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Abstract

The volatility asymmetry can be captured by the relative difference of the good and bad semi-

variance measures, termed relative signed jump variation. The volatility asymmetry risk disen-

tangles the relationships between good/bad volatility, total volatility and cross-section/aggregate

return at systemic level, and unifies the higher-moments anomalies at firm level. We show three

novel results: (1) Based on cross-sectional sensitivities, volatility asymmetry risk, proxied by

the relative signed jump extracted from 9 industry ETFs, is a significant priced risk factor with

positive premium that is confounding with the negative premium of total volatility. (2) The

stochastic discount factor and asset returns are asymmetrically dependent, and we propose a

Asymmetric-DCAPM-SV model based on Bansal et al. (2013) with explicit solutions to show

that the confounding relationship between volatility asymmetry and total volatility enters di-

rectly into the stochastic discount factor, thus need to be considered jointly and further helps

explain equity premium. (3) Individual assets’ relative signed jump variation significantly pre-

dict cross-sectional return (with spread as large as 23% annually), and is the driving force behind

the higher moment anomalies in realized volatility, skewness and kurtosis.
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I. Introduction

The relation between risk and return is at the heart of asset pricing finance. This is perhaps

most clearly evident in the simple ICAPM of Merton (1980), which directly relates the return on

the market to its volatility. A long list of studies, including French et al. (1987), Campbell and

Hentschel (1992), Bekaert and Wu (2000), and Bae et al. (2007), among many others, have sought to

empirically investigate this simple relation between aggregate market return and volatility. These

studies have emphasized the joint roles played by volatility “feedback” and “leverage” effects,

whereby an increase (decrease) in volatility is associated with an increase (decrease) in future

expected returns and lower (higher) contemporaneous returns, respectively. However, whereas the

empirical support for the leverage effect is overwhelming, the positive relation between volatility

and future expected returns has proven much more elusive empirically; see, e.g., the discussion in

Bollerslev et al. (2012).1 Meanwhile, studies by Ang et al. (2006), Adrian and Rosenberg (2008), Da

and Schaumburg (2011) and Bansal et al. (2013), among others, have shown that aggregate market

variance risk is indeed priced cross-sectionally, with changes in variance commanding a negative

risk premium, thus implying that investors are willing to pay more for stocks that insure against

future increases in volatility.2

Building on the classical ICAPM of Merton (1973), Campbell (1993, 1996) have forcefully

argued that any variable that forecasts future market returns and/or volatility provides a natural

candidate state variable for describing changes in the investor’s opportunity set and in turn may

help explain cross-sectional differences in the pricing of different assets.

More recently, the asymmetry in the volatility has been shown to presents strong predictability

for future return and volatility. Patton and Sheppard (2013) and Nolte and Xu (2014) show that the

realized variation stemming from past negative (positive) returns positively (negatively) predicts

total aggregate market volatility. Breckenfelder and Tédongap (2012) show that the up (down) semi-

variance positively (negatively) predicts future aggregate market returns, with the predictability

the strongest over longer multi-month horizons. Guo et al. (2014) show that aggregate good and

bad jump could predict oppositely the near term equity premiums. Moreover, using low frequency

macro data and long-run risk framework of Bansal and Yaron (2004), Segal et al. (2013) show that

imposing opposite signs on the coefficients of the good and bad economic uncertainty in the growth

process indeed can generate opposite price among the size and momentum portfolios. We verify

that the difference between the up and down semi-variance measures, corresponding to the signed

1Bandi and Perron (2008) and Bandi et al. (2013) have recently argued that the relationship between volatility
end future expected returns is significant, but only over very long multi-year horizons.

2Consistent with these findings for the actual return variation, Conrad et al. (2013) find that stocks with high
(low) options implied risk-neutral volatilities and covariances with the market similarly result in low (high) subsequent
returns.
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jump variation, results in the strongest predictability for both the returns and the volatility, thus

naturally suggest the pricing ability of them.

To summarize the existing findings, we propose that the entangled theoretical and empirical

results mentioned above naturally suggest that the relationships between good and bad semi-

variances, future aggregate volatility, aggregate return and their cross-sectional prices, presents a

self-consistent picture illustrated in the left panel of the following Figure 1. where (σmt+1)2 represents
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Figure 1. An Illustration of the effects of RV m,+
t , RV m,−

t , and RSJmt

the future aggregate market variance, rmt+1 represents the future aggregate market return and λt

represent the cross-sectional premiums received by an asset’s unit loading to the aggregate up and

down semi-variances risks.

Moreover, from a different angle, studies on cross-sectional asset return have discovered higher-

moments anomalies, where implied and realized higher moments of return have predictability for

future return. Amaya et al. (2011) have documented that realized volatility, realized skewness, and

realized kurtosis computed from individual assets’ past return each have weak negative, strong neg-

ative, and weak positive return predictability in the cross-section, respectively. In the meanwhile,

Conrad et al. (2013) show that higher moments extracted from option-implied densities also exhibit

return predictability in the same direction. This constitutes a puzzle since the different directions

of the return return predictability seem puzzling at first look.

Thus, our goal is to disentangle the seemingly puzzling relationships between total volatility,

volatility asymmetry and return at two levels: the systematic risk level, and the individual return

predictability level.

Set against this back ground, using high-frequency intraday data and newly developed econo-

metric procedures based on Barndorff-Nielsen et al. (2010), we use the relative difference between

realized good and bad semi-variance as measure of volatility asymmetry and term it Relative Signed

Jump Variation. At the systematic level. We proxy the economy-wide volatility asymmetry risk

using ARSJt, a value-weighted average of the signed jump variations from 9 industry exchange

traded funds that together constitutes the S&P 500 Index. We investigate the cross-sectional
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pricing performance of volatility asymmetry risk in the presence of total volatility risk. From

cross-sectional sensitivity, we show that volatility asymmetry risk, is a significant priced risk factor

with positive premium that is confounding with the negative premium of total volatility. We prove

that the stochastic discount factor and asset returns are asymmetrically dependent, and propose

a Asymmetric-DCAPM-SV model based on Bansal et al. (2013) with explicit solutions to show

that the confounding relationship between volatility asymmetry and total volatility enters directly

into the stochastic discount factor, thus need to be considered jointly and further helps explain

equity premium. At the individual return predictability level, individual relative signed jump vari-

ation significantly predict cross-sectional return (with spread as large as 23 % annually), and is the

driving force behind the higher moment anomalies in realized volatility, skewness and kurtosis.

To our best knowledge, we are the first to provide evidence from firm sensitivity of volatility

asymmetry risk as a risk based explanation. We are also the first to show that volatility asymmetry

together has a confounding relationship with total volatility explicitly in the stochastic discount

factor. We are also the first to document the economic large and statistically significant firm-level

return predictability from relative signed jump variation.

The rest of the paper is organized as follows: Section II verify the relationships summarized in

Figure 1 and present the data and high-frequency measures. Section III show that stochastic dis-

count factor and asset return are conditionally asymmetrically dependent, and solves the complete

Asymmetric-DCAPM-SV model and derive the bias for ignoring volatility asymmetry. Section IV

presents the evidence that volatility asymmetry risk is a priced risk factor and estimates its factor

premium. Section V presents the return predictability of individual assets’ relative signed jump

variation, and show that it drives the higher-moments anomalies. Section VI concludes.
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II. High-Frequency Measure of Volatility Asymmetry

In this section we introduce the dataset together with the high-frequency variance measures

used in this paper.

A. Data

A.1. TAQ data

The intraday high frequency data are constructed from the NYSE Trade and Quote (TAQ)

dataset. The TAQ dataset contains all the listed equity securities from at least one of the three

exchanges: NYSE, NASDAQ and AMEX. For each consolidate trade file, we obtain the second-by-

second data set for the entire TAQ universe including 19896 unique individual equity assets and

matched to the CRSP PERMNO number. We keep all the observations starting from 9:30 am to

4:00pm for a given trading day3. We used sample from 19930104 to 20131231, resulting in 5289

trading days, 1095 weeks and 252 months in the sample.

