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Introduction Contribution

Contribution to Time Series Modeling

One Project - Two Papers:
Paper I: Develops a Generic Framework to estimate high-frequency
economic dynamics using data sampled at mixed frequency.

Paper II: Make the First Attempt to make optimal portfolio choice
using irregularly spaced high-frequency data.
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Introduction Motivation

Motivation

Not all economic data are sampled at the same frequency.

Unavailability of macroeconomic variables at high frequency.

Increasing Demand for estimating high-frequency economic dynamics.
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Introduction Literature

Literature

1 Ghysels et al. (2006): MIDAS Method
Temporal Aggregation.
Linear Regression.

2 Aruoba et al. (2009): ADS Index
Gaussian State-Space Model.
Kalman Filter.
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Introduction Methodology

Methodology

Non-Gaussian State Space Model: Particle Filter
To allow for fat-tailed shocks to the observable variables.
The setting of the model can be easily extended to arbitrary number of variables
observed at any frequency.

Data at Mixed Frequency: April 1, 1960 to February 20, 2007.
1 Daily: Term Spread
2 Weekly: Initial Claims for Unemployment Insurance
3 Monthly: Employees on Non-farm Payrolls
4 Quarterly: Real GDP Growth
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Specification

Model Specification

Measurement Equation:
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Specification

Model Specification

To reduce the number of state variables:

CW,t = ζtCW,t−1 + xt

= ζtCW,t−1 + ρ1xt−1 + ρ2xt−2 + . . .+ +ρpxt−p + ξt

ζt =

{
0 if t is the first day of the week
1 otherwise
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Specification Estimation

Model Estimation

Non-Gaussian State Space Model: Particle Filter
Step I : The likelihood function of the observable variables can be

decomposed.

f (Yt|ψ) =
t∏

s=1

f (Ys|Ys−1, ψ) =
t∏

s=1

∫
f (Ys|αs, ψ)f (αs|Ys−1, ψ)dαs.

where

f (Ys|αs, ψ) = St(Ys|Zsαs+Γsωs,Hs, λ)

is the Student’s-t density function with mean Ztαt+Γtωt,
variance Ht and λ degrees of freedom.
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Specification Estimation

Model Estimation

Non-Gaussian State Space Model: Particle Filter
Step II : For each t, the particle filter delivers a sample of draws on αt

from the filtered distribution f (αt|Yt−1, ψ). These draws allow
to estimate the one-step ahead density of yt:

f (yt|Yt−1, ψ) =

∫
St(Yt|Ztαt+Γtωt,Ht, λ)f (αt|Yt−1, ψ)dαt.

by simple Monte-Carlo averaging of St(Yt|Ztαt+Γtωt,Ht, λ)
over the draws of αt from f (αt|Yt−1, ψ).
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Specification Estimation

Model Estimation

Non-Gaussian State Space Model: Particle Filter
Step III : In particular, I consider the auxiliary particle filter introduced

in Chib et al. (2002).
This filter first creates a group of proposal values α1

t , . . . , α
R
t .

These values are then reweighted to produce draws {α1
t , . . . , α

M
t } that

correspond to draws from the target distribution.
Typically, we take R to be five or ten times larger than M.
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Specification Computation Challenge

Computation Challenge & Solution

Challenge I: Data Intensive at High Frequency
Data intensity increases as the data frequency becomes higher.

The time consumed in iteration increases the computation complexity.

Challenge II: Large Number of Loops
Particle Filter requires thousands of sweeps in each iteration.

A simple parallel computation cannot improve the computation efficiency.

Solution: Introducing MEX-Files in Matlab
Replace Loops with High-Dimensional Array Operation.
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Main Findings Empirical Results

Extracted Daily Index

Figure 3.1 Daily Business Conditions Index: Fat-tail vs. Gaussian
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