cycle

portfolio framework), the investor faces the one-period problem

MT−1(wT−2) =
max

{Cτ−2,Xτ−2}

{
u(CT−2) + E

[
u(CT−1)

1 + ρ

]}
, (26)

where CT−1 = wT−1 based on the previous assumption of no bequest of

wealth at death, i.e. wT = 0:

CT−1 = wT−1 = (wT−2 − CT−2)
[
(1 + r)(1 − XT−2) + XT−2RT−2

]
. (27)

Next, partial differentiation of equation 26 with respect to CT−2 and XT−2

and solving the first order conditions simultaneously

∂MT−1

∂CT−2

=
∂u(CT−2)

∂CT−2

− (1 + ρ)−1E

[
u′(CT−1)

[
(1 + r)(1 − XT−2) + XT−2RT−2

]]
(28)

∂MT−1

∂XT−2
= E

[
u′(CT−1) (wT−2 − CT−2) (RT−2 − 1 − r)

]
(29)
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gives the optimal decisions (C∗
T−2, X∗

T−2) as functions of initial wealth wT−2

alone [Sam69]. One can derive the maximum value function MT−1 explicitly

by plugging in C∗
T−2 and X∗

T−2. By the envelope theorem, which states that

the total effect on the optimized value of the objective function can be derived

by partial differentiation of the utility function [Jeh01], one can relate the

derivatives of u to those of the maximum value function:

MT−1(wT−2)
′
= u′(CT−2). (30)

With the knowledge of MT−1(wT−2) one can easily derive the optimal deci-

sions one period earlier:

MT−2(wT−3) =
max

{CT−3,XT−3}

{
u(CT−3) +

M0(wT−2)

1 + ρ

}
, (31)

where wT−2 = (wT−3 − CT−3)
[
(1 + r)(1 − XT−3) + XT−3RT−3

]
(equation

25). Partially differentiating and simultaneous solving of the first order con-

ditions gives the optimal decisions (C∗
T−3, X∗

T−3) and thereby MT−2(wT−3).

Proceeding recursively in an analogous manner for T−4, . . . , 0, the stochastic

programming problem is being solved.

2.3 Behavior Under Risk

Let me now relate the expected utility hypothesis to its implied risk prefer-

ences. The expected utility of participating in an actuarially fair lottery2 η,

E[u(w0 + η)] (17), and the utility of non-participation, u (E[w0 + η]), can be

used to describe the relationship between an investor’s VNM utility function

and her risk attitudes. In general, an individual is said to be risk averse, if

she shuns or is indifferent to any actuarially fair lottery. Strict risk aversion,

2An actuarially fair lottery is defined as one with expected value of the gamble equal

to zero, E(η) = 0, in other words when its expected payoff is zero.
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refers to an individual who is unwilling to accept any actuarially fair lot-

tery [Hua88]. Put differently, risk averse investors would rather receive the

expected value of η with certainty than facing the risky outcome [Jeh01]:

u
(
E[w0 + η]

)
> E

[
u(w0 + η)

]
. (32)

An investor is (strictly) risk averse if and only if her VNM utility functions

of wealth u(w) is (strictly) concave: She would prefer wealth level w0 with

certainty over an actuarially fair lottery η of either rising to w+ or falling to

w−, if a straight line drawn from u(w−) to u(w+) passes below u(w0)
3. In

addition, her marginal utility of outcome of the lottery (return), u′(R), is a

declining function of R. Thus, the indifference curves of a risk-averse indi-

vidual are concave upwards. An investor with a strictly increasing, concave

utility function will only invest in a risky security if the risk premium of the

risky asset, E[R̂ − r]4, is strictly positive [Hua88].

On the other hand, a risk-lover is characterized by a marginal utility of

return which is an increasing function of R, and thus the indifference map of

a risk loving investor is a set of concave downwards curves. The uncertain

outcome of the lottery over the sure thing is preferred by a risk lover:

E
[
u(w0 + η)

]
> u

(
E[w0 + η]

)
. (33)

A risk loving investor would prefer the lottery over the sure thing if the line

u(w−)u(w+) would pass above the utility of the current wealth level, u(w0).

Contrary, a risk neutral investor is indifferent between the expected yield

of the portfolio with certainty and the risky outcome:

E
[
u(w0 + η)

]
= u

(
E[w0 + η]

)
= u

(
E[w0]

)
5. (34)

3Notice that the subscripts −, 0, and + are chosen to emphasize loss, current wealth,

and gain, respectively.
4with R̂ being the random yield of the risky and r the certain interest rate of the riskless

alternative, respectively.
5Note E(η) = 0.
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She is indifferent between w0 + η and w0 if u(w−)u(w+) coincides with her

VNM utility function u(w) at all wealth levels w ∈ [w−, w+].