A.2. Low frequency data

For all daily frequency observations, we use several commonly used datasets. The Center for

Research in Securities Prices (CRSP) database provides daily and monthly stock returns, number

of shares outstanding, and daily and monthly trading volumes. We adjusted the stock returns for

delisting to avoid survivorship bias.4 We also use the stock distribution information from CRSP

data to obtain the overnight return5 The COMPUSTAT database provides accounting data such as

book values. We obtain the daily and monthly Fama-French-Carhart four factor variables (Fama

and French, 1993; Carhart, 1997) and portfolio test assets such as 25 size-B/M portfolios and 25

size-momentum portfolios from Kenneth R. French’s data library.

B. Semi-Variances and Relative Signed Jump Variation

As shown by Barndorff-Nielsen et al. (2010), if an asset i’s intraday log-price process follows a

standard jump diffusion process:

piτ =

∫ τ

0
µsds+

∫ τ

0
σsdWs + Jτ (0 ≤ τ ≤ 1) (1)

3The cleaning rules are based on Barndorff-Nielsen et al. (2009). We supply the complete cleaning procedure in
the Internet appendix

4When a stock is delisted, we use the delisting return as its return after its last trading day or month. In our
sample, all delisting returns are available from CRSP.

5The high frequency TAQ data only contains the raw price without consideration of the price difference before
and after distribution. We use the variable “Cumulative Factor to Adjust Price (CFACPR)” from CRSP to adjust
the high-frequency overnight returns after a distribution.
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the realized signed jump variation for asset i on day t only contains the difference in the jump

variance

SJ it = RV i,+
t −RV i,-

t

p

−−−−−→
n→∞

∑
J2
τ 1[Jτ>0] −

∑
J2
τ 1[Jτ<0] (2)

where µ(·) is a locally bounded predictable drift process, σ(·) is a strictly positive càdlàg process,

J(·) is a pure jump process, riτ = piτ − piτ−∆n
is the asset i’s intra day return at time τ , sampled n

times during the day, and RV i,+
t , RV i,-

t are the positive and negative semi-variances:

RV i
t =

∑
(riτ,t)

2; RV i,+
t =

∑
(riτ,t)

21[riτ,t>0]; RV i,-
t =

∑
(riτ,t)

21[riτ,t<0]; (3)

Alternatively, since Signed Jump captures only the tail variance differences, one can measure

the jump variances by directly identifying the intraday price jumps, at the cost of more paramet-

ric assumption on the price processes. One popular parametric measure is the Threshold Jump

Variation:

TJV i,+
t =

∑
(riτ,t)

21[riτ,t>T iτ,t]
; TJV i,-

t =
∑

(riτ,t)
21[riτ,t<T iτ,t]

TSJ it = TJV i,+
t − TJV i,-

t ; (4)

where T iτ,t = α
√

min{RV i
t , BV

i
t }∆ω̄

nToD
i
τ is the instantaneous threshold, BV i

t is the jump robust

Bipower Variation of Barndorff-Nielsen and Shephard (2004), ToDi
τ is the intraday instantaneous

volatility pattern estimate, and α > 0, 0 < ω̄ < 1/2 are tuning parameters6.

Since different assets may have different level of volatility, to obtain the relative difference of

good and bad volatility, we divide the signed jump variation by the realized volatility to obtain

the Relative Signed Jump Variation and the alternative measure Threshold Relative Signed Jump

Variation for asset i on day t:

RSJ it =
SJ it
RV i

t

; TRSJ it =
TSJ it
RV i

t

(5)

We verify that all results hold for the parametric measure, TRSJ .

We estimate the daily relative signed jump variation RSJ it for every equity assets and aggregate

to calendar week and month measures. As proxy for the economy-wide volatility asymmetry, we

use the value-weighed average of the relative signed jump variation of the 9 industry exchange trade

funds, which spans the S&P500 Index7

6In our calculation, (α, ω̄) = (3, 0.49). We verified that the results are robust to alternative choices of (2, 0.45)
and (4, 0.49)

7The 9 industry ETFs are XLY Consumer discretionary, XLP Consumer staples, XLE Energy, XLF Financial,
XLV Health care, XLI Industrial, XLB Materials, XLK Technology, XLU Utilities. For our empirical analysis, the
results are not sensitive to this choice of this set of ETFs
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C. Volatility asymmetry and aggregate return and volatility

Before we present our theoretical and empirical results, we first verify in our data sample the

documented relationships between good/bad volatility, aggregate return and volatility. To compare

with the volatility predictability results of Patton and Sheppard (2013), we use the same HAR

regressions

RV m
t+1,t+h =a0 + a1RV

m
t + a2RV

m,+
t + a3RV

m,−
t + a4SJ

m
t

+ b1RV
m
t,W + b4SJ

m
t,W

+ c1RV
m
t,M + c4SJ

m
t,M + εpt+h (6)

for the realized measures estimated on the SPDR ETF. Table II show the result for the 1-month

ahead volatility prediction. Consistent with Patton and Sheppard (2013), the good and bad volatil-

ity have strong opposite predictability power to the future aggregate volatility, with the bad (good)

volatility forcasting the increase (decrease) of future volatility. The signed jump variation therefore

have significant negative predictability towards future volatility. To compare with the aggregate

return predictability results of Breckenfelder and Tédongap (2012), we perform a non-overlapping

monthly regression of aggregate return on the innovation in volatility measures:

rmt+1,t+h = a0 + a1∆RV m
t−h+1,t + a2∆RV m,+

t−h+1,t + a3∆RV m,−
t−h+1,t + a4∆SJmt−h+1,t + εmt+h (7)

Table III reports the result of this regression. Consistent with Breckenfelder and Tédongap (2012),

the innovations in good and bad realized semi-variance have opposite return predictability with

bad (good) volatility positively (negatively) predict aggregate future market return. The signed

jump variation therefore have significant negative return predictability.

By combining the predictability power of both good and bad realized semi-variances, the relative

signed jump therefore have the relationship with aggregate volatility and return illustrated in the

Figure 1 right panel.

The summary statistics for the series are presented in Table I:
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III. Theoretical Framework

To illustrate the channel through which the asymmetry in the volatilities can move the asset

prices, we provide a simple model where asymmetry risk together with volatility risk contribute to

the stochastic discount factor, and therefore move asset prices. We show that volatility asymmetry,

together with total volatility serve as one component in the stochastic discount factor. In particular,

the volatility asymmetry term enters equally with the total volatility, illustrating how asymmetry

and total volatility jointly determine the volatility component of the stochastic discount factor.

Furthermore, we show that ignoring the volatility asymmetry can cause significant bias in the

stochastic discount factor. Because of this confounding relationship between the total volatility and

volatility asymmetry, an unexpected high innovation in total aggregate volatility is not necessarily

indicating a bad state, if during the same period most volatility comes from the good news as oppose

to the bad news. By the same token, an unexpected high innovation in total aggregate volatility

accompanied with large proportion of bad volatility proxies a worse investment opportunity set

compared with the one indicated with only aggregate total volatility alone.

We build this model upon the Dynamic-CAPM-SV model of Bansal et al. (2013), while re-

laxing the conditional joint log-normality assumption between the stochastic discount factor and

return, to allow for non-symmetric dependence on the tails. We term this model Asymmetric-

DCAPM-SV model. It differs from the original DCAPM-SV model only that the innovation in the

Jensen’s inequality adjustment not only include the revisions in the expectations of time-varying

total volatility, but also the revisions in the expectation of the time-varying volatility asymmetry.

We first present the full solution to Asymmetric-DCAPM-SV model, then we discuss the impor-

tance of the asymmetric dependence, as well as the magnitude of the bias from ignoring asymmetry

in the asset’s premium.

A. The Asymmetric-DCAPM-SV model for Volatility Asymmetry Risk

A.1. Preferences and the Stochastic Discount Factor:

Following Bansal et al. (2013), we assume the discrete-time specification of the endowment

economy, with agent’s preferences described by a Kreps and Porteus (1978) recursive utility function

of Epstein and Zin (1989) and Weil (1989). The lifetime utility of the agent, Ut, satisfies:

Ut =

[
(1− δ)C

1− 1
ψ

t + δ(EtU1−γ
t+1 )

1− 1
ψ

1−γ

] 1

1− 1
ψ

, (8)

where Ct is the aggregate consumption level, δ is the subjective discount factor, γ is the coefficient

of relative risk aversion, and ψ is the inter-temporal elasticity of substitution (IES). Denote θ =
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(1− γ)/(1− 1
ψ )

As shown in Epstein and Zin (1989), the stochastic discount factor Mt+1 can be written in terms

of log consumption growth rate, ∆ct+1 = logCt+1 − logCt, and the log return to the consumption

asset, rc,t+1.

