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Abstract 
 

Several papers have used panel data analyses to examine the effectiveness of U.S. state-
level Renewable Portfolio Standards (RPS) in promoting renewable capacity development, 
but the findings are inconclusive. Estimation of average treatment effects, however, can 
mask the fact that RPS policies across states are disparate and the treatment states are 
heterogeneous. We use the Synthetic Control Method (SCM) to conduct individual case 
studies of the early adopter states. Our findings indicate that the impact of RPS varied 
across states. We find Texas to be unique among these early adopters in that RPS in Texas 
has led to increased renewable capacity. 
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I. Introduction 

As of January 2012, 29 U.S. states and the District of Columbia had enacted a 

Renewable Portfolio Standards (RPS) or other mandated renewable energy policies. RPS 

require that electricity producers supply a portion of their electricity from designated 

renewable resources by a specified future date. The adoption of RPS is motivated by a 

complex set of political and economic factors, including increasing concerns over climate 

change and energy security (Yi and Feiock 2012). However, of the several policies typically 

proposed to promote renewable energy development for electricity generation, RPS is the 

most frequently advanced policy (Fischer 2010). We examine whether RPS is having the 

intended effect of increasing renewable generation capacity. 

Several papers have implemented state-year panel data analyses to study the role of 

renewable energy policies in promoting renewables development.1 They, however, do not 

provide any consensus. Yin and Powers (2010) find that RPS has a positive influence on the 

percentage of non-hydro renewable generating capacity, but the finding is predicated on 

the construction of an RPS stringency index. Shrimali and Kniefel (2011), on the other 

hand, found a negative impact of RPS on the ratio of non-hydro renewable capacity over 

total net generation. Carley (2009) focuses on generation and finds that although RPS 

implementation did not have a significant influence, in the years after RPS adoption an 

additional year of RPS had a positive effect. Delmas and Montes-Sancho (2011) analyzed 

capacity rather than generation and found that RPS led to declining renewable electricity 

                                                 
1 Carley (2009): 48-state 1998-2006 panel, Delmas and Montes-Sancho (2011): panel of 650 utilities from 48-
states over 1998-2007, Hitaj (2013): county-level 1998-2007 panel, Maguire (2014): state-level 1994-2012 
panel, Shrimali and Kniefel (2011): 50-state 1991-2007 panel, Yin and Powers (2010): 50-state 1993-2006 
panel. 
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capacity. Additionally, a number of studies on wind capacity found no impact of RPS. Hitaj 

(2013), for instance, provides a county-level analysis and finds that RPS did not have a 

significant influence on wind capacity, and Maguire’s (2014) state-level analysis also 

concludes that RPS did not have a significant effect on wind capacity.   

The empirical literature discussed above has generally failed to find conclusive 

evidence of an average treatment effect of RPS on renewables adoption across RPS states. 

This highlights the need for analyses that accommodate the possibility of treatment 

heterogeneity (Keele et al. 2013), particularly because RPS are unique state-level policies. 

Estimation of average effects can mask the fact that adopter states are heterogeneous and 

state RPS policies are disparate. RPS states differ in their policy environment, electricity 

market characteristics, renewable resource potential, likelihood of successful 

implementation of their RPS, and a host of observed and unobserved characteristics.  

Treating disparate state level RPS as a uniform intervention is also inappropriate. 

RPS vary in the amount of electricity generation that must be supplied from renewables, 

the types of allowable renewables, the year of required implementation of the final 

mandate, and the magnitude and the timing of intermediate mandates. RPS also differ in 

the nature of the Renewable Energy Credit (REC) trading markets, and the degree and 

scope of restructuring requirements (see section II.3 for more details). We, therefore, adopt 

a case study approach to examine the effect of a state’s RPS on its renewable capacity. We 

examine the period 1991-2008 and focus on the early adopter states (see Appendix A, 

Table A1, for a list of RPS states and final mandates).2 Our set of treatment states  are 

                                                 
2 The earliest available state-level data for generation capacity is 1990. Starting at the end of 2008, five 
additional states adopted RPS. Extending our analysis beyond 2008, therefore, would significantly shrink the 
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Nevada (1997), Connecticut (1998), New Jersey (1999), Maine (1999), Texas (1999) and 

Wisconsin (1999), states that enacted RPS between 1997 and 2000.3 Our outcome variable 

of interest is the generation capacity of the modern renewables: wind, solar, geothermal, 

and biomass.4,5 

We focus only on early adopter states (i.e., states that enacted RPS between 1997 

and 2000) in order to allow for sufficient post-intervention years to capture the effect of 

RPS. Unlike other policies such as changes in gun laws or driving restrictions, RPS does not 

become immediately binding on its effective date. The renewable mandates are 

implemented years after the RPS effective date through a series of intermediate goals and 

mandates leading up to the final mandate. For instance, Nevada enacted RPS in 1997, and 

updated the policy in 2001 to establish the minimum requirement that 2 percent of 

electricity be supplied from eligible renewable sources, increasing every two years and 

culminating in a 15 percent mandate by 2013.6 RPS in Texas, passed in 1999, had 

intermediate mandates in 2002 and 2007 with their final mandate initially binding in 2010 

and then subsequently amended to 2025. A similar pattern is observed in the other RPS 

                                                                                                                                                             
size of the donor pool. 
3 Iowa is the only state that passed RPS before 1997. But it passed its RPS in 1983, which falls outside our 
data range. 
4 Hydroelectric generation capacity is not considered a modern renewable resource and is excluded. Although 
it constitutes 52% of renewable electricity generation in the U.S. in 2013, because most hydroelectric capacity 
was added prior to the mid-1970s it is not a newly developed resource. 
(http://www.eia.gov/energy_in_brief/article/renewable_electricity.cfm)  
5 Analyzing renewable capacity rather than renewable generation mitigates the influence of dynamic local 
wind, solar, and weather conditions which could lead to variability in renewable generation. Small localized 
weather changes will not lead to variation in annual state renewable capacity, making renewable capacity a 
better measure to evaluate the effect of the RPS policy. In addition, dynamic, short-term price differences 
between renewable and conventional fuels may lead to variability in the use of renewable generation on a 
daily or weekly basis by utilities.  This variability will be mitigated in the renewable capacity measure. 
6 Nevada RPS was significantly revised again in 2009, which falls beyond our study period. 

http://www.eia.gov/energy_in_brief/article/renewable_electricity.cfm
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states where the final mandate is effective on a future date preceded by a series of 

intervening targets.  

We employ the Synthetic Control Method (SCM) for comparative case studies 

(Abadie and Gardeazabal 2003, Abadie et al. 2010) to estimate the impact of RPS in each of 

these states. SCM constructs a unique counterfactual (or ‘synthetic’) for each RPS 

(treatment) state using a weighted average of the non-RPS (control) states based on a set of 

pre-intervention (pre-RPS) characteristics. By examining each state as a stand-alone case 

study we are able to allow for heterogeneous effects of RPS.  

Our SCM estimates show that the impact of RPS indeed varies across states. Texas is 

unique among the early adopter states in that we find a positive impact of RPS on 

renewable capacity in Texas. Within a decade after enacting RPS, Texas installed more 

wind generation capacity than any other state. The finding about Texas is particularly 

important because of the impact of Texas in the national context: Of the modern renewable 

capacity added in the United States between 1999 and 2008, approximately thirty percent 

was added in Texas.7 In 2013, Texas accounted for 22 percent of the 167 million MWh of 

total power generated from wind nationwide. If Texas were a country it would be sixth in 

the world in wind capacity following China, the United States, Germany, Spain, and India.8   

The finding about Texas also highlights that the success and failure of the RPS policy 

need to be assessed in the context in which it was implemented. While Texas is the only 

early adopter state to witness an impact of RPS on its renewable capacity, Texas is also the 
                                                 
7 The modern renewables include the EIA categories: Wind, Solar Thermal and Photovoltaic, Geothermal, and 
Other Biomass (http://www.eia.gov/electricity/data/state/). 
8 See Hurlbut (2008), EIA-PTC:  http://www.eia.gov/todayinenergy/detail.cfm?id=8870, EIA-Texas:  
http://www.eia.gov/todayinenergy/detail.cfm?id=15851, EIA: http://www.eia.gov/state/?sid=TX, ERCOT 
Time-line: http://www.ercot.com/about/profile/history, and Office of the Governor: 
www.TexasWideOpenForBusiness.com. 

http://www.eia.gov/todayinenergy/detail.cfm?id=8870
http://www.eia.gov/todayinenergy/detail.cfm?id=15851
http://www.eia.gov/state/?sid=TX
http://www.ercot.com/about/profile/history
http://www.texaswideopenforbusiness.com/
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only early adopter state with substantial modern renewable potential (Table A2 of 

Appendix A). Additionally, the energy market characteristics of Texas are quite unique: 

Texas is the only mainland state with its own grid, and its RPS, specified in terms of 

capacity and not generation, is atypical. 