2.3.1 Measures of Risk Aversion

A utility function is concave, representing risk-averse choices if it is twice

differentiable and most importantly, if and only if u′′(w) < 0 [Ing87]. In other

words, since risk aversion means that the certainty equivalent w0 is smaller

than the expected value of the lottery E[η], the VNM utility function of a risk

averse investor must be concave. Put differently, risk aversion is equivalent

to the concavity of the VNM utility function.

The so called Arrow-Pratt measure [Pra64]:

r(w) = −u′′(w)

u′(w)
(35)

is a measure of the curvature of an investor’s utility function and can be inter-

preted in different ways as a measure of local risk aversion [Pra64]. Likewise,

a local measure of aversion to risks as a proportion of funds is the Arrow-

Pratt measure of relative risk aversion:

r̃ = w · r(w). (36)

An investor’s utility function indicates decreasing, increasing, or constant ab-

solute (relative) risk aversion, when r(w) (r̃) is a strictly decreasing, increas-

ing, or constant function, respectively. The utility functions used in this work

display constant (increasing) absolute (relative) or decreasing (constant) ab-

solute (relative) risk aversion. Decreasing absolute risk aversion (DARA),

dr(w)/dw < 0 ∀ w, implies that the investor’s demand for the risky secu-

rity increases with wealth. Likewise, under constant relative risk aversion

(CRRA), dr̃/dw = 0 ∀ w, the share of wealth invested in the risky asset is a

constant, dXR/dw = 0. On the other hand, constant absolute risk aversion
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(CARA), dr(w)/dw = 0 ∀ w, denotes unchanged demand for the risky secu-

rity with respect to initial wealth. Increasing relative risk aversion (IRRA),

dr̃/dw > 0, indicates that the proportion invested in the risky asset declines

as wealth increases, dXR/dw < 0 (see for instance [Hua88] for proof).
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3 Experimental Aspects

In this section, I describe the experimental design and develop investment

solutions for the allocation problem – both for the different single period

approaches and for the stochastic dynamic optimization in general.

3.1 Description of the Portfolio

Consider a two-asset portfolio allocation problem, one asset with a risky re-

turn and the other with zero return for sure (i.e. cash fund). Given an initial

amount to invest, the investor must decide what proportions of her assets

to put in the risky asset and what proportion to hold in cash. Put another

way, the subjects can build different portfolios by holding the proportion

(1 − XR) of their funds in cash with zero yield and zero variance and by

investing XR in a volatile security, which can either yield a good (Rg > 0) or

a bad (Rb < 0) return. The risky security has a five percent mean return and

non-zero variance. Negative proportions of XR are excluded by definition

(no short sales). The outcome of the risky security is determined by chance

(i.e. toss of a coin). There were three versions of the risky security, i.e. low,

medium, and high risk (see Table 1).

Rg Rb V ar(R) sd(R)

Low 0.2 -0.1 0.0225 0.15

Medium 0.6 -0.5 0.3025 0.55

High 1.0 -0.9 0.9025 0.95

Table 1: Versions of the risky security with expected yield, µ(R) = 0.05
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3.2 Experimental Design

Subjects participating in the experiment were informed that at each of 33

periods they would receive 25 lab dollars. The reimbursement rate for par-

ticipation was 1 to 100 lab dollars at the end of the session. Participants

had to decide how to allocate their available lab dollars between the cash

fund and the risky asset. They were told that at each period the outcome of

the risky asset would be determined by the flip of a coin. Moreover, at each

of the 33 periods, before participants made their investment decisions, they

were informed whether the alternative to cash holdings is the low, medium,

or high risk security. In any case, they were uncertain about the future rate

of return of the risky asset. Thus, the proportion of available funds put into

the risky asset involved a risk of capital gain or loss. However, importantly,

participating individuals had to make a decision first and thereby had to

fix their portfolios for each decision period. The coin was flipped for the

whole group participating in a session rather than individually, and thus the

outcome of each period was announced after all individuals had made their

decisions.

3.3 The Allocation Problem

A possible source of liquidity preference is the investor’s uncertainty about

the future of interest rates [Tob58]. The investment of funds in risky assets

involves a risk of capital gain or loss. The risk that comes along with the

decision to invest in the risky security is measured by the standard deviation

of R, σR =
√

V ar(R). The standard deviation measures the spread of possi-

ble returns of the security around the mean value µR. Thus, a high standard

deviation means a high chance of relatively large capital gains but also a

high chance of relatively large capital losses. Likewise, a risky asset with low

standard deviation around its expected yield decreases the chance of high
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gains (losses) (i.e. small likelihood of large deviations from the mean). Note

that zero standard deviation would give µR for sure and E
[
u(�R)

]
= u (µR).