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 (9)

A.2. Euler Equation and Jensen’s Inequality Adjustment

The standard Euler equation:

Et [Mt+1Rt+1] = 1 (10)

gives the price of any asset in the economy, in particular, the consumption asset. Expressing the

pricing equation for the consumption asset return, in logs:

Et [Mt+1Rc,t+1] = Et [exp (mt+1 + rc,t+1)]

= exp {Et [mt+1 + rc,t+1] + V t} = 1 (11)

where V t is the adjustment term for Jensen’s inequality. Since Et [exp (mt+1 + rc,t+1)] is the mo-

ment generating function of (mt+1 + rc,t+1), Mm+r(t) evaluated at t = 1 8. In general,

V t (mt+1, rc,t+1) =
1

2
V art(mt+1 + rc,t+1) + At(mt+1 + rc,t+1) (12)

At(·) captures higher moment terms and is the difference between the correct Jensen’s inequality

adjustment and its approximation under joint-normality. If Mt+1 and Rc,t+1 are jointly log-normal,

then At = 0. If the joint log-normality assumption is relaxed, for example, asymmetric dependence

is allowed, At 6= 0.

Combining equations (11) and (9), substitute out mt+1, we have:

Et∆ct+1 = ψ log δ + ψEtrc,t+1 −
ψ − 1

γ − 1
V t = 0 (13)

A.3. The Budget Constraint

Log-linearization of the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1 (14)

8Moment generating function of a random variable may not exists, however, since the fundamental asset pricing
equation dictates that E(MR) = 1, the moment generating function expansion exists and is well-defined
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gives, in logs

rc,t+1 = κ0 + wct+1 −
1

κ1
wct + ∆ct+1 (15)

where wct = wt−ct is the log wealth-to-consumption ratio and κ0, κ1 are log-linearization constant

with 0 < κ1 < 1

As shown in Bansal et al. (2013), the forward-looking solution of this recursive equation is

ct+1 − Etct+1 = (Et+1 − Et)

 ∞∑
j=0

κj1rc,t+j+1

− (Et+1 − Et)

 ∞∑
j=1

κj1∆ct+j+1

 (16)

A.4. Solution for Stochastic Discount Factor

As shown by Bansal et al. (2013), combining (9), (13) and (16), the innovation to the stochastic

discount factor is driven by immediate return news, NR,t+1, future discount rate news, NDR,t+1,

and volatility news, NV ,t+1

mt+1 − Etmt+1 = −γNR,t+1 + (1− γ)NDR,t+1 +NV,t+1 (17)

where

NR,t+1 ≡ rc,t+1 − Etrc,t+1

NDR,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

κj1rc,t+j+1


NV ,t+1 ≡ (Et+1 − Et)

 ∞∑
j=1

κj1V t+j


The model solution shows that the market price for immediate return news is γ, and the market

price of future discount rate news (notice the summation starts from rc,t+2) is γ − 1, while the

volatility news, NV ,t+1, which includes both total and symmetric volatility adjustments, receives a

price of -1;

Given the solution for the stochastic discount factor, under the same simplifying assumptions

imposed in Bansal et al. (2013) (homoskedasticity for (NV ,t+1, NDR,t+1 + NR,t+1)), and an addi-

tional joint normality9 for (NV ,t+1, NDR,t+1 + NR,t+1), the correct Jensen’s adjustment in equation

(12) can be shown as:

9Note, that NV ,t+1 is already the innovation in the 2nd or higher moments of (m, r), this assumption will only
affect 4th and above moments approximation in the moment generating function expansion.
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V t(mt+1 + rc,t+1) =
1

2
V art(mt+1 + rc,t+1) + At(mt+1 + rc,t+1)

=

(
1

2
V art + At

)
(mt+1 + rc,t+1)

=

(
1

2
V art + At

)
[(1− γ)NDR,t+1 + (1− γ)NR,t+1 +NV,t+1]

=const+

(
1

2
V art + At

)
(1− γ)(NDR,t+1 +NR,t+1)

=const+

(
1

2
V art + At

)
(1− γ)

(Et+1 − Et)

 ∞∑
j=0

κj1rc,t+j+1


=const+

1

2
(1− γ)2V art

(Et+1 − Et)

 ∞∑
j=0

κj1rc,t+j+1


+ At

(1− γ)(Et+1 − Et)

 ∞∑
j=0

κj1rc,t+j+1


=const+

1

2
ξ2(1− γ)2V art [rc,t+1] + At [ξ(1− γ)rc,t+1] (18)

where last step arise when there is a single return factor in the temporal dimension, i.e. the

discounted long-run return news is proportional to the immediate return news plus independent

noise:

NDR +NR = ξNR + ε (19)

In the following section, we show that, under the asymmetric dependence assumption

At [ξ(1− γ)rc,t+1] = const+ φ [V art(rc,t+1|rc,t+1 < µr,t)− V art(rc,t+1|rc,t+1 < µr,t)] (20)

where φ > 0 is a constant.

Therefore equation (18) becomes

V t(mt+1 + rc,t+1) =const+
1

2
ξ2(1− γ)2V art [rc,t+1]

+ φ [V art(rc,t+1|rc,t+1 < µr,t)− V art(rc,t+1|rc,t+1 < µr,t)]

=const+ ηV art [rc,t+1] + φ
[
V ar+

t (rc,t+1)− V ar−t (rc,t+1)
]

(21)
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B. The Volatility Asymmetry

Here we discuss the need for asymmetric dependence, derive the explicit form of the volatility

asymmetry risk10, and illustrate the bias from ignoring asymmetry in the volatility.

B.1. Why Asymmetry Dependence Between m and r ?

Traditionally, for asset returns and other economic variables, linear covariance or correlation,

which are symmetric, has been the measure of choice for dependence. In the DCAPM-SV model,

Bansal et al. (2013) assume that the conditional distribution of the stochastic discount factor Mt+1

and Rc,t+1 are jointly log-normal. Under this assumption, At = 0, and the Jensen’s inequality

adjustment in equation (21) comes only from total volatility. Yet it has been empirically established

that the dependence among the economic variables are inherently asymmetric. This is perhaps

best illustrated in the many scenarios of the business cycle. For example, Ang and Chen (2002)

documents that “correlations between U.S. stocks and the aggregate U.S. market are much greater

for downside moves, especially for extreme downside moves, than for upside moves.” During bad

economic conditions, the unobserved stochastic discount factor is higher, reflecting that investors

will put a higher value to a unit payoff during that time. Therefore, a measure of dependence

conditional on a higher stochastic discount factor, should be stronger (regardless of positive or

negative) than conditional on a lower stochastic discount factor:

|ψt(rit+1, r
j
t+1, ...|mt+1 > µm,t)| > |ψt(rit+1, r

j
t+1, ...|mt+1 < µm,t)|

for any assets ri, rj , ... in the consumption bundle. Moreover, since the stochastic discount factor is

a function of the assets returns in the consumption bundle, the conditional dependence between the

stochastic discount factor mt+1 = f(rit+1, r
j
t+1, ...) and any consumption asset return rit+1 should

also satisfy:

|ψt(mt+1, r
i
t+1|mt+1 > µm,t)| > |ψt(mt+1, r

i
t+1|mt+1 < µm,t)|

If linear correlation is used as a measure of dependence, then we should see stronger correlation

when stochastic discount factor is high during bad economic times.

B.2. A Copula Approach

To incorporate the asymmetry property, without assuming explicitly the numerical values of

different correlations, we impose a copula dependence structure, where the degree of asymmetry

10Detail steps of derivation are supplied in the appendix and the Internet appendix
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depends on the copula. We show how the asymmetric dependence can generate significant mis-

pricing from the pricing equation E(MR) = 1 alone. To demonstrate analytically, we use the

Clayton Copula, which belongs to the simple asymmetric Archimedean copula class:

Cθ(u, v) = max
{
u−θ + v−θ − 1; 0

}− 1
θ

(22)

where θ is the Clayton copula parameter.