In what follows, we provide some background information on the U.S. electricity 

market and describe the RPS characteristics of the early adopter states in section II, 

present a brief description of the empirical methodology in section III, describe the data in 

section IV, and discuss the results in section V. Section VI concludes. 

II. Renewable Generation, Electricity Markets, and Renewable Portfolio Standards 

II.1. Renewable generation 

Renewable energy sources provided 13 percent of total U.S. electricity generation in 

2013, 49 percent of which is from modern renewables; wind, biomass, geothermal, and 

solar, i.e., non-hydroelectric sources. Today, the United States produces more electricity 

from non-hydroelectric renewable sources than any other country, China and Germany 

rank second and third.9 The Energy Information Association (EIA) predicts that between 

2013 and 2040, non-hydroelectric renewables will account for 24 percent of the overall 

growth in the United States electricity generation. Solar is expected to increase from 8 GW 

in 2012 to 48 GW by 2040, while wind is predicted to increase from 60 GW to 87 GW over 

the same period. Geothermal capacity is predicted to triple and biomass capacity is 

predicted to double. Overall, modern renewable generation is predicted to exceed 

hydroelectric generation and comprise two-thirds of all renewable generation by 2040.10 

                                                 
9 http://www.eia.gov/todayinenergy/detail.cfm?id=16051 
10 http://www.eia.gov/forecasts/aeo/MT_electric.cfm#cap_natgas 

http://www.eia.gov/todayinenergy/detail.cfm?id=16051
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II.2. Electricity Market 

The electricity system in the United States consists of three regions: the Eastern 

Interconnection, the Western Interconnection, and the Texas Interconnection. Grid 

connectivity within an interconnection enables utilities to import and export generation 

across states.11 Within the Interconnections, there are nine Independent System Operators 

(ISOs) and Regional Transmission Organizations (RTOs) that coordinate the trading of 

electricity generation across states. They provide the rates, terms and conditions for the 

wholesale market and transmission within the region.  

Renewable Energy Credits (REC) markets allow for the trading of renewable energy 

between utilities within a particular region.12 REC are designed to provide an accurate 

account of eligible renewable energy production, and to be tradable between producers 

and retailers. For example, in New England, the ISO New England RTO coordinates the 

trading of renewable generated electricity across states using REC.13 Because in these 

states utilities are allowed to import and export renewable generation from other states, 

utilities may import rather than add additional renewable capacity if importing is a low-

cost alternative to meet their RPS mandates. Conversely, it may also be more cost effective 

for a utility to become an exporter of renewable generation. According to the National 

                                                 
11 http://www.un.org/esa/sustdev/publications/energy/chapter2.pdf. 
12 Arizona, Nevada, Texas and Wisconsin were the earliest states to allow for or require the use of tradable 
REC to meet RPS.  
13 Power generated from renewable resources is used to create REC, which are measured in energy units. For 
instance, one REC may represent 1 MWh of qualified renewable energy. The existing REC markets and 
tracking systems serve a distinct region: the NEPOOL Generation Information System (NEPOOL GIS) supports 
a six-state area in New England comprising the ISO New England control area, the PJM Generation Attribute 
Tracking System (GATS) supports the PJM control area, which covers 13 states and the District of Columbia, 
while the Electric Reliability Council of Texas (ERCOT) REC program only operates in Texas. See (Doot, Belval, 
and Fountain 2007) for more details. The New England ISO was established by the Federal Energy Regulatory 
Commission (FERC) in 1997 and was designated as an RTO in 2005, giving the organization additional 
authority over the regional grid (http://www.iso-ne.com/about/what-we-do/in-depth/industry-standards-
structure-and-relationships).  

http://www.iso-ne.com/about/what-we-do/in-depth/industry-standards-structure-and-relationships
http://www.iso-ne.com/about/what-we-do/in-depth/industry-standards-structure-and-relationships
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Renewable Energy Laboratory (NREL), “The primary regional markets for REC exist in New 

England and the Mid-Atlantic states” (Heeter and Bird, 2010, p.6). The NEPOOL_GIS REC 

trading market for the New England region began in 2002, while the PJM-GATS REC trading 

market serving the Mid-Atlantic states began in 2005 (Heeter and Bird, 2010, p.9).14 

(Appendix A, Table A2, details the renewable electricity market characteristics for the early 

adopter states.) 

One unique state in terms of interconnectivity is Texas. The Texas Interconnection is 

separated from the rest of the nation, making Texas the only mainland state with its own 

grid. Also, the Texas REC trading program was unusual in that it requires the REC 

generated electricity to be produced in Texas (Hurlbut 2008).15 Nevada is the only other 

early adopter state that limits renewable generation to within state producers, but they do 

allow limited out-of-state production.  

II.3. Renewable Potential 

The renewable energy potential for each state varies significantly. Texas is the only 

early adopter state with substantial modern renewable potential.16 According to the 

NREL’s renewable potential data, Texas ranks first in onshore wind and solar photovoltaic 

potential, fifth in biopower (solid) potential, and eighteenth in geothermal-hydrothermal 

                                                 
14 The NEPOOL_GIS REC trading activity included imports of 20,163 GWh and exports of approximately 
10,861 GWh in 2008. This represents approximately 6 percent and 3 percent of total U.S. renewable 
generation (modern renewables and hydroelectric generation) in 2008. 
15 ERCOT which manages the Texas Interconnection manages electric power for approximately 85% of the 
state’s total electric load. For more details, see Office of the Governor 
(www.TexasWideOpenForBusiness.com), ERCOT(http://www.ercot.com/about, 
http://www.ercot.com/content/news/mediakit/maps/NERC_Interconnections_color.jpg), and DSIRE 
(http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX03R). 
16  http://www.nrel.gov/gis/re_potential.html.  

http://www.texaswideopenforbusiness.com/
http://www.ercot.com/about
http://www.ercot.com/content/news/mediakit/maps/NERC_Interconnections_color.jpg
http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX03R
http://www.nrel.gov/gis/re_potential.html
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potential.17 Other states with significant renewables potential that have enacted RPS 

include Washington, California, Oregon and New York, but they passed their RPS on or after 

2003. In addition, in these four states, hydroelectricity constitutes the largest share of 

renewable generation and most of the hydroelectric capacity existed in these states before 

their respective RPS were enacted. 

II.4. Heterogeneity of RPS across States 

RPS are state-adopted policies and there is significant variation in the 

characteristics of RPS across states, which is one of the rationales for our case study 

approach. Our SCM estimates allow us to determine the effect of a state’s unique RPS policy 

in the context of its distinct political and market characteristics. 

 RPS vary not only in the magnitude and timing of the final renewables mandate, but 

also the magnitude and timing of intermediate mandates (Appendix A, Table A1, details the 

current targets for all the RPS states). For instance, Wisconsin’s RPS (passed in 1999) 

requires 10 percent renewable generation by 2015 while Maine’s RPS (also passed in 

1999) requires 40 percent by 2017, one of the most stringent in the nation. The Texas RPS 

mandate is set in terms of capacity and not in terms of the percentage of generation 

requiring 10,000 MW by 2025.18 

In addition to the final mandate, states vary in their definitions of ‘renewable 

resources’. This variation is a function of their unique resources, political conditions, and 

                                                 
17 None of the other early adopter states has a top 10 ranking in any category, except Nevada which ranks 
second in geothermal-hydrothermal potential. NREL biopower estimates include crop, forest, 
primary/secondary mill residues, and urban wood waste from Milbrandt (2005). See Lopez et al (2012) for 
more information on the calculation of each renewable energy potential measure. 
18 The only other state that set its RPS based on capacity was Iowa, but their mandate was small. Iowa’s RPS 
mandated 105 MW of renewable capacity. 
(http://twww.dsireusa.org/incentives/incentive.cfm?Incentive_Code=IA01R&re=1&ee=1).  

http://twww.dsireusa.org/incentives/incentive.cfm?Incentive_Code=IA01R&re=1&ee=1
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economic standing in the regional economy. The mandated renewable sources can include 

wind, solar, geothermal, biomass, some types of hydroelectricity, and other resources such 

as landfill gas, municipal solid waste, and tidal energy. For some states modern renewables 

are largely categorized as Class 1 and make up an increasing portion of the renewable 

requirements over time.19 For instance, Connecticut and New Jersey mandated three 

categories of renewables each with their own generation requirements. All of the early 

adopter states included modern renewables in their set of allowable renewables.  

There is also variation in the coverage of the policy in different states. In some states 

only specific types of utilities, investor owned utilities (IOUs), municipal, or rural electric 

cooperatives (Coops) are required to meet RPS. For example, In Wisconsin the initial RPS 

mandate applied only to IOUs and Coops. The Texas RPS applied to both IOUs and retail 

suppliers while municipal utilities and Coops could opt in. The legislative path of the 

passing of RPS also varied across states. Wisconsin was the first state to implement RPS 

without restructuring its electricity market, while in the rest of the early adopter states, 

RPS passed as part of legislation that included restructuring of the electricity market.  