Let us assume that subjects are expected utility maximizers. Then, if

the expected utility of the certain outcome (zero return of cash holdings) is

greater than the uncertain asset allocation, an investor acting in accordance

with the EU-maxim will hold all funds in cash. The single period expected

utility maximization problem (equation 18) can be written as

max

{ �X} EU(η) =
max
{XR}

N∑
ν=1

pv · u(w(1 + XRRν)) (37)

with M = 2 and R2 = r = 0 (cash). As noted earlier, the volatile security

can yield two outcomes. Thus, we can rewrite equation 37:

max
{XR} EU(η) =

max
{XR}

{
pg · u

(
w(1 + XRRg)

)
+ pb · u

(
w(1 − XR |Rb|)

)}
. (38)

The first and second order conditions for a maximum are

EU ′ = pgu
′(w(1 + XRRg)

)
Rg − pbu

′(w(1 − XR|Rb|)
)|Rb| = 0 (39)

EU ′′ = pgu
′′(w(1 + XRRg)

)
R2

g + pbu
′′(w(1 − XR|Rb|)

)
R2

b < 0. (40)

Concavity of the utility function (u′′(w) < 0) satisfies the second order

condition. With these results, the expected utility maximization problem

can be solved in a straight forward manner by applying different functional

forms reflecting risk averse behavior.

Notice, an extension of the model with more than two securities can be

found in [Ing87] and [Hua88], for instance.

3.3.1 Power Utility Function

First, consider a power utility function of the form

u(w) =
w1−α

1 − α
, α ∈ (0, 1), 6 (41)

6see Figure 1: grey line refers to u(w) with α = 0.5
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Figure 1: Power- (solid grey) and Expo-Power-Utility (dashed black)

which exhibits CRRA, r̃ = α (36) and DARA, r(w) = α/w (35). Substituting

(41) into equation 38 and solving for XR gives the optimal fraction to be

invested in the risky security,

X∗
R =

α
√

pgRg − α
√

pb|Rb|
Rg

α
√

pb|Rb| + |Rb| α
√

pgRg

. (42)

Notice, importantly, that the optimal fraction, X∗
R, is a function of the yields

Rg and Rb alone and thus independent of initial wealth. In a life cycle

investment problem, the investor will always invest the same fraction of his

funds in the risky asset, i.e. at each decision period, the optimal share of

wealth is independent of initial wealth for CRRA utility functions [Sam69].

Recall from section 2.1.3 that in expected utility theory, value is ascribed

to final states rather than to mere changes in wealth. In our lab experiment,

pg = pb = 0.5 (i.e. toss of a coin). Thus equation 42 can be written as

X∗
R =

α
√

Rg − α
√|Rb|

Rg
α
√|Rb| + |Rb| α

√
Rg

. (43)
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If X∗
R > 1 then X∗

R := 1, that is all funds will be put in the risky security.

3.3.2 Negative Exponential Utility Function

The negative exponential utility function

u(w) = −e−ηw

η
, η > 0 (44)

displays CARA, r(w) = η, and IRRA, r̃ = ηw. Importantly, the optimal

share of wealth invested in the risky asset

X∗
R =

ln(Rg) − ln(|Rb|)
ηw(Rg + |Rb|) (45)

is a function of initial wealth, contrary to the optimal proportion of a power

utility function (equation 43). With rising wealth, the share invested in the

risky security decreases, and the individual invests more and more in the

risk-free asset (holds her money in cash).

Notice that the negative exponential utility function (44) is bounded from

above, that is infinite wealth has a finite utility, lim
w→∞ u(w) = 0.

3.3.3 Quadratic Utility Function

Next, consider a concave quadratic utility of the form

u(w) = w − bw2

2
, b > 0, (46)

which exhibits increasing absolute risk aversion (IARA), r(w) = b
1−bw

, and

IRRA, r̃ = bw
1−bw

, r̃′ = b
(1−bw)2

> 0. IARA is one of the flipsides of concave

quadratic utility functions. The second drawback is that they are decreasing

after a certain point. As a result, one must be very cautious in choosing b to

assure that all eventual outcomes remain in the range below the functions’

maximum, w < 1/b. However, it can be shown that expected utility only
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depends on the mean and variance of return and is therefore consistent with

mean-variance analysis:

E
[
u(w)

]
= w(1 + XµR) − bw(1 + XµR)2

2
− bwX2σR

2
. (47)

For risk averse investors, only minimum variance portfolios are held as long

as outcomes are in the range of increasing utility (w < 1/b) [Ing87].

The share to be optimally invested in the risky asset,

X∗
R =

Rg(1 − bw) − |Rb|(1 − bw)

bw
(
R2

g + |Rb|2
) , (48)

depends on available funds, w.