By Sklar’s theorem (Sklar, 1959), the joint cumulative distribution of Fm,r(a, b) = P [m < a, r < b]

can be described by the marginal distributions:

Fm,r(a, b) = Cθ {Fm(a), Fr(b)} (23)

At = const+ φ [V art(mt+1 + rc,t+1|mt+1 > µm,t)− V art(mt+1 + rc,t+1|mt+1 < µm,t)]

= const+ φ(1− γ)2χ [V art(rc,t+1|rc,t+1 < µr,t)− V art(rc,t+1|rc,t+1 > µr,t)]

where φ > 0 is a constant that depends on the choice of asymmetric copula, µm,t = Et [mt+1] is the

conditional mean of the stochastic discount factor.

In our empirical investigation, we use value-weighted average of the relative signed jump varia-

tion of the 30 exchange traded fund, ASJt =
∑30

i=1w
i
tRSJ

i
t as proxy to −At;

This copula specification has three main advantages: 1) the joint non-linear dependences be-

tween m and r are not affected by the specific assumptions on the marginal distributions. Hence,

if a practitioner believes in different classes of distributions for m or r or both, the distributions

could be easily accompanied. In the example that follows, for the ease of exposition and compar-

ison with Bansal et al. (2013), we use the normal distributions for both m and r; 2) The copula

dependence can be captured by the joint distributions without altering the variable’s moments and

covariance. This can be valuable when we investigate the bias from ignoring the asymmetry in

terms of the pricing equation based on moments and covariances. 3) Also, in terms of equation

(12) and (21), the copula asymmetry adjustment will affect At alone, and leave the normal approx-

imation unchanged. This is especially important to illustrate that volatility asymmetry captured

in At together with total volatility V art(∆ct+1) jointly determines the volatility adjustment V t,

thus cannot be ignored.
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C. The Bias from Ignoring Volatility Asymmetry

To illustrate the need to adjust for the bias induced by the asymmetric volatility dependence,

we investigate the magnitude of the bias under the exact pricing equation, Equation (10)

E [Mt+1Rt+1] = Et [exp (mt+1 + rt+1)] =

exp

[
Et [mt+1 + rt+1] +

1

2
V art (mt+1 + rt+1) + At

]
= 1

The relationship could be rewritten to derive the expected asset return:

E [m+ r] +
1

2
V ar(m+ r) + A =0

E(m) +
1

2
V ar(m) + E(r) +

1

2
V ar(r) + Cov(m, r) + A =0

−rf + logE(R) + Cov(m, r) + A =0

where we observe that E(m) + 1
2V ar(m) = −rf , and E(r) + 1

2V ar(r) = logE(R). When the

true date generating process exhibit asymmetric dependence between m and r, the asymmetric

adjustment term A is not zero and cannot be ignored. We could then derive the bias, express in

the magnitude of the total return, when the volatility asymmetry term A is ignored:

E(R) = exp(rf −A− Cov(m, r))

Bias = E(R)− exp(rf − Cov(m, r))

= E(R)− exp(rf − ρm,rσmσr) (24)

where ρm,r is the linear correlation coefficient between the log stochastic discount factor m and the

asset return r.

C.1. Monte-Carlo Simulation Strategy

To understand the magnitude of the Bias demonstrated in equation (24), under the realistic

calibration. We follow the existing literature on the empirical studies on the stochastic discount

factor.
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IV. The Pricing of Volatility Asymmetry Risk

The stochastic discount factor incorporates investor’s valuation on the risky payoff. As investor’s

perceived investment opportunities varies over time, an asset that pays high when investment

opportunities worsen is preferred by the risk-averse investor, and requires a lower expected return

for investors to hold because of the hedging benefit. Therefore, sensitivities to a risk factor which

proxies the worsening (recovering) of investment opportunity set will receive negative (positive)

price, or premium.

As demonstrated by the solution to the Asymmetric-DCAPM-SV model, news in the expec-

tation of future volatility includes both total volatility, and volatility asymmetry, moreover, total

volatility receives a price of -1 and volatility asymmetry risk, −At, receives price of 1. As a result,

assets that co-moves positively (negatively) with total volatility, it’s return increase when volatil-

ity shoots up (down), should receive negative (positive) premium. Similarly, assets that co-moves

positively (negatively) with volatility asymmetry risk −At, which is proxied by average relative

signed jump variation ARSJt, should receive positive (negative) premium. For the total volatility

risk, Ang et al. (2006) shows that total volatility risk, proxied by the daily innovation in the CBOE

option-implied volatility index, receive negative premium in the cross-section.

To demonstrate that the volatility asymmetry risk matters and is a priced systematic risk factor,

we need to demonstrate a cross-sectional return pattern that could be explained by the sensitivity

to the volatility asymmetry risk, especially in the presence of total volatility risk. Specifically, if

the solution to the theoretical model proposed in Section III were correct, empirically, we should

see that:

(1) Portfolios grouped by the firms sensitivity to the aggregate volatility asymmetry risk, βiARSJ

show a positive return predictability pattern, where higher βiARSJ have higher expected return.

The pattern should be robust to a variety of different characteristics.

(2) Due to the confounding relationship between total volatility and volatility asymmetry risk, the

return predictability pattern shown above should not only hold, but also be more significant

after controlling for total volatility risk.

(3) The pricing performance of total volatility risk should also be improved once controlled for

volatility asymmetry risk.

(4) Not only βiARSJ should show future return predictability, there needs to be contemporaneous

relationship between factor loadings and average return. The portfolios sorted on βiARSJ

should have similar loadings to the ex-post factor mimicking portfolio, FARSJ which were

constructed to vary contemporaneously with volatility asymmetry risk.

(5) The volatility asymmetry risk ARSJ and volatility asymmetry risk return factor FARSJ
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should price the portfolios sorted on βiARSJ and βi∆V XO, which were constructed to have

enough spread in the loadings of volatility asymmetry risk.

(6) As a systematic priced risk factor, the volatility asymmetry risk ARSJ should price other

assets in the economy.

We address each of the items above

A. Portfolios Grouped by βiV IX and βiRSJ

A.1. Pre-formation Regression

To understand if stocks with different sensitivities to the innovations on volatility asymmetry

risk (proxied by ARSJ) have different average returns, our first step is to obtain the sensitivity in

a Pre-formation regression, following Ang et al. (2006)11:

re,it = β0 + βiMKTMKTt + βi∆V XO∆V XOt + βi∆ARSJm∆ARSJmt + εit (25)

where re,it is the excess return for stock i, on day t, MKTt,∆V XOt,∆ARSJ
m
t are the aggregate

market return, innovation in the total volatility index and innovation in volatility asymmetry risk

(proxied by value-weighted average of relative Signed Jump Variation from 30 exchange traded funds

that covers a variety of industry and sectors to capture the volatility asymmetry information in the

economy) respectively. We follow the Ang et al. (2006) in using daily data with 1-month window

(for stocks with more than 17 daily observations in a given month), to estimate the coefficients

with a reasonable degree of precision without losing the time-varying conditional information by

aggregating across long horizon. We obtain a 3-D matrix (T ×N×K) of individual asset’s loadings

to different risks across time, where T is number of months, N is the number of individual assets

and K is the number of risk factors.

Our interest is the return pattern indicated by βiARSJm , while controlling for βi∆V XO. We show

that the positive premium received by βiARSJm in both portfolio sorting as well as firm-level Fama

and MacBeth (1973) regressions.

We perform double sorting to control for each other between βi∆V XO and βiARSJm . To sort

stocks by βiARSJm controlling for βi∆V XO, first, at the beginning of each month, all stocks are first

grouped into deciles based on the previous month’s βi∆V XO. Second, within each decile, stock are

again grouped into deciles based on the previous month’s βiARSJm . Third, returns corresponding

to the current month are then equal weighted to form the each portfolio return on the 10×10 grid.