III. Synthetic Control Method (SCM) for Comparative Case Study 

There are a number of advantages to using SCM in this study. First, in program 

evaluation, researchers often select comparison units on the basis of subjective measures 

of similarity between the affected and the unaffected regions or states. But, neither the set 

of all non-RPS states nor a single non-RPS state likely approximates the most relevant 

                                                 
19 For both Connecticut and New Jersey Class 1 renewables include modern renewables, namely,  wind, solar, 
geothermal and other forms of renewable energy such as sustainable biomass, and wave or tidal power 
(http://programs.dsireusa.org/system/program/detail/195, 
http://programs.dsireusa.org/system/program/detail/564). In contrast Class 2 or 3 renewables include 
existing sources such as hydroelectric power. 

http://programs.dsireusa.org/system/program/detail/195
http://programs.dsireusa.org/system/program/detail/564
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characteristics of a treatment (or RPS) state. SCM provides a comparison state (or 

synthetic) that is a combination of the control states, a data-driven procedure that 

calculates ‘optimal’ weights that are assigned to each state in the control group based on 

pre-intervention characteristics, thus making explicit the relative contribution of each state 

to the counterfactual of interest (Abadie and Gardeazabal 2003; Abadie et al., 2010). With 

reduced discretion in the choice of the comparison units, the researcher is required to 

demonstrate the affinities between the affected and unaffected units. 

Secondly, even when aggregate data are employed, as the case is in this paper, there 

is uncertainty about the ability of the control group to reproduce the counterfactual 

outcome that the affected state would have exhibited in the absence of the intervention. As 

Buchmueller, DiNardo, and Valleta (2011) explain, in a ‘clustering’ framework, inference is 

based on the asymptotic assumption, i.e., the number of states grows large. The comparison 

of a single state against all other states in the control group collapses the degrees of 

freedom and results in much larger sample variance compared to the one typically 

obtained under the conventional asymptotic framework and can seriously overstate the 

significance of the policy intervention (Donald and Lang 2007; Buchmueller, DiNardo, and 

Valletta 2011; Bertrand et al. 2004). We, therefore, apply the permutations or 

randomization test that SCM readily provides (Bertrand, Duflo, and Mullainathan 2004; 

Buchmueller, DiNardo, and Valletta 2011; Abadie, Diamond, and Hainmueller 2010; Bohn, 

Lofstrom, and Raphael 2014).  

Thirdly, because the construction of the optimal weights does not require access to 

post-intervention information, SCM allows us to decide on a study design without knowing 

its bearing on the findings (Abadie, Diamond, and Hainmueller 2010). The ability to make 
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decisions on research design while remaining blind to how a particular decision affects the 

conclusions of the study is a safeguard against actions motivated by a ‘desired’ finding 

(Rubin 2001). 

Finally, Abadie, Diamond, and Hainmueller (2010) argue that unlike the traditional 

regression-based difference-in-difference model that restricts the effects of the 

unobservable confounders to be time-invariant so that they can be eliminated by taking 

time differences, SCM allows such unobservables to vary with time. In particular, Abadie, 

Diamond, and Hainmueller (2010) show that with a long pre-intervention matching on 

outcomes and characteristics a synthetic control also matches on time-varying 

unobservables.20 

III.1. The Synthetic Control 

A typical SCM analysis is feasible when one or more states exposed to an 

intervention can be compared to other states that were not exposed to the same 

intervention. In this paper, the intervention is RPS, the outcome is renewable capacity, and 

the set of exposed states are the early RPS adopter states. The donor pool 

(unexposed/control states) consists of states that did not have the policy for the observed 

period.  

 To obtain the synthetic control we follow Abadie and Gardeazabal (2003) and 

Abadie, Diamond, and Hainmueller (2010). For states 1,...,1  Ji  and periods 

Tt ,...,1 , suppose state 1i  is exposed to the intervention at ),1(0 TT  . The observed 

outcome for any state i  at time t  is,  
                                                 
20 As Abadie et al. (2014) explains the intuition as, “… only units that are alike in both observed and 
unobserved determinants of the outcome variable as well as in the effect of those determinants on the 
outcome variable should produce similar trajectories of the outcome variable over extended periods of time.” 
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(1) 
itit

N

itit SYY  , 

where N

itY  is the outcome for state i  at time t  in the absence of the intervention, the binary 

indicator variable itS  denotes the intervention taking the value 1 if 1i  and 0Tt  , and it  

is the effect of the intervention for state i  at time t .  

 We want to estimate ),...,( 111 0 TT  
. Abadie, Diamond, and Hainmueller (2010) show 

that, under standard conditions, there exist ),...,( 12
 





JwwW  such that pre-intervention 

matching is achieved with respect to the outcome variable as well as characteristics (or 

predictors), and we can use, 

(2) },...,1{,ˆ
0

1

211 TTtYwY jt

J

j jtt  




 , 

as an estimator for t1 . The term jt

J

j jYw




1

2
 on the right-hand-side of (2) is simply the 

weighted average of the observed outcome of the control states for },...,1{ 0 TTt   with 

weights 


W . The procedure to obtain 


W  is in Appendix B. 

III.2. Inference 

 Once an optimal weighting vector 


W  is obtained, the “synthetic” is constructed by 

calculating the weighted average outcome of the donor pool. The post-intervention values of 

the synthetic control serve as our counterfactual outcome for the treatment state. The post-

intervention gap between the actual outcome and the synthetic outcome, therefore, 

captures the impact of the intervention. 

 To begin, we calculate a difference-in-difference estimate for the treatment state 

(Bohn, Lofstrom, and Raphael 2014, Munasib and Rickman 2015), 



13 

 

(4) pre

syntheticTR

pre

actualTR

post

syntheticTR

post

actualTRTR YYYY ,,,,  , 

where post

actualTRY ,
 is the average of the post-intervention actual outcome of the treatment 

state, post

syntheticTRY ,
 is the average of the post-intervention outcome of the counterfactual. 

Similarly, pre

actualTRY ,
 is the average of the pre-intervention actual outcome of treatment state, 

and pre

syntheticTRY ,
 is the average of the pre-intervention outcome of the counterfactual. If the 

outcome changed in response to the intervention in time 0T  we would expect 0TR
. 

 To formally test the significance of this estimate, we apply the permutations or 

randomization test, as suggested by Bertrand et al. (2004), Buchmueller et al. (2011), 

Abadie et al. (2010) and Bohn et al. (2014), on this difference-in-difference estimator. 

Specifically, for each state in the donor pool, we estimate the difference-in-difference as 

specified in equation (4) as if it was exposed to RPS at time 0T  (i.e., apply a fictitious 

intervention). With J  being the total number of control units, the number of units in the 

donor pool for each of these placebo runs is 1J . The distribution of these “placebo” 

difference-in-difference estimates then provides the equivalent of a sampling distribution 

for 
TR . To be specific, if the cumulative density function of the complete set of   

estimates is given by )(F , the p-value from a one-tailed test of the hypothesis that 0TR
 

is given by )( TRF   (Bohn et al. 2014). Note that this answers the question, how often would 

we obtain an effect of RPS of a magnitude as large as that of the treatment state if we had 

chosen a state at random, which is the fundamental question of inference (Bertrand et al., 

2004, Buchmueller et al. 2011, Abadie et al. 2010). 

We carry out a second test where we calculate what we call the DID rank. It is the 

ranking of the absolute value of the magnitude of the difference-in-difference of the 
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treatment state against all the placebo difference-in-difference magnitudes (Bohn et al. 

2014, Munasib and Rickman 2015). The DID is the measure of the impact of the 

intervention (equation 4) and the interpretation of a large DID is that the difference in the 

post-intervention outcome between the actual and the synthetic is much larger compared 

to the same during pre-intervention. Therefore, if DID rank is 1 then the estimated impact 

of the intervention in the treatment state is greater than any of the estimated placebo 

impacts.  

IV. Data 

We collected the data for the outcome variable, renewable capacity, from the EIA. 

The information on state RPS is collected from the Database of State Incentives for 

Renewables & Efficiency (DSIRE) database (see Appendix A, Table A1). Figure 1 

demonstrates that states that have adopted RPS are largely the states that have renewable 

generation capacity additions. This, of course, is confounded by various aggregate factors 

such as the Federal Production Tax Credit (PTC). One of the rationales behind our case 

study approach is that we can purge out these aggregate effects, factors such as the PTC 

apply to both control and treatment states.  

Much of the remaining energy data, including electricity generation and price, 

generating capacity, number of customers, etc., were also collected from the EIA. We used 

information on geographical features such as sunlight and natural amenities from the 

Economic Research Service (ERS) of the U.S. Department of Agriculture (USDA) and 

temperatures from National Oceanic and Atmospheric Administration (NOAA). Population 

as well as economic indicators such as per capita personal income and manufacturing 
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earnings share were obtained from the Bureau of Economic Analysis (BEA). Poverty rates 

are from the Census. 