3.3.4 Expo-Power Utility Function

In a recent paper, Holt and Laury showed that a so called hybrid expo-power

utility function of the form

u(w) =
1 − exp {−βw1−γ}

β
(49)

fits most of their data from lottery choice experiments quite closely [Hol02],

and moreover, avoids the absurd predictions which they received from a

negative exponential utility function (CARA). The measures of absolute and

relative risk aversion are

r(w) =
γ + β(1 − γ)w1−γ

w
and (50)

r̃(w) = γ + β(1 − γ)w1−γ , (51)

respectively. Thus, the expo-power utility function exhibits decreasing, con-

stant, or increasing absolute and decreasing or increasing relative risk aver-

sion depending on different parameter values, in order to model several risk-

preference structures [Sah93].
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The dashed black line in Figure 1 refers to an expo-power utility with

parameter values β = 0.03 and γ = 0.27. This expo-power utility func-

tion exhibits DARA and IRRA. At low wealth levels, it is not as steep as

the power utility function u(w) = w0.5

0.5
(solid grey line); however, it exhibits

higher marginal utility at high wealth levels. Based on the expo-power util-

ity function (49), the expected utility maximization problem can neither be

solved algebraically nor numerically for the optimal proportion XR. Thus,

the expo-power utility cannot serve as a descriptive risk averse utility func-

tion in order to solve the stochastic dynamic optimization problem.

3.3.5 Cumulative Prospect Theory Value Function

An alternative to the expected theory model, called prospect theory, was

introduced in the late 1970s by Kahneman et al. [Kah79]. In prospect theory,

contrary to expected utility theory, ”value is assigned to gains and losses

rather than to final assets” [Kah79]. Moreover, probabilities are replaced by

so called decision weights, π(p)7. Individuals acting according to prospect

theory, choose the prospect of highest value V (η) [Kah79]:

V (η) =
∑

ν

π(pν)v(Rν). (52)

In terms of the experimental portfolio selection problem, this can be formu-

lated as

max
{XR} V (η) =

max
{XR} V (Rg, pg; Rb, pb)

=
max
{XR}

{
π(pg) · v(wXRRg) + π(pb) · v(−wXR|Rb|)

}
. (53)

Prospect theory is thus a generalization of the expected utility theory since

it relaxes the expectation principle [Kah79] (see equation 38). Like the util-

ity function, the function v(x) ascribes numbers to every outcome x. The

7Decision weights are likely smaller than probabilities.
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underlying hypothesis is that the value function is concave above the current

wealth level (reference point) and convex below the reference point, which

reflects decreasing marginal value both for gains and losses. This is equiv-

alent to risk aversion in the domain of gains with concomitant risk seeking

behavior in the domain of losses. Indeed, Tversky et al. [Tve92] propose a

cumulative prospect theory value function of the form

v(x) =

{
xτ : x ≥ 0 (gain)

−κ · |x|τ : x < 0 (loss) .
(54)

Their parameter estimates τ = 0.88 and κ = 2.25 [Tve92] refer to a value

function that is concave in the positive domain, convex in the negative do-

main, and roughly twice as steep for losses as for gains.

Solving the value maximization problem (53)8 gives the optimal frac-

tion to be invested in the risky asset: Either X∗
R = 0 (trivial solution) if

Rg <
(
κπ(pb)

π(pg)

) 1
τ |Rb| or X∗

R = 1 if Rg >
(
κπ(pb)

π(pg)

) 1
τ |Rb|, respectively. Hence,

diversification is not captured by the cumulative prospect theory value func-

tion. The investor will be indifferent between cash holdings and investment

in the risky security if and only if Rg =
(
κπ(pb)

π(pg)

) 1
τ |Rb|.

Again, like the expo-power utility, the cumulative prospect theory value

function is insufficient to adequately solve the stochastic dynamic optimiza-

tion problem.

3.4 Stochastic Dynamic Optimization

Recall from section (2.2) that at each period τ , the investor makes consump-

tion and investment decisions without knowing how the rate of return of his

portfolio will turn out. Hence, a decision made at τ affects available funds

and respective payoffs in the future. Our investment experiment is a discrete

sequential optimization problem. Investment decisions are made at certain

8Notice that π(pg) ≡ π(pb) ↔ pg ≡ pb.
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Figure 2: Dynamic Flowchart of the Experiment
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times (stages). One can think of the experimental decision problem graph-

ically as shown in Figure 2. The individuals can only assign their funds wτ

to the risky security or hold them in cash, consumption is zero, Cτ = 0 for

τ = 0, . . . , 32, except at the end of the life-cycle experiment where terminal

wealth equals terminal consumption, w33 = C33. At each stage, the investor

gets 25 lab dollars in virtual income and decides how much of her current

available funds to put in the risky security, XR
τ wτ , and how much to keep

in cash, (1 − XR
τ )wτ . The participating individuals know, however, that the

yield of the risky security, R̂τ , is a random effect determined by the toss of

a coin. At the next period (i.e. τ + 1), importantly, the individuals have

the knowledge how the rate of return of the risky security, Rτ , turned out in

period τ . In general, wealth (available funds), wτ+1, is a function of the state

variable wτ , the control parameter XR
τ , and the uncontrollable exogenous

rate of return Rτ :

wτ+1 = f(wτ , X
R
τ , Rτ )