11The CBOE changed the methodology of its volatility index from 2004. The original index, named VXO uses a
model dependent method and covers S& P 100 Index constituents, while the new index, named VIX, uses a model-free
method and covers S& P 500 Index constituents. In Ang et al. (2006) article, the VXO was used, for comparison, we
also use VXO. We also document the results using VIX, as robustness check
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Finally, we average across the βi∆V XO dimension, and result in 10 portfolios ranked in βiARSJm ,

while maintaining an even mixture of the βi∆V XO.

Tables IV and IV present the results of portfolio sorted on βi∆V XO and βiARSJm

A.2. Firm-level Fama-MacBeth Regression on Factor Loadings

While tables IV and IV concisely show that the return predictability of loadings on volatility

asymmetry risk is robust ( and is even improved) when controlling for loadings on total volatility

risk, it is however insufficient as to the double-sorting (or triple sorting) methodology can only

control for one or two characteristics at a time due to the limited number of individual assets (for

example, a 10 × 10 sort require dividing the sample into 100 groups). To control for a variety

of firm characteristics at a time, properly, we perform the firm-level Fama and MacBeth (1973)

regressions on factor loadings and a variety of other characteristics. For every month t, we estimate

the following cross-sectional regression:

rit+1 = γ0,t + γ1,tβ
i
ARSJ,t + γ2,tβ

i
∆V XO,t + φ′tZ

i
t + εtt+1 (26)

where rit+1 is the month t+ 1 return (in percentage) of the ith stock, and Zit is a vector of charac-

teristics and control variables for ith stock observed at the end of period t. The characteristics and

control variables include log firm size, book-to-market, and idiosyncratic volatility, βMKT from the

pre-formation regression in equation (25). We report the results in table VI.

Table VI reports the results under various specifications.

A.3. Factor-Mimicking Portfolios

Following Breeden et al. (1989) and Lamont (2001), we create the maximum correlation mim-

icking return factor, FARSJ to track innovations in ARSJ by estimating the coefficient b in the

following time-series regression:

∆ARSJt = c+ b′Xt + ut (27)

where Xt is the return on the base asset, which were set to the 10βi∆V XO × 10βiARSJm portfolios,

and by construction have different sensitivities to innovation in the volatility asymmetry risk. The

return portfolio, b′Xt, is the factor FARSJ that mimics innovation in the volatility asymmetry

risk.

Table ?? shows the βiARSJm portfolios ex-post loading on the factor FARSJ .
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B. The Premium of Volatility Asymmetry Risk

In the previous section we show that past sensitivities to the volatility asymmetry risk generates

positive future average return in the presence of total volatility risk, and is consistent with the

theoretical model Asymmetric-DCAPM-SV model. Moreover, the pre-formation βiARSJm portfolios

demonstrate same pattern of post-formation loadings on the mimicking factor FARSJ . This shows

that the volatility asymmetry risk is a priced risk factor, we can then estimate the factor premium

of volatility asymmetry risk.

B.1. Fama-MacBeth Factor Price Estimation

Since ARSJ is not asset return, the coefficients on the βARSJ cannot be interpreted as factor

premiums, to estimate the factor premium, we use the mimicking factor FARSJ , which is the

return of a portfolio. To estimate the factor premium λFARSJ , we use the 10βi∆V XO × 10βiARSJm

pre-formation portfolios obtained through the pre-formation regression (25). This portfolio, by

construction provide sufficient dispersion in the loadings of FARSJ so that the cross-sectional

regression could have reasonable power12 We follow the portfolio level two-step procedure of Fama

and MacBeth (1973). In the first stage, we estimate both full sample beta and 5-year rolling window

beta in a time-series regression. In the second stage, we estimate the cross-sectional regression of

portfolio’s return on the loadings. For the full sample beta, the first stage regression is:

rit =αit + βiMKTMKTt + βi∆V IXFV IX + βiARSJFARSJ

+ βiSMBSMBt + βiHMLHMLt + βiLTRLTRt + βiMOMMOMt + βiSTRSTRt + εit

And second stage follows:

r̄i =λ0 + λMKT β̂
i
MKT + λ∆V IX β̂

i
FV IX + λARSJβ

i
ARSJ

+ λSMBβ̂
i
SMB + λHMLβ̂

i
HML + λLTRβ

i
LTR + λMOMβ

i
MOM + λSTRβ

i
STR + εi

where MKT,SMB,HML,LTR,MOM,STR are the market factor, small-minus-big factor, high-

minus-low factor, long-term reversal factor (winner minus loser on past 13 to 60 months), momen-

tum factor (winner minus loser on past 2 to 12 months), short-term reversal factor (winner minus

loser on past 1 month). For the full sample beta, the standard error are adjusted for error-in-

variables problem according to Shanken (1992)

Similarly, for the rolling window beta, the first stage regression is estimated with 5 year rolling

12In Ang et al. (2006), the base assets is chosen to be portfolios sorted on βMKT and β∆V IX , for the same reason.
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window:

rit =αit + βiMKT,tMKTt + βi∆V IX,tFV IX + βiARSJ,tFARSJ

+ βiSMB,tSMBt + βiHML,tHMLt + βiLTR,tLTRt + βiMOM,tMOMt + βiSTR,tSTRt + εit

The second stage is a predictive cross-sectional regression:

rit+1 =λ0,t + λMKT,tβ̂
i
MKT,t + λ∆V IX,tβ̂

i
FV IX,t + λARSJ,tβ

i
ARSJ,t

+ λSMB,tβ̂
i
SMB,t + λHML,tβ̂

i
HML,t + λLTR,tβ

i
LTR,t + λMOM,tβ

i
MOM,t + λSTR,tβ

i
STR,t + εi

The factor premium and the standard error are obtained as γ̂f = 1
T

∑
γ̂f,t, σ̂

2
γ̂f

= 1
T−1

∑
(γ̂f,t− γ̂f )2

Table XI reports the result for both full sample beta and rolling window beta.

B.2. Other Test Assets

The base asset 10βi∆V XO × 10βiARSJm portfolios are by construction have a large dispersion in

the sensitivities to total volatility risk and volatility asymmetry risk. However, in our Asymmetric-

DCAPM-SV model, the volatility asymmetry risk, together with total volatility risk contribute to a

significant part of the stochastic discount factor. Hence the pricing performance of such a systematic

risk factor should not be limited to only a specifically formed portfolios. To demonstrate the pricing

power of volatility asymmetry risk, we also perform the Fama-MacBeth regression on alternative

test assets, including the 25 size-B/M portfolios and 25 size-momentum portfolios.

The results for alternative test assets are reported in tables XII, XIII XIV, and show that the

volatility asymmetry risk is indeed able to price a large selection of assets.

C. Robustness Checks
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V. Return Predictability Based on Individual Firm’s RSJ i

We find that individual firm’s past month relative Signed Jump variation RSJ i has strong

predictability for that firm’s next month return. The monthly rebalanced long-short portfolio earn

an average spread of xxx per month. The predictability coming from RSJ i unifies the documented

higher moments anomalies. Specifically, we show that portfolios grouped by RSJ i drives the pattern

of portfolios grouped by realized skewness documented in Amaya et al. (2011), and by controlling

for RSJ i, the predictability of realized volatility, realized skewness, and realized kurtosis disappear.

The puzzling directions of the predictability of the higher moments can be unified by the direction

and the magnitude of the predictability of RSJ i. We also show that the portfolios grouped by past

RSJ i is robust after controlling for 1-month short-term reversal. We present the analysis using

both the intuitive portfolio sorts as well as the firm-level Fama and MacBeth (1973) cross-sectional

regressions. Recent development on intraday event studies (Boudt and Petitjean, 2014), among

others, suggest that news flow causes jumps in intraday prices. Since limiting theory shows that

RSJ i directly captures the differences in the jump variations on the two tails, we do not prove,

but suggest a potential explanation: Good and bad unobserved information arrival result in high-

frequency jump in the stock prices. By directly measuring the relative magnitude of the positive

and negative jump variances, the RSJ i can better capture the return impact of the news than

the other higher moment measures (namely, the realized volatility, realized skewness and realized

kurtosis).