In addition, we collected NREL data on the technical potentials for each modern 

renewable energy source: wind, photovoltaic, biopower (solids), and geothermal-

hydrothermal (NREL 2010, Lopez et al. 2012). These technical potential measures indicate 

the amount of renewable energy by source that a state is theoretically capable of producing 

under a specific set of technological and land use assumptions, excluding transmission 

limitations.21 Table 1 presents a summary description of all the variables used in the 

analysis.  

V. Results 

V.1. SCM Estimates of the Impact of RPS on Renewable Capacity 

We construct the counterfactual (or synthetic) renewable capacity for each of our 

early adopter states (as discussed in Section III). Our donor pool consists of 26 states that 

did not pass a law similar to mandatory RPS as of 2008. 

Figure 2 is a graphical representation of the SCM estimates of the impact of RPS on 

renewable capacity for the six exposed states. In each panel, the picture on the left shows 

the actual and the synthetic renewable capacities for the period 1990-2008. The number of 

states in the donor pool for each treatment state is 26. In case of the permutations tests, 

each donor pool states is picked and a placebo SCM is run; thus the number of states in the 

donor pool for each placebo run is 25. The picture on the right presents the 

permutations/randomization or the placebo tests: the dark line is the absolute gap 

                                                 
21 For instance, the installed capacity calculations for wind are based on an assumption of 5 MW/km2 of 
installed capacity.  
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between actual and synthetic for the treatment state, whereas each grey line is the absolute 

gap between actual and synthetic of a placebo. The details of the estimation are reported in 

Table 2. 

The left picture in panel A (Nevada) shows that the synthetic renewable capacity 

coincides well with the actual renewable capacity over 1990-1996. On the right picture of 

panel A, we find that Nevada (the dark line) does not stand out from the placebos (the grey 

lines). As explained in section III.2, we examine the comparison of the post-pre difference 

ratios from the placebo tests. Along the first column of Table 2, we find that the DID rank is 

25 and the p-value of the DID measure does not have a significant p-value. We, thus, 

conclude that RPS did not have a significant impact on renewable capacity in Nevada.  

We observe the same pattern for Connecticut (panel B of Figure 2 and column 2 of 

Table 2), Maine (panel C of Figure 2 and column 3 of Table 2), New Jersey (panel D of 

Figure 2 and column 4 of Table 2) and Wisconsin (panel F of Figure 2 and column 6 of 

Table 2). In each of these cases we find that the DID rank is high and the DID measure is not 

statistically significant.  

For Texas, however, we find that RPS had a significant impact on renewable capacity 

addition. On the left picture of panel E of Figure 2, we see that the actual capacity starts to 

deviate from the synthetic in the post-intervention period (i.e., 1999, the year of RPS) and 

keeps diverging. On the right picture of Panel E, we see that the absolute gap between 

actual and synthetic for Texas stands out from the placebo gaps. In column 5 of Table 2, we 

find that Texas’s DID rank is 1, and it is significant at 1 percent. The main constituents of 

Texas’s synthetic as indicated by the w-weights are (in order of importance): Indiana, 

Illinois and Virginia.  The strongest predictors of renewable capacity for Texas’s synthetic 
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are (not shown): per capita income, growth of customers and per capita income, and share 

of manufacturing income.  

V.2. Alternative Set of Predictors 

To test if our estimates are robust to changes in the set of predictors (for pre-

intervention matching) we carry out robustness checks with an alternative set of 

predictors. We include the climate related variables January sunlight and summer cooling 

degree days. Alaska is dropped from the donor pool because these variables are not 

available for Alaska. Table 3 presents these results. Based on the DID ranks as well as the p-

values of the DID measures, we conclude that only in case of Texas, RPS had a significant 

impact on renewable capacity. In case of Texas, summer cooling degree days does exhibit 

itself to be an important predictor (not shown) and the distribution of w-weights change 

somewhat (Table 3). The inference, however, remains the same.  

V.3. Additional Tests for Texas 

Tables 2 and 3 show that RPS had a statistically significant impact on renewable 

capacity in Texas only. From these estimates, we calculate that the impact of RPS in Texas 

was the following: according to the estimates presented in Table 2, by 2008 renewables 

capacity in Texas increased by 7,228 MW (7,339 MW according to the estimates presented 

in Table 3). This is perhaps best displayed in Panel E of Figure 2 (graphical representation 

of the estimates in Table 2): we observe that the renewables capacity in actual Texas starts 

to increase while the same in synthetic Texas remains more or less stagnant; this 

increasing ‘gap’ between the actual and the synthetic culminates in a magnitude of 7,228 
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MW in 2008. Table 4 sheds more light on the Texas estimates where we present the 

characteristics matches between actual and synthetic Texas.22  

In each SCM estimate reported in Tables 2 and 3, for each treatment state, the state’s 

pre-intervention outcome (renewable capacity) is included with a common set of 

predictors. Then, the matching is done to calculate the optimal w-weight. In the case of 

Texas, therefore, matching is done on the common set of predictors as well as the outcome 

variable (renewable capacity) for the period 1990-1998.23 However, Texas’s renewable 

electricity market did not exist prior to 1998. So, we have conducted a robustness check, 

reported in column 1 of Table 5, where the matching is done on the set of predictors that 

includes renewable capacity for 1998 only. We find that our inference remains unchanged. 

The main constituents of Texas’s synthetic as indicated by the w-weights are (in order of 

importance): Oklahoma, Illinois, and South Dakota. 

Our analyses above included states that subsequently passed an RPS. In 2009, four 

large states adopted RPS: Kansas, Michigan, Missouri and Ohio; also, Illinois passed an RPS 

in 2011.24 Michigan, Missouri and Ohio are states with larger populations and Kansas’s per 

capita energy consumption is closely comparable to that of Texas. In order to determine if 

the inclusion of these potentially comparable states affected our findings above, we run an 

alternative donor pool and exclude these five states. The results reported in column 2 of 

                                                 
22 Share of natural gas generation stands out in this table as a poor match. Realistically, it is unlikely that one 
will be able to find a good match for Texas in terms of share of natural gas generation because, between 1990 
and 1998, TX had approximately 25 percent share of U.S. natural gas generation. This, however, does not 
impact the result; we have carried out a robustness check excluding natural gas generation from the set of 
predictors with no discernible change in the estimates. 
23 This is the standard procedure followed in SCM due to Abadie et al. (2010) and Bohn et al. (2014). 
24 Michigan and Missouri passed RPS at the end of 2008 while Ohio and Kansas passed RPS in 2009. 
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Table 5 indicate that our finding of a significant impact of RPS in Texas is not influenced by 

the inclusion of these states.25 

Another issue is that the Texas RPS includes some degree of restructuring in the 

electricity market. To determine if the effect of restructuring in the control group is 

confounding the findings, in column 3 of Table 5 we present the SCM results where we have 

excluded states that had any kind of deregulation (i.e., the donor pool has only non-RPS and 

non-deregulated states). The set of predictors remains the same as that of Table 2. Again, 

we arrive at the same conclusion that RPS had a significant impact on renewable capacity 

in Texas.26  

In each estimate for Texas presented in Tables 2, 3, and 5, we observe that either 

Indiana or Oklahoma carries more than 50 percent of the weight in the donor pool. To 

check if our finding is sensitive to this, we carried out a robustness check. For this analysis, 

we equally distributed the w-weights to the six states that received at least 1 percent of the 

weight in any of the estimates (i.e., Georgia, Illinois, Indiana, Louisiana, Oklahoma and 

Virginia). Our finding of a significant impact of RPS on the renewable capacity in Texas 

remains robust to this test as well.27 

                                                 
25 This analysis was completed for the other early adopter states as well. The findings indicate that RPS was 
not a significant predictor of renewable capacity development in those states. The pre-intervention matching 
for these states, however, was not as strong as the results presented in Table 2. Results available upon 
request. 
26 The Texas RPS was implemented in 1999 as part of Senate Bill 7. The legislation mandated the deregulation 
of the retail electricity market, and became effective across the ERCOT managed electricity market in 2002. 
Due to the fact that the same law implemented RPS and restructuring of the retail electricity market, it is not 
possible to entirely separate the effects of the two policies. The inclusion of restructuring and RPS in the same 
legislation is not unique to Texas, however, and does not by itself explain the influence of the policy on 
renewable capacity additions. All of the early adopter states with the exception of Wisconsin also included 
restructuring requirements as part of their RPS legislation.  
27 Results not shown, available upon request. 
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As an additional robustness check, following Abadie et al. (2014) and Mideksa 

(2013), we carry out a placebo test regarding the timing of the intervention. Estimating the 

impact of a placebo RPS policy with an implementation year of 1994 rather than 1999 

should not result in a significant finding.  To test this hypothesis we ran an analysis with a 

placebo RPS in Texas in 1994 and tested its impact over the post-intervention period 1995-

1998. We use our main specification (i.e., the same set of predictors as listed in Table 2). 

We do not find a significant DID measure and the DID rank is 5. A non-significant estimate 

of this placebo treatment implies that we can have more confidence in our finding of a 

significant impact of the actual RPS in Texas in 1999.28 

Finally, in Table 4 we observe that the wind potentials of the two synthetics are 20-

25 percent lower than that of actual Texas. In order to determine if Texas’s large 

renewables potential, specifically onshore wind and solar photovoltaics, is driving our 

finding, we carry out additional robustness checks. 