= 25 + wτ

(
1 + XR

τ Rτ

)
, τ = 0, 1, . . . , 32 9. (55)

In order to solve the dynamic optimization problem, we first go to the end

of the life cycle decision problem to find the optimal investment decision at
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stage 32, where the first order condition is (see equations 26 through 29)

∂M33

∂XR
32

= 0 + (1 + ρ)−1E

[
∂u

∂w33
· ∂w33

∂XR
32

]

= E

[
u

′
(w33) · w32R32

]
= 0 , (56)

which is equivalent to

0 = pg · u′
(w33) · w32R

g
32 − pb · u′

(w33) · w32|Rb
32| . (57)

Solving for XR
32(w32) and plugging the result into the maximum value function

gives M33 in terms of w32 and R32 alone. Generally, the maximum value

function at earlier stages is

Mτ (wτ) =
max
{Xτ}

{
u(wτ) + (1 + ρ)−1E

[
Mτ+1(wτ+1)

]}
. (58)

Again, differentiating with respect to Xτ ,

0 = (1 + ρ)−1E

[
M

′
τ+1(wτ+1) · wτRτ

]
, τ = 31, . . . , 1, 0 , (59)

and subsequent solving for X∗
τ gives Mτ explicitly. We have thus found

the optimal investment policy for each stage, X∗
τ , as a function of flowing

wealth. Notice, since the only objective is to maximize terminal wealth,

the discount factor, (1 + ρ), cancels out and therefore does not influence

investment decisions at any stage (see equation 59).

The results of the stochastic dynamic programming were obtained using

Maple R© 8 (see appendix A). The second (last) column in Table 2 shows

the optimal investment policy for an expected utility maximizer with a risk

averse negative exponential (concave quadratic) utility. The results in Table

2 imply that the optimal decision at any stage τ is a function of available

funds wτ (see equation 55) and returns of the risky security at τ , both for

the negative exponential and concave quadratic utility. Hence, whatever the
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X∗
τ X∗

τ

τ (Neg. Expo.) (Quadratic)

0
ln(Rg

0)−ln(|Rb
0|)

ηw0(Rg
0+|Rb

0|)
Rg

0(1−bw0)−|Rb
0|(1−bw0)

bw0

(
Rg

0
2
+|Rb

0|2
)

...
...

...

t
ln(Rg

t )−ln(|Rb
t |)

ηwt(R
g
t +|Rb

t |)
Rg

t (1−bwt)−|Rb
t |(1−bwt)

bwt

(
Rg

t
2
+|Rb

t |2
)

...
...

...

32
ln(Rg

32)−ln(|Rb
32|)

ηw32(Rg
32+|Rb

32|)
Rg

32(1−bw32)−|Rb
32|(1−bw32)

bw32

(
Rg

32
2
+|Rb

32|2
)

Table 2: Optimal Dynamic Investment Decisions

previous decisions and states are, all subsequent decisions must constitute an

optimal investment strategy with regard to the states resulting from earlier

decisions (< τ) [Par00]. At each state (τ > 0), the investor knows the return

of the risky security one period earlier with certainty and will choose how

much to invest optimally at stage τ .
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4 Results

In three sessions, altogether 27 students from upper division undergraduate

economics courses participated in the experiment. Prior to the experiment,

the sequence of low, medium, and high risk securities (eleven each) was ran-

domly decided for all sessions together. In each session, for each period, the

random outcome of the risky security was determined for the whole group

rather than individually. Moreover, each group was previously split into

”heads” and ”tails” to control for bias due to a streak of good (bad) draws

– for each period, nearly half of each group received a good or bad return

dependent upon whether the toss gave head or tail, respectively. Thus, there

are three different sessions with two perfectly negative correlated strings (see

Table 7 in Appendix B). Since dynamic optimal investment strategies are

affected by initial wealth at each stage, the aggregate behavior of these six

strings will be analyzed separately.