A. The Higher Moments Anomalies

Recent studies have investigated future return predictability coming from the past period higher

moments, and found puzzling results. For the second moment, Ang et al. (2006) using daily data

have documented that stocks grouped by return volatility as well as the idiosyncratic volatility

relative to the Fama and French (1993) model, presents negative return predictability, i.e. high

volatility low future return. While Bali and Cakici (2008); Fu (2009) among others have found

opposite result using different data period and methodology. Using high-frequency data from 1997-

2008,(Amaya et al., 2011) have found that realized volatility have insignificant negative predictabil-

ity power, while realized kurtosis have borderline positive predictability power. Moreover, Amaya

et al. (2011) have shown that past week realized skewness constructed from high frequency intraday

data negatively predict next week’s return. Using option data to extract the ex-ante option-implied

moments, Conrad et al. (2013) found predictability results in similar directions compared to Amaya

et al. (2011).

A more detailed look, the “hard-to-understand” directions of the predictability from various
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moments seem to suggest that different components of the return have different predictability. Em-

pirically, the predictability differs in two important ways: the magnitude of the increments, and the

sign of the increments. By construction, realized kurtosis differs from the realized volatility only by

raising the increments to a higher power, thus putting more weights on the larger increments and

more penalty to the smaller increments. The difference in return predictability between realized

volatility and realized kurtosis suggests that the jumps or larger increments possess different pre-

dictability power compared to the diffusive or smaller increments. In addition to the magnitudes

of the increments, the signs of the increments are also suggested to matter for the direction of pre-

dictability. In particular, since skewness can be viewed as the third power of positive increments

minus the third power of negative increments, the negative predictability from skewness suggest

that positive price increments predict lower future return, while negative price increments predict

higher future return.

Prior to any further empirical investigation, if the above interpretation of the existing results

were correct, by separating the positive and negative, as well as the large and small price increments,

the RSJ i should show the following return predictability property: (1) Higher RSJ i should predict

lower future return, since it takes the difference of positive and negative jump variations; (2)

Portfolios sorted on RSJ i should have larger spread than the ones sorted on other higher moments,

since in the limit, RSJ i only measures the large jumps, and is independent from the small price

increments (which is suggested to differ from large price increments); (3) Once controlled for RSJ i,

the original directions of the predictability from other higher moments should disappear, since the

other higher moments measures the driving functional form indirectly.

Using the novel large cross-section and long time-span high-frequency data from TAQ covering

19896 stocks and from 1993 to 2013. We show that all three of the above property are verified. We

first verify the return patterns by forming equal-weighted 13 portfolios based on past period firm

characteristics, and look at the average future period return. Specifically:

(1) We observe a very monotonic return pattern on portfolios sorted on RSJ i, with higher past

RSJ i decile predicting lower future return; Table VII reports the decile portfolios grouped

by previous week and month RSJ i. The average next month (week) return varies strictly

monotonically from 1.515% (0.506%) for the lowest decile to 0.967% (0.079%) for the highest

decile. Figure ?? graphically demonstrate this strict monotonic pattern.

(2) The monthly (weekly) re-balancing long-short portfolio have a premium of -0.548% (-0.427%),

and significant robust t-statistics of -3.82 (-14.74), which corresponds to -6.6% (-22.2%) return

annually. This spread is significantly larger than the spread obtained from sorting on other

realized higher moments. Table VIII reports the result from sorting on realized variance,

13The results for the market-capital weighted portfolios are similar and we also provide them in the appendix
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realized skewness and realized volatility.

(3) We show that portfolios double-sorted on RSJ i controlling for other higher moments (realized

skewness, realized kurtosis and realized volatility) retain the statistically significant spread

and monotonic pattern, while portfolios double-sorted on other higher moments controlling

for RSJ i, shows insignificant spread or even reverse pattern compared to the uncontrolled

single sorted portfolios. Table VIII reports the double-sort comparison between RSJ i and

other higher moments.

The above cross-sectional return predictability of RSJ i can also be confirmed using a firm-level

Fama and MacBeth (1973) cross-sectional regression, controlling for all characteristics together.

For every period t, we estimate the following cross-sectional regression:

rit+1 = γ0,t + γ1,tRSJ
i
t + φ′tZ

i
t + εtt+1 (28)

where rit+1 is the period t+ 1 return (in percentage) of the ith stock, and Zit is a vector of charac-

teristics and control variables for ith stock observed at the end of period t. The characteristics and

control variables include log firm size, book-to-market, lagged return, realized volatility, realized

skewness and realized kurtosis. We report the results in table IX. For all the specifications, the

coefficients for RSJ i is significantly negative, consistent with the portfolio sorting result that high

RSJ i predicts lower future return. When controlling for RSJ i, the predictability from other higher

moments disappears, while the coefficient of RSJ i remains significant.

B. The Past Return, RSJ i, and Price Paths

It is worth noting that the Relative Signed Jump Variation, RSJ i, provides incremental pre-

dictability beyond the past cumulative return, indicating that even when the end-points of prices

are the same, the intra-day price path matters, and in particular, the intra-day jump variations

provide valuable information for future return. Table VIII, panel B, and C shows that the future

return predictability of RSJ i remains economically and statistically significant after controlling

for past return, with a spread of 0.302% per month and robust t-statistics of 2.72. At the same

time the significance of past return’s predictability drops once controlled for RSJ i. Table IX also

indicate that the predictability RSJ remain significant after controlling for all moments of return

for the same period, where past return can be viewed as the 1st moment. The two variables have

positive correlations in the sense that if a stock has larger and more number of positive jumps than

negative jumps, the cumulative return for that stock that period should be high, yet they could be

capturing different characteristics. By construction, RSJ i is constructed using the high-frequency

intra-day return, and measures directly the relative difference between positive jump variations and
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negative jump variations, thus paying attention to and summarizing the intra-day characteristics

of the price path. On the other hand, the past 1-month cumulative return, ignores the intra-day

price paths, and only captures the end-points.

Relating to the recent studies in news and price jumps, the incremental predictability of RSJ

beyond the cumulative return suggest that RSJ could be summarizing the news information for the

period estimated, thus important for future return predictability. Using DJIA stocks, Boudt and

Petitjean (2014) found that firm-specific news could drive the occurrence of price jumps. Although

we do not attempt to prove the links between unobserved information flow, observed news release

and price jumps, the predictability of RSJ i suggest that information useful for return predictability

could be embedded in the intra-day price path, and information extracted from jumps clearly stands

out.
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VI. Conclusion

To conclude, we verify the literature’s documentation on the return, total volatility predictability

around good and bad volatilities. We present evidence on firm loadings to support that volatility

asymmetry risk is an important risk factor, and have strong pricing power to various different

assets. We also develop an Asymmetric-DCAPM-SV model with explicit solution to the stochastic

discount factor that demonstrate a confounding relationship between volatility asymmetry risk

and the total volatility risk. Because of the confounding relationship, the pricing power of total

volatility and is improved when controlled for volatility asymmetry. We show that the pricing

performance of volatility asymmetry risk is robust to a large variety of characteristics and controls.

At the firm-level, we verify the higher-moments anomalies in future return predictability, and show

that relative signed jump variations is the driving force behind the seemingly puzzling directions

of return predictabilities, and we point the the recent advance in the event studies to suggest that

a potential explanation is that equity prices serve as directional information exchange between

participants in the market, and relative signed jump variation better summarizes the information

in the price-paths embedded only in the large intraday price increments, which are driven by the

flow of information. Prove or disprove this conjecture requires resolution to the challenge imposed

by the unobserved information flow, and can be of interest to further study.
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Table I
Summary Statistics

This table reports the summary statistics at daily frequency. The columns are: SPY return, SPY realized variance, CBOE
VIX, CBOE VXO, SPY Signed Jump Variation, SPY Threshold Signed Jump Variation, SPY Relative Signed Jump Varia-
tion, SPY Relative Threshold Signed Jump Variation, SPY Realized Skewness, SPY Realized Kurtosis, Average Signed Jump
Variation of 9 Industry ETFs, Average Relative Signed Jump Variation of 9 Industry ETFs, respectively. Top panel covers all
the trading days from 1993 to 2013, the bottom panel covers all trading days from 1999 to 2013, during which the 9 Industry
ETFs become available. The daily return data are obtained from CRSP(Center for Research in Stock Prices) database. The
high frequency variance measures are constructed from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