Texas’s high rankings in wind and solar potentials are partly due to the large land 

base of the state. We, therefore, carry out the SCM estimates for Texas by normalizing the 

following variables with land area: wind potential, photovoltaic potential, biopower 

potential, geo- & hydro-thermal potential, and renewable nameplate capacity (the 

outcome). Table 6 reports these results in detail. Column 1 is the main specification 

(similar to Table 2). In column 2, climate related variables are added to the set of 

predictors and Alaska has to be dropped (similar to Table 3). In column 3, land area is 

added to the set of predictors instead of the climate variables, and Alaska is put back in the 

                                                 
28 Results not shown, available upon request. 
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donor pool. This is because Alaska is the only state with a larger land area than Texas; 

without it Texas’s land area falls outside the domain for matching.  

First, we see that the inference in each of the three specifications remains the same 

as our main result: the DID rank is 1 and the p-values are significant at the 1 percent level. 

The donor pool weights change with Alaska, Kansas, Louisiana, South Dakota and 

Oklahoma now contributing the most to the synthetic. Not surprisingly, Alaska takes a 

more prominent role in the construction of the synthetic in column 3 (when land area is 

included as a predictor). 

Importantly, we find that the pre-intervention matching, particularly for wind 

potentials, is markedly improved. In the case of column 3, we also obtain a strong match for 

land area.  The strengthening of our pre-intervention matching on wind potential leads us 

to conclude that the significant finding for RPS is not driven by the large renewable 

potential in Texas. 

V.4. Discussion: Heterogeneity of RPS Impacts 

We find that of the six early RPS adopters, Texas is the only state where RPS had an 

impact on modern renewable capacity. It is important to point out that Texas stands out 

among these states in a number different ways. First, Texas has significant renewable 

generation potential, far exceeding that of the other early adopter states. It ranks first in 

wind and solar potential (Appendix A, Table A2).  

Second, grid interconnectivity may be an important factor in the expansion of 

instate renewable capacity. Texas is the only mainland state with its own grid and unlike 

other REC programs, the Electric Reliability Council of Texas (ERCOT) REC program only 

operates in Texas; to generate a unit of REC the electricity has to be generated (from 
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renewables) and metered in Texas. In New England, the ISO New England RTO coordinates 

the trading of renewable generated electricity across states using REC. This may have 

influenced the pace of within state renewable capacity additions in Connecticut and Maine, 

both in the ISO New England region.29 New Jersey, which is in the PJM RTO, promotes 

within state development, particularly for solar generation. However, if approved by the 

New Jersey Board of Public Utilities, renewable generation can also be generated from 

regional capacity (Daniel et al, 2014, p. 7).  

Third, the five early adopter states where we do not find an effect are also among 

the smallest energy producing states; New Jersey, which is the largest producer of these 

five states, had only a 0.5 percent share of the total U.S. generation in 2012.30 Texas, on the 

other hand, was the largest energy producing state for every year between 1990 and 

2012.31 The share of modern renewable capacity in Texas increased from two percent of 

U.S. renewable capacity in 1999 to twenty-two percent in 2008.32 The size of the Texas 

electricity market may have given Texas an edge in adding renewable capacity.   

Lastly, RPS policy stringency and compliance may have played a role. In Maine, at 

the time of the passage of RPS, the generation constraint was not binding. Maine has 

significant hydroelectric generation capacity, and generation from these resources 

                                                 
29 As a robustness check, we conducted an SCM analysis where the New England region is considered the 
treated unit. The year of intervention was the first year in which a state in New England passed RPS, 1999. 
The finding was consistent with the state level results. There was not a significant influence of RPS on 
renewable capacity. These results are available upon request. 
30 It is important to note that while states such as New Jersey have smaller electricity markets than Texas, 
they still have 20,000 MW of electricity generating capacity and are required to generate or import electricity 
for their nearly 9 million residents.  As of 2010 they had only 320 MW from modern renewable sources, 
which leaves significant potential for growth in renewable capacity. 
31 http://www.eia.gov/electricity/data/state/ 
32 The modern renewables include the EIA categories: Wind, Solar Thermal and Photovoltaic, Geothermal, 
and Other Biomass (http://www.eia.gov/electricity/data/state/). 
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exceeded the initial mandate. The Maine RPS was subsequently updated to require that a 

portion of the renewable capacity be installed after 2005. The mandate was small, 

however, requiring 1 percent of electricity be produced from new renewable capacity in 

2008. In Nevada, only NV Energy was initially required to meet a low minimum renewables 

mandate that increased by 2 percent every 2 years beginning in 2001 reaching a maximum 

of 15 percent in 2013.33 Nevada did not meet 100 percent of their RPS obligation until 

2008.34 In New Jersey, in 2005, the mandate was revised whereby the share that must 

come from Class 1 renewables was set to be 17 percent by 2021. Until 2005, however, the 

share that must come from Class 1 renewables was 0.74 percent.35 This may explain why 

there was no capacity expansion through 2008. In Wisconsin, the initial RPS mandate 

applied only to Investor Owned Utilities (IOUs) and Rural Electric Cooperatives (Coops), 

requiring them to obtain 2.2 percent of their electricity from renewable sources by 2012. 

The policy was strengthened in 2006, with a utility-wide requirement of 10 percent by 

2015.36  

Texas, on the other hand, is an exception in terms of its RPS policy design. First, 

Texas specifies RPS in terms of capacity. All other states, with the exception of Iowa, specify 

RPS as a percentage of total generation. Kneifel (2007) argues that the type of mandate 

influences its effectiveness. Additionally, the Texas RPS mandated the installation of at least 

2,000 MW of additional renewable capacity by 2009 and at least 5,880 MW by 2015. The 

Texas mandate does not stand out in terms of its magnitude in percentage of total 
                                                 
33 http://programs.dsireusa.org/system/program/detail/373.  
34 In 2009, beyond our analysis period, the stringency of the initial policy was increased and the final mandate 
was increased to 25 percent by 2025. See 
http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NV01R.  
35 http://www.dsireusa.org/summarytables/rrpre.cfm.  
36 http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI05R&re=0&ee=0.  

http://programs.dsireusa.org/system/program/detail/373
http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=NV01R
http://www.dsireusa.org/summarytables/rrpre.cfm
http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI05R&re=0&ee=0
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generation, but because of the size of the Texas market, a small percentage requirement 

entailed a relatively large increase in renewable capacity.37 In fact, Texas capacity 

increased from 188 MW in 1999 to over 7,500 MW in 2008.38  

V.5. Discussion: Efficacy of Texas RPS 

We observe that Texas producers reached 10,000 MW of wind generation capacity 

by 2010 reaching the RPS target years ahead of the mandated timeline. This, however, does 

not indicate that RPS was not binding. In the presence of non-convex adjustment costs, 

indivisibilities, and irreversibilities of wind generation capital, optimal investment is 

unlikely to be incremental and more likely to exhibit bursts of large-scale capital 

accumulations (Adda and Cooper 2003, Cooper and Haltiwanger 2006). As a result, the 

level and timing of optimal investment may very well exceed and precede the mandate, as 

was the case in Texas.   

Additionally, firms may have predated wind generation capacity in order to secure 

the federal Production Tax Credit (PTC) benefits. The PTC applies to wind farms for the 

first 10 years of production and lowers the cost of wind generated electricity production by 

about one third (Wiser, 2007).39 The credit was originally created under the Energy Policy 

Act of 1992, but it has expired and been extended several times since its inception (Wiser, 

                                                 
37 2,000 MW translates to roughly 1.2-1.6 percent (5,880 MW to 3.6-5 percent) of total generation. The 
information on the percentage requirements was calculated as a percentage of 1999 total generation using a 
capacity factor of 25-35 percent. 
38 http://www.eia.gov/electricity/data/state/.  
39 The PTC is currently worth $22 per MWh (2011 dollars). In 2013, Texas accounted for 22 percent of the 
167 million MWh of total power generated from wind nationwide. See 
http://www.eia.gov/todayinenergy/detail.cfm?id=8870 (EIA-PTC) and 
http://www.eia.gov/todayinenergy/detail.cfm?id=15851 (EIA-Texas). 

http://www.eia.gov/electricity/data/state/
http://www.eia.gov/todayinenergy/detail.cfm?id=8870
http://www.eia.gov/todayinenergy/detail.cfm?id=15851
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Bolinger, and Barbose 2007, p. 1-2).40 Its lapses over the years are correlated with 

decreases in wind capacity additions and are often blamed for those declines (AWEA 2005, 

p. 4). Barradale (2010) finds that uncertainty in the federal PTC leads to investment 

volatility, as producers delay development in non-PTC years and ramp up development 

when the PTC is active. The combination of significant renewables potential and the PTC 

may have accelerated the timing of renewable capacity development in Texas, but our 

findings indicate that the RPS policy provided the impetus for this expansion. 