Figure 3 (4), Figure 5 (6), and Figure 7 (8) in Appendix B show the

average total funds and average amounts invested in the risky security for

the first, second, and third session, respectively10. Not investing any funds at

all in the risky security would result in 825 lab dollars for sure (denoted by the

light grey line (Income)). On average, half of the students in each group made

less (more) than 825 lab dollars (the strings in the first column of each session

in Table 7 refer to the groups that did worse and vice versa). The plots in

Figures 3 through 8 indicate that on average, participating subjects became

more risk averse after they reached a certain level of wealth (toward the end

of the 33 period experimental life cycle). In addition, the plots show that on

aggregate, the share invested in the low risk asset is bigger than the medium

than the high risk version. The mean of all investment shares over time is

Xτ = 0.435(0.337), ranging from 0 to 1. Available funds, on the other hand,

10Notice, error bars refer to standard deviations.
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Xτ Xτ Xτ

wτ -0.00013* -0.00013* –

(0.00002) (0.00002)

τ -0.00008 – -0.00433*

(0.00135) (0.0011)

Asset Type -0.148* -0.148 -0.149*

(0.013) (0.013) (0.013)

Intercept 0.799* 0.798* 0.802*

(0.031) (0.028) (0.032)

R2 0.18 0.18 0.15

Adj. R2 0.17 0.18 0.14

F 63.68 95.62 79.35

Table 3: OLS Regression Results

range from 25 lab dollars to a maximum of 3,463.50 lab dollars (increasing

over time, on aggregate). The results of the OLS regression, where share

invested in the risky asset is the dependent variable, are reported in Table

311. Recall that available funds, wτ , and stage, τ , are positively correlated,

ρwτ τ = 0.601. The version of the risky asset was transformed into integers,

i.e. low, medium, and high risk is equivalent to 1, 2, and 3, respectively. The

results of the OLS regression in the second column of Table 3 (best model)

corroborate that not only investment shares decrease with rising wealth but

also shares are bigger (smaller) for the low (high) risk version.

For these reasons, first, the experimental results are compared to the dy-

namic stochastic investment predictions based on negative exponential and

concave quadratic utility functions, for which optimal investment decisions

are functions of current available funds. In addition, the experimental data is

11Standard errors are given in parentheses – statistical significance at the one percent

level is denoted by *. Number of observations is 891.
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evaluated in terms of predictions of constant relative risk aversion. Since op-

timal investment decisions based on an expo-power utility cannot be obtained

algebraically and prospect theory does not explain diversification among cash

and risky asset as mentioned in section 3.3.4 and 3.3.5, respectively, only

prospect theory is briefly evaluated at the end of this section.

4.1 IRRA utilities

Recall from section 3.3 that both negative exponential and concave quad-

ratic utility functions display IRRA, that is, the share invested in the risky

asset decreases with rising wealth.

Table 4 reports the average terminal funds of the 33 period session for all

six groups in the experiment in addition to the wealth levels of a negative

exponential and concave quadratic expected utility maximizer12. In the case

of four experimental strings, investing according to the dynamic negative

exponential investment strategy yields better results than the average sub-

ject in the experiment, especially for rather bad strings. However, two high

earnings strings in the experiment did better. Likewise, dynamic investment

policy based on concave quadratic utility does better than the average indi-

vidual in four out of six strings with significant higher earnings for the two

lucky strings in the experiment (terminal wealth > 2, 000 lab dollars). For

each dynamic investment policy, only one string yields worse terminal wealth

than the 825 lab dollars which participants could be assured of, whereas on

average, three groups had less than these 825 lab dollars. Nonetheless, the

results indicate that the best investment strategy for the one unlucky streak

(first group in session one) would have been to hold all funds in cash and not

invest in the risky security.

12With parameter values η = 1 · 10−3 and b = 2.5 · 10−4 (5 · 10−4) for experimental

strings with max(w) < 4, 000 (2, 000) lab dollars.
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Session 1 Session 2 Session 3

Experiment 223.18 2,146.12 817.17 1,330.77 580.28 2,011.52

(132.40) (1,181.01) (744.63) (870.39) (309.51) (416.23)

Neg. Expo. 647.15 1,798.50 1,039.79 1,423.42 863.85 1,784.85

Quadratic 180.90 3,019.09 1,130.89 1,011.49 887.09 2,671.92

Table 4: Average Terminal Wealth in Lab Dollars

Figures 9 through 14 in Appendix B plot the predicted investment shares

over time along with the average fractions from experiment. Overall, pre-

dicted dynamic investment shares are bigger at earlier stages compared with

experiment. At later stages of the life cycle experiment, however, partici-

pants invested larger fractions of their funds in the medium and high version

of the risky security than negative exponential and concave quadratic utility

suggest. Moreover, toward the end of the 33 period session, average sub-

jects invested smaller shares in the low risk version of the security, whereas

both dynamic investment policies suggest to invest all funds in the low risk

security.