Whole Sample 1993-2013

rmt RVmt V IXt V XOt SJmt TSJmt RSJmt RTSJmt RSkewmt RKurtmt ASJt ARSJt

Mean 0.042 1.559 20.387 20.937 -0.025 0.009 0.036 -0.007 0.205 10.361 — —
Std.Dev. 1.217 3.444 8.424 9.247 1.903 0.606 0.358 0.163 2.012 10.403 — —
Autocorr(1) -0.067 0.503 0.979 0.975 -0.033 -0.042 -0.038 -0.009 -0.031 0.066 -0.009 -0.035
Corr.

rmt 1.000 — — — — — — — — — — —
RVmt -0.078 1.000 — — — — — — — — — —
V IXt -0.114 0.592 1.000 — — — — — — — — —
V XOt -0.121 0.594 0.983 1.000 — — — — — — — —
SJmt 0.506 -0.404 -0.113 -0.112 1.000 — — — — — — —
TSJmt 0.198 0.344 0.068 0.076 0.143 1.000 — — — — — —
RSJmt 0.688 -0.066 -0.097 -0.100 0.391 0.127 1.000 — — — — —
RTSJmt 0.285 0.034 0.001 0.004 0.089 0.329 0.439 1.000 — — — —
RSkewmt 0.542 -0.067 -0.073 -0.076 0.430 0.095 0.933 0.312 1.000 — — —
RKurtmt 0.125 0.168 -0.040 -0.059 0.020 0.052 0.165 0.018 0.205 1.000 — —
ASJt — — — — — — — — — — — —
ARSJt — — — — — — — — — — — —

Industry ETFs Available Sample 1999-2013

rmt RVmt V IXt V XOt SJmt TSJmt RSJmt RTSJmt RSkewmt RKurtmt ASJt ARSJt

Mean 0.026 1.686 21.624 22.216 -0.037 0.012 0.029 -0.008 0.178 9.904 -0.027 0.020
Std.Dev. 1.309 3.826 8.863 9.823 2.183 0.647 0.360 0.128 2.033 10.754 2.450 0.269
Autocorr(1) -0.065 0.507 0.981 0.977 -0.036 -0.028 -0.059 -0.011 -0.049 0.006 -0.009 -0.036
Corr.

rmt 1.000 — — — — — — — — — — —
RVmt -0.080 1.000 — — — — — — — — — —
V IXt -0.121 0.600 1.000 — — — — — — — — —
V XOt -0.128 0.599 0.986 1.000 — — — — — — — —
SJmt 0.503 -0.431 -0.124 -0.121 1.000 — — — — — — —
TSJmt 0.155 0.367 0.076 0.086 0.102 1.000 — — — — — —
RSJmt 0.716 -0.062 -0.105 -0.110 0.398 0.106 1.000 — — — — —
RTSJmt 0.276 0.051 0.015 0.019 0.089 0.362 0.345 1.000 — — — —
RSkewmt 0.567 -0.067 -0.083 -0.087 0.441 0.074 0.929 0.209 1.000 — — —
RKurtmt 0.134 0.203 0.038 0.015 0.013 0.048 0.184 0.032 0.229 1.000 — —
ASJt 0.563 -0.325 -0.110 -0.109 0.925 0.082 0.435 0.076 0.467 0.058 1.000 —
ARSJt 0.719 -0.075 -0.114 -0.119 0.394 0.078 0.923 0.252 0.867 0.186 0.466 1.000
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Table II
Volatility Asymmetry in Forecasting Aggregate Volatiltiy

This table reports the HAR regression specified in equation (6), according to Patton and Sheppard (2013), at the monthly
level, for the SPDR ETF. Data covers all trading days from 19930101 to 20131231. The weekly period ends on every Friday,
resulting in a total of 1095 trading weeks and 252 months. The return data are obtained from CRSP(Center for Research
in Stock Prices) database, and the weekly returns are compounded from daily holding period return within that week. The
Relative Signed Jump measures are constructed from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

RVmt+1→h RVmt RVm,+t RVm,−t SJmt RVmt,w SJmt,w RVmt,m SJmt,m R2

h=22 0.091 0.293 0.325 0.544
(4.68) (3.13) (4.12)

-0.127 0.404 0.271 0.314 0.557
(-3.27) (4.19) (3.04) (3.93)

0.139 -0.265 0.271 0.314 0.557
(4.03) (-4.09) (3.04) (3.93)

0.101 -0.132 0.343 -0.724 0.305 0.569
(4.34) (-3.43) (2.94) (-2.60) (3.52)

0.101 -0.129 0.327 -0.642 0.333 -0.429 0.569
(4.35) (-3.27) (2.30) (-1.62) (2.65) (-0.57)

Table III
Volatility Asymmetry in Forecasting Aggregate Return

This table reports the monthly non-overlapping simple OLS regression specified in equation (7), for the SPDR ETF. Data
covers all trading days from 19930101 to 20131231. The weekly period ends on every Friday, resulting in a total of 1095
trading weeks and 252 months. The return data are obtained from CRSP(Center for Research in Stock Prices) database,
and the weekly returns are compounded from daily holding period return within that week. The Relative Signed Jump
measures are constructed from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

rmt+1→h ∆RVmh→t ∆RVm,+h→t ∆RVm,−h→t ∆SJmh→t R2

h=22 0.019 0.005
(2.30)

0.029 0.002
(1.70)

0.046 0.008
(2.92)

-0.224 0.010
(-1.92)

-0.290 0.356 0.025
(-2.16) (2.48)

0.033 -0.323 0.025
(4.25) (-2.33)
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Table IV
Portfolios Grouped by βiASJ,t and βiV XO,t, Whole Sample: 1998-2013

This table reports the quintile portfolios grouped by the individual asset’s sensitivities of volatility asymmetry risk βiASJ,t,

and total volatility risk βiV XO,t, estimated by the pre-formation regression according to equation (25). At the beginning of
month t, all stocks are grouped into deciles based on the previous period’s sensitivities, returns corresponding to the period
from month t to t+ 1 (predictive) are then averaged to form the portfolio return. The Returns are reported in percentage,
and averaged across time. Each column named from 1 to 5 corresponds to the deciles from Low to High on the sorted char-
acteristics. The column named ”5-1” corresponds to the Long-Short portfolio of buying the highest and selling the lowest
decile portfolios. Panel A reports the portfolios sorted on βiASJ,t. Panel B reports the double sort first in βiV XO,t, then

βiASJ,t, then pooled across βiV XO,t quintiles. Panel C and D reports the portfolios sorted on βiV XO,t. The robust t-statistics

are reported in square brackets below the mean return, and are adjusted for Newey and West (1987) standard error with 12
lags (corresponding to 1-year). The rows named log(sizei) reports the average logarithm of the firm size; The rows named
βiASJ,t and βiV XO,t are the average sensitivities of the firm within each portfolios; The rows named nFirms are the average

number of firms in each portfolio. Data covers all 19896 stocks available in TAQ (Trade and Quote) database, and all trad-
ing days from 19980101 to 20131231, covering 9:30am to 4:00pm, resulting in a total of 252 months. The return data are
obtained from CRSP(Center for Research in Stock Prices) database.