V.6. Discussion: Early Adopter States 

Because RPS mandates do not become immediately binding but are implemented 

through a series of intermediate goals leading up to the final mandate, we only focused on 

early adopter states (i.e., states that enacted RPS between 1997 and 2000). This allowed us 

sufficient post-intervention years to capture the effect of RPS. Indeed, with two exceptions, 

Massachusetts and California, for states that passed their RPS between 2000 and 2008, the 

earliest intermediate mandate is 2006.41 While the available post-intervention periods may 

not be sufficient for carrying out SCM impacts of RPS in Massachusetts and California, we 

examined these states as well. We do not find any impact of RPS on renewable capacity in 

Massachusetts. As for California, we are unable to establish pre-intervention matching. This 

is because California had by far the largest renewable capacity for the pre-intervention 

period (1990-2002); California had at least 8 times the renewable capacity of any other 

                                                 
40 The PTC expired and was extended in 2000, 2002, 2004, and 2012.  It was extended in 2010 prior to 
expiration. 
41 Massachusetts, which passed its RPS in 2002, required renewable generation of 1 percent of sales in 2003, 
increasing by 0.5 percent annually through 2009. California, which passed its RPS in 2003, included a 
requirement that utilities increase renewable generation annually by a minimum of 1 percent of their sales. 
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state for this period. As a result, no weighted average of states can approximate the pre-

intervention renewable capacity of California.42 

VI. Conclusion 

Variation across states in their policy environment, electricity market structure, and 

availability of renewable energy resources suggest that empirical identification of the effect 

of RPS relies crucially on the accurate determination of the control states. We employ the 

SCM case study approach which, we argue, uses a more appropriate counterfactual for 

impact evaluation compared to the approaches that estimate average treatment effects. We 

find that RPS have heterogeneous impacts on renewable capacity development.  

The renewable policy environment across states is at a crossroads. This is 

particularly true for RPS in light of the recent legal and legislative efforts to repeal or 

weaken RPS in a number of states including California, Colorado, Kansas, Massachusetts, 

Minnesota, North Carolina, Ohio, Texas, Wisconsin, and West Virginia (Plumer 2013; 

Gallucci 2013, Brandt 2015). In May 2014, Ohio voted to halt the continued implementation 

of the state’s RPS and imposed a two year freeze on the RPS requirements pending further 

study of the economic impacts (Gallucci 2014). West Virginia became the first state to 

repeal their RPS in January 2015. Kansas legislators also decided to eliminate the state’s 

mandated renewables requirement in May 2015.  It will be replaced with a voluntary goal 

(Overton 2015, NA WindPower 2015). And finally, in April 2015, the Texas Senate voted to 

eliminate the state’s RPS by the end of 2015 (Brandt 2015). 

                                                 
42 In contrast, consider Texas, for instance. Texas’s average non-renewable capacity during the pre-
intervention period (1990-1998) fell between the median and the 75th percentile among the U.S. states. As a 
result, the feasibility of finding a weighted average of control states that would mimic Texas’s pre-
intervention non-renewable capacity was not an issue. 
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On the backdrop of the previous findings that RPS are not contributing to 

renewables development (Shrimali and Kniefel 2011, Hitaj 2013, and Maguire 2014), these 

repeal efforts may pick up steam. But the findings in this paper suggest that the impact of 

RPS may not be generalized, instead, the success of a particular RPS may be contingent on 

the features of the policy itself and the characteristics of the pertinent electricity markets.  
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Tables 
 
Table 1: Summary Statistics (1990-2008) 
 

 Donor pool (26 states)  Treatment State Means 

 Mean SD Min Max   NV CT ME NJ TX WI 

Renewable nameplate capacity (MW) 79.90 166.81 1.00 1130.00   247.32 235.08 78.17 198.31 1162.30 97.23 

Total nameplate capacity growth 37.99 28.49 0.35 117.41   7.15 164.52 13.07 249.06 34.46 25.62 

Coal generation share 0.58 0.29 0.00 0.99   0.53 0.13 0.03 0.16 0.39 0.70 

Natural gas generation share 0.10 0.16 0.00 0.65   0.35 0.15 0.21 0.31 0.48 0.04 

Real electricity price 7.29 1.74 4.48 13.57   7.99 12.50 11.43 11.79 8.11 7.01 

Growth of total customer 1.15 0.13 0.90 1.65   1.56 1.06 1.11 1.08 1.22 1.15 

Real PC personal income ($) 28709.57 4698.39 18152.14 45222.82   33078.03 43696.99 28482.82 40186.85 29529.13 30577.93 

Growth of PC personal income 1.22 0.16 0.98 1.82   1.19 1.21 1.20 1.19 1.24 1.23 

Percent of population below poverty 13.17 3.57 5.70 26.40   10.32 8.75 11.67 8.71 16.51 9.67 

Share of manufacturing earnings 0.11 0.05 0.02 0.22   0.03 0.12 0.11 0.09 0.10 0.18 

Wind potential (GW) 228000.00 326000.00 0.00 952000.00   7247.10 26.50 11251.20 131.80 1900000.00 104000.00 

Photovoltaic potential (GW) 3168.83 2024.67 36.55 9005.30   3742.84 17.13 660.61 276.43 20565.29 3240.76 

Biopower-solid potential (GW) 1.17 0.77 0.06 3.52   0.04 0.06 0.54 0.15 2.04 1.42 

Geo- & hydro-thermal potential (GW) 0.23 0.62 0.00 2.18   5.75 0.00 0.00 0.00 0.00 0.00 

January mean hours of sunlight 147.13 25.34 105.14 197.64   200.00 161.75 156.25 152.24 182.59 133.54 

Average summer cooling degree days 289.38 136.47 23.67 584.33   486.75 168.11 71.42 227.60 531.56 145.00 

Notes: (a) For the donor pools N=494, except for sunlight and degree days that are unavailable for Alaska (i.e., N=475). (b) Renewables include geothermal, 
biofuels, solar, and wind. (c) Total nameplate capacity is measures in MWh per 100 square miles. (d) All monetary values are in 2005 constant dollars. (e) 
Standard state codes used: Nevada (NV), Connecticut (CT), Maine (ME), New Jersey (NJ), Texas (TX), Wisconsin (WI), Massachusetts (MA). (f) Year of the 
enacting RPS in the treatment states: Nevada (1997), Connecticut (1998), Maine (1999), New Jersey (1999), Texas (1999), and Wisconsin (1999). (g) Following 
states enacted RPS on or before 2008 and therefore excluded from the donor pool: Iowa (1983), Massachusetts (2002), California (2003), Colorado (2004), 
Hawaii (2004), Maryland (2004), New York (2004), Rhode Island (2004), Delaware (2005), District of Columbia (2005), Montana (2005), Oregon (2005), 
Pennsylvania (2005), Washington (2006), Arizona (2007), Minnesota (2007), New Hampshire (2007), New Mexico (2007), North Carolina (2008). 
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Table 2: SCM Estimate of the Impact of RPS on Renewables Capacity 
 

 Nevada Connecticut Maine New Jersey Texas Wisconsin 

Estimation summary       

Pre-intervention difference (D1) 0.34 0.69 0.03 0.13 -0.54 -0.54 

Post-intervention difference (D2) -4.52 -46.59 47.65 1.78 2301.25 42.62 

DID = |D2|-|D1| 4.19 45.91 47.62 1.65 2300.71 42.08 

P-value: DID 0.89 0.56 0.59 0.96 0.00 0.59 

DID rank 25 16 17 27 1 17 

W-weights 
      Alabama 0.00 0.00 0.00 0.00 0.00 0.00 

Alaska 0.00 0.00 0.23 0.00 0.00 0.00 

Arkansas 0.00 0.00 0.00 0.00 0.00 0.00 

Florida 0.25 0.32 0.00 0.17 0.00 0.00 

Georgia 0.00 0.00 0.00 0.00 0.00 0.55 

Idaho 0.00 0.00 0.00 0.00 0.00 0.00 

Illinois 0.00 0.04 0.00 0.00 0.13 0.16 

Indiana 0.00 0.00 0.00 0.00 0.79 0.15 

Kansas 0.00 0.00 0.00 0.00 0.00 0.00 

Kentucky 0.00 0.00 0.00 0.00 0.00 0.00 

Louisiana 0.00 0.00 0.00 0.00 0.00 0.00 

Michigan 0.45 0.00 0.00 0.55 0.00 0.00 

Mississippi 0.00 0.00 0.03 0.00 0.00 0.00 

Missouri 0.00 0.00 0.00 0.00 0.00 0.00 

Nebraska 0.00 0.00 0.00 0.00 0.00 0.00 

North Dakota 0.00 0.00 0.00 0.00 0.00 0.00 

Ohio 0.26 0.65 0.54 0.00 0.00 0.00 

Oklahoma 0.00 0.00 0.00 0.00 0.00 0.00 

South Carolina 0.00 0.00 0.00 0.00 0.00 0.00 

South Dakota 0.00 0.00 0.00 0.00 0.00 0.00 

Tennessee 0.00 0.00 0.00 0.00 0.00 0.00 

Utah 0.04 0.00 0.13 0.00 0.00 0.00 

Vermont 0.00 0.00 0.04 0.28 0.00 0.00 

Virginia 0.00 0.00 0.03 0.00 0.08 0.14 

West Virginia 0.00 0.00 0.00 0.00 0.00 0.00 

Wyoming 0.00 0.00 0.00 0.00 0.00 0.00 
List of Predictors       

(a) Common set of predictors: Total nameplate capacity growth, coal generation share, natural gas generation 
share, electricity price, growth of total customer, wind potential, photovoltaic potential, biopower-solid potential, 
geo- & hydro-thermal potential,  real PC personal income, growth in real PC personal income, poverty, share of 
manufacturing income. (b) 1990 to pre-intervention renewables capacity (depending on the year of intervention 
for each treatment state). 