Although stochastic dynamic optimization policies from above display

IRRA as observed in the experiment, the plots indicate that aggregate ob-

served behavior is not consistent with predictions. However, notice impor-

tantly, that the groups were rather small and therefore standard deviations

(denoted by error bars) are big. In Figure 15 (see Appendix B, the aggregate

predictions (all six strings) and average shares from experiment are plotted

with errors bars denoting standard errors. Z-statistics test reveals that nei-

ther the differences between negative exponential dynamic optimization and

experiment nor between concave quadratic utility and experiment are statis-

tically significant at the five percent level. However, the samples are simply

too small in order to make a definite statement about the applicability of the

proposed negative exponential and concave quadratic utility as descriptive
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risk averse utility function.

4.2 CRRA

CRRA implies that the share invested in the risky security is constant for each

version; however, the absolute amount invested increases with rising wealth.

Table 5 lists the optimal fractions X∗
R, which an investor would put into the

low, medium, or high risk security based on expected utility maximization

with the power utility function as descriptive risk averse utility function (41)

for different parameter values of α = r̃. Notice that a risk neutral investor

(α = 0) would plunge all available funds in the risky security since the

expectation value of the lottery exceeds the sure thing (cash holding).

α = 0.7 α = 0.6 α = 0.5 α = 0.4

Low 1 1 1 1

Medium 0.24 0.28 0.33 0.42

High 0.08 0.09 0.11 0.14

Table 5: Optimal Investment Shares of a CRRA Power Utility

Aggregate behavior of all 27 participating subjects is compared with the

predictions of CRRA since Xτ = X is independent of current wealth, and

should therefore not be influenced by a certain streak of lucky or unlucky

draws. Figure 16 in Appendix B graphically compares the investment shares

from Table 5 with aggregate behavior observed in the experiment. The Fig-

ure shows that on aggregate, investment decisions in the experiment are

inconsistent with any of the CRRA levels. Interestingly, the expected utility

maximization of a CRRA utility suggests investment of all funds in the low

risk version of the risky security at all levels of CRRA, whereas aggregate

experimental shares are well below. On the other hand, CRRA underpredicts

the shares to be invested in the medium or high risk security when compared
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with experiment.

4.3 Prospect Theory

Recall from section 3.3.5 that the investment decision of a value maximizer

depends on the relationship between good and bad return, decision weights,

and parameters κ and τ , i.e. the good return is an increasing function of

the bad return, ceteris paribus. In Table 6, hypothetical good yields of the

risky security are shown which satisfy that an investor would be indifferent

between cash holdings and investment in the risky security for different pa-

rameter values of κ, given Rb and τ = 0.9. Based on the assumption that an

investor dislikes a loss roughly twice as much as she likes a gain [Tve92], she

would never invest in the risky security, given the combination of yields in

the experiment. However, none of the individuals participating in our lab-

oratory experiment did so, which indicates that the previous assumption of

participating subjects being expected utility rather than value maximizers is

true.

κ 2.25 2.00 1.75 1.5 1.25

Rb = −0.1 0.24 0.22 0.19 0.16 0.13

Rb = −0.5 1.23 1.08 0.93 0.78 0.64

Rb = −0.9 2.22 1.94 1.68 1.41 1.15

Table 6: Rg as a function of Rb, for different values of κ, τ = 0.9
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5 Conclusion

In this paper, I compare a laboratory experiment with stochastic dynamic

optimization policies based on expected utility theory. Specifically, I focus

on the predictions based on a negative exponential and concave quadratic

utility. In addition, I look at the applicability of a rather exotic functional

form [Sah93] to the experimental two security portfolio problem. Prospect

theory is reviewed critically as descriptive risk averse decision model. In their

work, Kahneman and Tversky [Kah79] present several choice problems where

preferences violate the axioms of expected utility theory. They draw the

conclusion that expected utility theory is not a descriptive model of decision

making when facing risk. Being aware of the limitations of expected utility

theory and respective absurd predictions due to concave utility functions

[Rab00], based on the experimental findings, I can neither support nor reject

the hypothesis by Rabin et al. [Rab01], which states that expected utility

theory is not the right explanation for most risk attitudes.

However, the findings imply that CRRA is inconsistent with risk aversion

in terms of a life cycle investment problem. Additionally, prospect theory

does not explain why risk averse investors allocate some of their funds in the

risky security and concomitantly hold parts in cash (exclusion of diversifica-

tion as investment principle).

Notice importantly, that in order to make definite statements, a larger ex-

perimental sample is necessary. Furthermore, the experimental design should

be reviewed, i.e. in order for the law of large numbers to apply, it is better

to determine the random outcome of the risky security individually rather

than for the whole group. This can be done by extending the experiment

by a random number generator. Although this can be easily implemented,

one has to be cautious since participating subject may or may not perceive

a random number generator more critically than the physical toss of a coin.
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A Maple Source Codes

In the following, the Maple R© 8 dynamic programming source codes are given

for the negative exponential (concave quadratic) utility. Useful techniques

to solve dynamic stochastic optimization problems can be found for instance

in [Car06] and [Par00].