Notes: (a) Outcome variable is the renewables capacity of geothermal, biofuels, solar, and wind. (b) Year of the 
enacting RPS: Nevada (1997), Connecticut (1998), Maine (1999), New Jersey (1999), Texas (1999), and Wisconsin 
(1999). (c) There are 26 states in the donor pool, which also includes Alaska. Therefore the set of predictors does not 
include the climate related variables that are missing for Alaska. (d) Weights less than 0.01 are reported as zero. 
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Table 3: SCM Estimate of the Impact of RPS on Renewables Capacity (Robustness Check with 
Climate Related Variables) 
 

 Nevada Connecticut Maine New Jersey Texas Wisconsin 

Estimation summary       

Pre-intervention difference (D1) 0.94 0.96 0.01 0.21 -0.54 -0.58 

Post-intervention difference (D2) -0.11 -42.97 -24.99 -60.46 2301.64 21.24 

DID = |D2|-|D1| -0.83 42.01 24.97 60.25 2301.10 20.66 

P-value: DID 0.96 0.65 0.69 0.54 0.00 0.85 

DID rank 26 18 19 15 1 23 

States       

Alabama 0.00 0.00 0.00 0.00 0.00 0.00 

Arkansas 0.00 0.00 0.00 0.00 0.00 0.00 

Florida 0.35 0.32 0.01 0.19 0.00 0.00 

Georgia 0.00 0.00 0.00 0.00 0.11 0.00 

Idaho 0.00 0.00 0.00 0.00 0.00 0.00 

Illinois 0.00 0.03 0.00 0.00 0.13 0.15 

Indiana 0.00 0.00 0.00 0.00 0.68 0.60 

Kansas 0.00 0.00 0.15 0.00 0.00 0.00 

Kentucky 0.00 0.00 0.00 0.00 0.00 0.00 

Louisiana 0.00 0.00 0.00 0.00 0.00 0.00 

Michigan 0.00 0.00 0.00 0.43 0.00 0.00 

Mississippi 0.00 0.00 0.00 0.00 0.00 0.00 

Missouri 0.00 0.00 0.00 0.00 0.00 0.00 

Nebraska 0.00 0.00 0.00 0.00 0.00 0.00 

North Dakota 0.00 0.00 0.00 0.37 0.00 0.12 

Ohio 0.00 0.66 0.53 0.00 0.00 0.00 

Oklahoma 0.00 0.00 0.11 0.00 0.00 0.00 

South Carolina 0.00 0.00 0.00 0.00 0.00 0.00 

South Dakota 0.00 0.00 0.00 0.00 0.00 0.00 

Tennessee 0.00 0.00 0.00 0.00 0.00 0.00 

Utah 0.65 0.00 0.06 0.00 0.00 0.00 

Vermont 0.00 0.00 0.12 0.00 0.00 0.00 

Virginia 0.00 0.00 0.02 0.00 0.08 0.12 

West Virginia 0.00 0.00 0.00 0.00 0.00 0.00 

Wyoming 0.00 0.00 0.00 0.00 0.00 0.00 
List of Predictors       

(a) Common set of predictors: Total nameplate capacity growth, coal generation share, natural gas generation 
share, electricity price, growth of total customer, wind potential, photovoltaic potential, biopower-solid potential, 
geo- & hydro-thermal potential, real PC personal income, growth in real PC personal income, poverty, share of 
manufacturing income, January sunlight, summer cooling degree days. (b) 1990 to pre-intervention renewables 
capacity (depending on the year of intervention for each treatment state). 

Notes: (a) Outcome variable is the renewables capacity of geothermal, biofuels, solar, and wind. (b) Year of the 
enacting RPS: Nevada (1997), Connecticut (1998), Maine (1999), New Jersey (1999), Texas (1999), and Wisconsin 
(1999). (c) Climate related variables are missing for Alaska, therefore, Alaska is excluded from the donor pool. Thus, 
the donor pool includes 25 states. (d) Weights less than 0.01 are reported as zero. 
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Table 4: Pre-intervention Characteristics Match between Actual and Synthetic Texas 
 

Characteristics Texas 
Synthetic Texas 

under main 
specification 

  
Synthetic Texas 

with climate 
related variables 

Total nameplate growth 29.23 65.17 
 

62.58 

Coal generation share 0.41 0.86 
 

0.82 

Natural gas generation share 0.47 0.02 
 

0.02 

Electricity price ($) 7.73 7.11 
 

7.29 

Total customer growth 1.08 1.06 
 

1.06 

Real PC personal income ($) 10.16 10.20 
 

10.20 

Real PC personal income growth 1.08 1.08 
 

1.08 

Poverty 17.11 11.43 
 

11.80 

share of manufacturing income 0.11 0.20 
 

0.18 

Wind potential (GW) 14.46 11.64 
 

10.87 

Photovoltaic potential (GW) 9.93 8.02 
 

8.02 

Bio-solid potential (GW) 0.71 0.67 
 

0.67 

Geo-hydro thermal potential (GW) -4.61 -4.61 
 

-4.61 

January sunlight 182.59 
 

 
133.79 

Summer cooling degree days 6.27     5.48 
Notes: (a) The 'main' specification refers to the results presented in Table 2, the column with 
climate related variables refers to the specification presented in Table 3. (b) Real PC income, 
summer degree days, and the technical potential variables are in logarithm. 
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Table 5: SCM Estimate of the Impact of RPS on Renewables Capacity in Texas (Additional 
Robustness Checks) 
 

 (1) (2) (3)       

Estimation summary       

Pre-intervention difference (D1) 1.34 -1.01 13.30    

Post-intervention difference (D2) 2060.78 2336.95 2090.37    

DID = |D2|-|D1| 2059.44 2335.94 2077.07    

P-value: DID 0.00 0.00 0.00    

DID rank 1 1 1    

W-weights 
   

   

Alabama 0.00 0.00 0.00    

Alaska 0.00 0.00 0.00    

Arkansas 0.00 0.00 0.00    

Florida 0.00 0.00 
 

   

Georgia 0.00 0.00 
 

   

Idaho 0.00 0.00 0.00    

Illinois 0.24 0.89 
 

   

Indiana 0.00 
 

0.00    

Kansas 0.00 
  

   

Kentucky 0.00 0.00 0.00    

Louisiana 0.00 0.00 0.06    

Michigan 0.00 
  

   

Mississippi 0.00 0.00 0.00    

Missouri 0.00 
  

   

Nebraska 0.00 0.00 0.00    

North Dakota 0.00 0.00 0.00    

Ohio 0.00 
  

   

Oklahoma 0.76 0.00 0.94    

South Carolina 0.00 0.00 
 

   

South Dakota 0.00 0.00 0.00    

Tennessee 0.00 0.00 0.00    

Utah 0.00 0.00 
 

   

Vermont 0.00 0.00 
 

   

Virginia 0.00 0.11 
 

   

West Virginia 0.00 0.00 
 

   

Wyoming 0.00 0.00 0.00    

List of Predictors       

(a) Common set of predictors (same as Table 2): Total nameplate capacity growth, coal generation share, 
natural gas generation share, electricity price, growth of total customer, wind potential, photovoltaic potential, 
biopower-solid potential, geo- & hydro-thermal potential, real PC personal income, growth in real PC personal 
income, poverty, share of manufacturing income. (b) Column 1 includes 1998 renewables capacity as the only 
pre-intervention outcome. (c) Columns 2 and 3 have the same set of predictors as Table 2, i.e., includes 1990-
1998 renewables capacity as the pre-intervention outcome. 

Notes: (a) To check if matching on capacities is driving the results, in column 1 matching is done only on 1998 
capacity. The donor pool includes 26 states (same as Table 2). (b) Column 2 excludes five states that did not have 
RPS over our study period, but subsequently passed an RPS. (c) In column 3, the donor pool includes states that 
are both non-RPS and non-deregulated states (14 states). (d) The outcome variable is the renewables capacity of 
geothermal, biofuels, solar, and wind. (e) Year of intervention is 1999 (the year RPS enacted in Texas). (f) Weights 
less than 0.01 are reported as zero.  
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Table 6: Robustness Check with Variables Normalized by Land Area 
 

 (1) (2) (3) (4) 

  Synthetic Control Estimates of Texas 
Actual 
Texas 

 
Main 

specification 
With climate 

related variables 
With land 

area 

Panel A: Estimation statistics         

Pre-intervention difference (D1) -0.01 -0.04 0.01 
 

Post-intervention difference (D2) 7.55 6.96 7.68 
 

DID = |D2|-|D1| 7.54 6.92 7.66 
 

P-value: DID 0.00 0.00 0.00 
 

DID rank 1 1 1 
 

Panel B: W-weights 
    

Alaska 0.06 -- 0.14 
 

Kansas 0.46 0.58 0.42 
 

Louisiana 0.32 0.36 0.25 
 

Oklahoma 0.00 0.06 0.00 
 

South Dakota 0.16 0.00 0.19 
 

Panel C: Pre-intervention characteristics 

Total nameplate growth 22.42 26.41 18.60 29.23 

Coal generation share 0.46 0.54 0.44 0.41 

Natural gas generation share 0.22 0.23 0.23 0.47 

Electricity price 8.18 7.90 8.55 7.73 

Total customer growth 1.05 1.04 1.05 1.08 

Real PC personal income 10.14 10.14 10.16 10.16 

Real PC personal income growth 1.09 1.09 1.08 1.08 

Poverty 15.00 15.38 14.21 17.11 

share of manufacturing income 0.10 0.11 0.10 0.11 

Wind potential / 100 mi2 725.65 726.16 725.22 726.34 

Photovoltaic potential / 100 mi2 6.92 7.38 6.55 7.86 

Bio-solid potential / 100 mi2 0.00 0.00 0.00 0.00 

Geo-hydro thermal potential / 100 mi2 0.01 0.01 0.01 0.01 

January sunlight -- 167.39 -- 182.59 

Summer cooling degree days -- 6.00 -- 6.27 

Land area (mi2) -- -- 11.41 12.48 

Note: (a) These estimates are run using the following variables normalized with land area: wind potential, 
photovoltaic potential, biopower potential, geo- & hydro-thermal potential, as well as renewable 
nameplate capacity (the outcome). These variables are now expressed as GW per 100 mi2 (not in 
logarithms)  (b) Column 1 is the main specification (similar to Table 2, with 26 states in the donor pool). In 
column 2 climate related variables are added to the set of predictors (similar to Table 3), and Alaska has to 
be dropped. In column 3, land area is added to the set of predictors instead of the climate variables, and 
Alaska is put back in the donor pool. (c) For easier comparison of characteristics, column 4 presents the 
characteristics of actual Texas (d) Real PC income, summer degree days, and land area are in logarithm. (e) 
Only donor pool states with w-weight ≥ 0.01 are reported.  
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Figures 
 

Figure 1: U.S. RPS and Renewable Generation Capacity 
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Figure 2: SCM Estimates of the Impact of RPS on Renewables Capacity 
 

Panel A: Nevada 
Actual and Synthetic

 

Placebo Test

 
 

Panel B: Connecticut 
Actual and Synthetic 

 

Placebo Test 

 
 

Panel C: Maine 
Actual and Synthetic 

 

Placebo Test 
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Panel D: New Jersey 
Actual and Synthetic 

 

Placebo Test 

 
 

Panel E: Texas 
Actual and Synthetic 

 

Placebo Test 

 
 

Panel F: Wisconsin 
Actual and Synthetic 

 

Placebo Test 

 
 

Notes: (a) Outcome variable is renewables capacity of geothermal, biofuels, solar, and wind. (b) These are the pictures of 
the estimates that are further described in Table 2
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Appendix A: RPS Mandates across U.S. States  
 
Table A1: RPS Mandate by State and Year of Implementation 
 

State Year 
effective  

Final Mandate  State Year 
effective  

Final Mandate 

Arizona 2007 15% by 2025  Montana 2005 15% by 2015 

California 2003 25% by 2016  Nevada 1997 25% by 2025 

Colorado 2005 20% by 2020  New Hampshire 2007 25% by 2025 

Connecticut 1998 27% by 2020  New Jersey 1999 22.5% by 2021  

Delaware 2005 25% by 2025  New Mexico 2004 20% by 2020  

Hawaii 2004 40% by 2030  New York 2004 29% by 2015 

Illinois 2011 25% by 2025  North Carolina  2008 12.5% by 2021 

Iowa 1983 105 MW by 1999  Ohio 2009 12.5% by 2024  

Kansas 2009 20% by 2020  Oregon 2007 25% by 2025 

Maine 1999 40% by 2017  Pennsylvania 2005 18% by 2020 

Maryland 2004 20% by 2022  Rhode Island 2004 16% by 2019 

Massachusetts 2002 15% by 2020   Texas 1999 10,000 MW by 2025 

Michigan 2008 10% by 2015  Washington 2007 15%  by 2020 

Minnesota 2007 25-30% by 2020  Wisconsin 1999 10% by 2015 

Missouri 2008 15% 2021         

Notes: (a) States in bold are the early adopter states. (b) Although Iowa adopted an RPS in 1983, their 
implementation predates the capacity data available and they are therefore not analyzed. (c) The final 
mandates of the policies have evolved over time, often becoming more stringent. The latest policy in effect 
during the 1994-2012 period is listed. (d) In the ‘Final Mandate’ column, the percentages indicate the percent 
of electricity to be generated from renewable energy. (e) Michigan and Missouri passed their RPS in October 
and November 2008 respectively.  RPS passed at the end of the year are treated as effective in the following 
year. 

 
 
Table A2: Renewable Electricity Market Characteristics 
 

State Potential ranking 
(Wind/PV/Biopower) 

REC market 
start date 

Sufficient existing 
renewable 

capacity 

Compliance 
Failure  

Restructuring 
included in 

RPS Law  
Nevada 29/16/49 2007/2008  x x 

Connecticut 47/49/46 07/2002   x 

Maine 26/39/32 07/2002 x   x 

New Jersey 42/42/37 09/2005   x 

Texas 1/1/5 01/2002   x 

Wisconsin 17/18/17 07/2007    

Notes: (a) Each state is ranked (out of 50) based on GW of renewable potential. (b) Nevada and Texas require 
that renewable energy traded in the REC market is produced in-state, although Nevada allows limited out-of-
state production. All other REC markets in the U.S. besides those shown in this table started in 2009 or later 
(Heeter and Bird 2011, p. 7) (c) Maine had existing hydroelectric capacity in excess of the initial RPS mandate. 
(d) Nevada failed to meet 100 percent of their RPS target until 2008. (Barbose 2013) (e) For more 
information on renewable potentials and restructuring, see http://www.nrel.gov/gis/re_potential.html and 
http://www.eia.gov/electricity/policies/restructuring/ restructure_elect.html, respectively.  

 

http://www.nrel.gov/gis/re_potential.html
http://www.eia.gov/electricity/policies/restructuring/%20restructure_elect.html
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Appendix B: Procedure to obtain 


W  

Let )1( 0 T  vector ),...,(
01
 TkkK  define a linear combination of pre-intervention 

outcomes 
is

T

s si YkY  


0

0

~K . Define )
~

,...,
~

,( 1111
1  MYY

KK
ZX  as a )1( k  vector of pre-

intervention characteristics for the exposed state where Mrk  .43 Similarly, define a 

)( Jk   matrix 0X  that contains the same variables for the unexposed states. The thj  

column of 0X , thus, is )
~

,...,
~

,( 1  M

jjj YY
KK

Z .  

 Let V  be a )( kk   symmetric positive semidefinite matrix. Then, 

 (B1) 1and}1,...,2|0{)()(argmin
1

20101  




 J

j jj wJjwWXXVWXXW
W

. 

 Following Abadie and Gardeazabal (2003) and Abadie, Diamond and Hainmueller (2010), 

we choose V  among positive definite and diagonal matrices such that the mean squared 

prediction error (MSPE) of the outcome variable is minimized for the pre-intervention 

periods. 

 As Abadie, Diamond and Hainmueller (2010) argue, it is important to note that 

unlike the traditional regression-based difference-in-difference model that restricts the 

effects of the unobservable confounders to be time-invariant so that they can be eliminated 

by taking time differences, SCM allows the effects of such unobservables to vary with time.  

 More details of the synthetic control, the procedure to calculate 


W , and 

permutation/randomization tests or the inference can be found in Abadie et al. (2010) or 

obtained from the authors on request. 

                                                 
43 For example, if )0,...,0,1(,2 1

 KM  and )1,...,0,0(2
K  then ),,(

0111
 TYYZX . 