A.1 Dyn-Expo.mws

> restart: # Dyn-Quadratic.mws

> # declare vector of optimal decisions and probabilities

> mu:=array(1..33);

> p:=’p’:q:=’q’;

> # value function at end of life cycle

> M[0]:=w->-exp(-n*w)/n;

> E[1]:=-(p*exp(-n*(w+w*X*R[32]))

+q*exp(-n*(w-w*X*Q[32])))/(r*n);

> # find optimal share to invest mu[1] at end

> d[1]:=normal(diff(E[1],X));

> mu[1]:=solve(d[1],X);

> # express value function in terms of mu[1]

> M[1]:=unapply(expand(simplify(subs(X=mu[1],E[1]))),w);

> # recursive calculation for all other stages

> for i from 2 to 33 do:

> E[i]:=(p*M[i-1](w+w*X*R[33-i])+q*M[i-1](w-w*X*Q[33-i]))/r:

> d[i]:=normal(diff(E[i],X)):

> mu[i]:=normal(solve(d[i],X)):

> M[i]:=unapply(expand(normal(subs(X=mu[i],c[i]))),w):

> end do: print(mu);
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A.2 Dyn-Quadratic.mws

> restart: # Dyn-Quadratic.mws

> mu:=array(1..33): p:=’p’:q:=’q’;

> M[0]:=w->w-b*w^2/2;

> E[1]:=(p*(w+w*X*R[32]-b/2*(w+w*X*R[32])^2)

+q*(w-w*X*Q[32]-b/2*(w-w*X*Q[32])^2))/r;

> d[1]:=normal(diff(E[1],X));

> mu[1]:=solve(d[1],X);

> M[1]:=unapply(expand(simplify(subs(X=mu[1],E[1]))),w);

> for i from 2 to 33 do:

> E[i]:=(p*M[i-1](w+w*X*R[33-i])+q*M[i-1](w-w*X*Q[33-i]))/r:

> d[i]:=normal(diff(E[i],X)):

> mu[i]:=normal(solve(d[i],X)):

> M[i]:=unapply(expand(normal(subs(X=mu[i],E[i]))),w):

> end do: print(mu);
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B Graphs and Tables

Figure 3: Total and Invested Funds (First Session, First Group)
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Figure 4: Total and Invested Funds (First Session, Second Group)
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Figure 5: Total and Invested Funds (Second Session, First Group)
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Figure 6: Total and Invested Funds (Second Session, Second Group)
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Figure 7: Total and Invested Funds (Third Session, First Group)
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Figure 8: Total and Invested Funds (Third Session, Second Group)
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Figure 9: Investment Shares (First Session, First Group)
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Figure 10: Investment Shares (First Session, Second Group)
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Figure 11: Investment Shares (Second Session, First Group)
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Figure 12: Investment Shares (Second Session, Second Group)
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Figure 13: Investment Shares (Third Session, First Group)
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Figure 14: Investment Shares (Third Session, Second Group)
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First Session Second Session Third Session

Stage Type n = 5 n = 5 n = 3 n = 3 n = 6 n = 5

0 L Good Bad Good Bad Good Bad

1 H Good Bad Bad Good Good Bad

2 H Bad Good Good Bad Good Bad

3 L Bad Good Bad Good Bad Good

4 L Bad Good Good Bad Good Bad

5 H Good Bad Good Bad Bad Good

6 H Bad Good Bad Good Bad Good

7 M Good Bad Bad Good Good Bad

8 L Bad Good Bad Good Bad Good

9 L Bad Good Bad Good Good Bad

10 M Bad Good Good Bad Bad Good

11 L Good Bad Bad Good Bad Good

12 L Good Bad Bad Good Bad Good

13 H Bad Good Good Bad Bad Good

14 M Bad Good Bad Good Good Bad

15 H Bad Good Good Bad Good Bad

16 H Bad Good Bad Good Bad Good

17 H Good Bad Good Bad Bad Good

18 M Good Bad Good Bad Bad Good

19 L Good Bad Good Bad Bad Good

20 M Bad Good Bad Good Bad Good

21 L Good Bad Good Bad Bad Good

22 M Good Bad Good Bad Good Bad

23 M Bad Good Bad Good Bad Good

24 M Bad Good Good Bad Bad Good

25 M Good Bad Good Bad Good Bad

26 H Good Bad Bad Good Bad Good

27 M Bad Good Good Bad Good Bad

28 M Bad Good Bad Good Good Bad

29 L Bad Good Bad Good Good Bad

30 L Bad Good Bad Good Bad Good

31 H Good Bad Good Bad Good Bad

32 H Bad Good Bad Good Bad Good

Table 7: Experimental Strings
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Figure 15: Aggregate Shares, All Sessions
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Figure 16: CRRA Shares
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