Decile 5-1 1 2 3 4 5

A: Single Sorted on βiASJ,t, Monthly, 199801-201312

rt+1(%) (value weight) 0.615 0.570 0.652 0.681 0.871 1.185
[2.04] [1.82] [2.83] [2.93] [2.64] [2.83]

rt+1(%) (equal weight) 0.384 0.576 0.703 0.740 0.827 0.960
[1.95] [1.49] [2.46] [2.43] [2.33] [1.99]

log(sizei) 8.310 8.849 8.972 8.983 8.586
βiASJ,t -1.279 -0.056 0.371 0.846 2.211

nFirms 890.714 891.389 891.425 891.389 890.714

B: Double Sorted on βiASJ,t, controlling for βiV XO,t, Monthly, 199801-201312

rt+1(%) (value weight) 0.539 0.667 0.646 0.750 0.843 1.206
[2.05] [2.76] [2.76] [2.95] [2.87] [3.01]

rt+1(%) (equal weight) 0.401 0.551 0.699 0.765 0.841 0.951
[1.87] [1.68] [2.39] [2.51] [2.45] [2.24]

log(sizei) 8.225 8.771 8.929 8.994 8.789
βiV XO,t -0.352 -0.272 -0.234 -0.201 -0.110

βiASJ,t -1.014 -0.053 0.378 0.840 1.943

nFirms 177.551 178.208 178.220 178.208 177.551

C: Single Sorted on βiV XO,t, Monthly, 199801-201312

rt+1(%) (value weight) 0.280 0.783 0.734 0.707 0.733 1.063
[0.94] [1.85] [2.59] [2.81] [2.90] [3.19]

rt+1(%) (equal weight) 0.112 0.745 0.737 0.751 0.718 0.857
[0.72] [1.58] [2.13] [2.46] [2.48] [2.18]

log(sizei) 8.723 9.098 9.000 8.747 8.131
βiV XO,t -1.119 -0.452 -0.210 0.006 0.607

nFirms 890.714 891.389 891.425 891.389 890.714

D: Double Sorted on βiV XO,t, controlling for βiASJ,t, Monthly, 199801-201312

rt+1(%) (value weight) -0.131 0.939 0.808 0.749 0.724 0.808
[-0.54] [2.52] [2.89] [3.14] [2.87] [2.74]

rt+1(%) (equal weight) -0.075 0.787 0.825 0.760 0.721 0.713
[-0.40] [1.91] [2.46] [2.52] [2.48] [2.06]

log(sizei) 8.890 9.077 8.963 8.687 8.092
βiASJ,t 0.158 0.343 0.416 0.494 0.681

βiV XO,t -0.992 -0.448 -0.216 0.002 0.485

nFirms 177.551 178.208 178.220 178.208 177.551
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Table V
Portfolios Grouped by βiASJ,t and βiV XO,t, Post-Decimalization: 2003-2013

This table reports the quintile portfolios grouped by the individual asset’s sensitivities of volatility asymmetry risk βiASJ,t,

and total volatility risk βiV XO,t, estimated by the pre-formation regression according to equation (25). At the beginning of
month t, all stocks are grouped into deciles based on the previous period’s sensitivities, returns corresponding to the period
from month t to t+ 1 (predictive) are then averaged to form the portfolio return. The Returns are reported in percentage,
and averaged across time. Each column named from 1 to 5 corresponds to the deciles from Low to High on the sorted char-
acteristics. The column named ”5-1” corresponds to the Long-Short portfolio of buying the highest and selling the lowest
decile portfolios. Panel A reports the portfolios sorted on βiASJ,t. Panel B reports the double sort first in βiV XO,t, then

βiASJ,t, then pooled across βiV XO,t quintiles. Panel C and D reports the portfolios sorted on βiV XO,t. The robust t-statistics

are reported in square brackets below the mean return, and are adjusted for Newey and West (1987) standard error with 12
lags (corresponding to 1-year). The rows named log(sizei) reports the average logarithm of the firm size; The rows named
βiASJ,t and βiV XO,t are the average sensitivities of the firm within each portfolios; The rows named nFirms are the average

number of firms in each portfolio. Data covers all 19896 stocks available in TAQ (Trade and Quote) database, and all trad-
ing days from 20030101 to 20131231, covering 9:30am to 4:00pm, resulting in a total of 252 months. The return data are
obtained from CRSP(Center for Research in Stock Prices) database.

Decile 5-1 1 2 3 4 5

A: Single Sorted on βiASJ,t, Monthly, Recent Sample: 200301-201312

rt+1(%) (value weight) 0.846 0.917 1.108 1.144 1.244 1.763
[3.80] [1.86] [3.14] [3.26] [2.61] [3.28]

rt+1(%) (equal weight) 0.529 0.973 1.053 1.184 1.304 1.502
[3.01] [1.48] [2.15] [2.26] [2.19] [1.99]

log(sizei) 12.050 12.829 12.994 13.002 12.460
βiASJ,t -2.016 -0.052 0.633 1.395 3.585

nFirms 1297.879 1298.818 1298.856 1298.818 1297.879

B: Double Sorted on βiASJ,t, controlling for βiV XO,t, Monthly, Recent Sample: 200301-201312

rt+1(%) (value weight) 0.674 1.110 1.103 1.245 1.287 1.784
[3.12] [2.83] [2.94] [3.28] [3.00] [3.56]

rt+1(%) (equal weight) 0.601 0.888 1.114 1.197 1.336 1.488
[2.69] [1.47] [2.18] [2.29] [2.34] [2.24]

log(sizei) 11.923 12.734 12.945 13.024 12.724
βiV XO,t -0.514 -0.406 -0.354 -0.309 -0.180

βiASJ,t -1.605 -0.046 0.651 1.393 3.156

nFirms 258.723 259.659 259.686 259.659 258.723

C: Single Sorted on βiV XO,t, Monthly, Recent Sample: 200301-201312

rt+1(%) (value weight) -0.019 1.489 1.293 1.011 1.152 1.471
[-0.07] [2.87] [2.98] [2.51] [2.73] [2.77]

rt+1(%) (equal weight) -0.080 1.346 1.229 1.125 1.057 1.266
[-0.44] [1.78] [2.11] [2.14] [2.13] [1.91]

log(sizei) 12.667 13.215 13.042 12.645 11.767
βiV XO,t -1.551 -0.659 -0.330 -0.028 0.807

nFirms 1297.879 1298.818 1298.856 1298.818 1297.879

D: Double Sorted on βiV XO,t, controlling for βiASJ,t, Monthly, Recent Sample: 200301-201312

rt+1(%) (value weight) -0.173 1.538 1.221 1.157 1.134 1.365
[-0.66] [3.45] [2.87] [3.22] [2.81] [2.91]

rt+1(%) (equal weight) -0.245 1.353 1.303 1.158 1.096 1.109
[-1.17] [2.07] [2.30] [2.24] [2.15] [1.77]

log(sizei) 12.874 13.172 13.011 12.587 11.704
βiASJ,t 0.287 0.591 0.708 0.830 1.132

βiV XO,t -1.386 -0.655 -0.338 -0.031 0.646

nFirms 258.723 259.659 259.686 259.659 258.723
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Table VI
Firm-Level Fama-MacBeth Cross-Sectional Regression on β’s

This table reports the results for firm-level Fama and MacBeth (1973) cross-sectional regression controlling for firm’s risk
exposures, under various specifications. At the end of every month t, we estimate Equation (28), controlling for firm charac-
teristics and risk exposures β’s: firm size, log(sizeit), Book-to-Market log(BM i

t ), βMKT,t, βVXO,t, βARSJ,t, all estimated up
to time t. After obtaining the coefficients for every t, we report the time-series average and the Newey and West (1987) ro-
bust t-statistics adjusted for 24-lags (corresponding to two years). Data covers all 19896 stocks available in TAQ (Trade and
Quote) database, and all trading days from 19930101 to 20131231, resulting in a total of 252 months. The return data are
obtained from CRSP(Center for Research in Stock Prices) database. All realized high-frequency measures are constructed
from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

(1) (2) (3) (4) (5) (6) (7) (8)
Intercept log(Sizeit) log(BMi

t) iV olt βMKT,t βVXO,t βRSJ,t R2
Adj

1.309 -0.000
[3.90]
3.419 -0.176 0.002 0.035 0.017
[3.70] [-3.12] [0.04] [2.89]
3.685 -0.183 -0.008 -0.018 0.029 0.030
[4.56] [-3.76] [-0.23] [-1.48] [2.48]
3.683 -0.182 -0.009 -0.019 0.032 0.028 0.032
[4.55] [-3.73] [-0.25] [-1.53] [1.16] [2.31]
3.577 -0.167 -0.003 -0.016 0.004 0.086 0.031
[4.44] [-3.49] [-0.10] [-1.34] [0.12] [1.79]
3.783 -0.192 -0.020 -0.018 0.055 -0.064 0.042 0.039
[4.69] [-3.90] [-0.56] [-1.64] [1.63] [-0.70] [2.09]
3.419 -0.176 0.002 0.035 0.017
[3.70] [-3.12] [0.04] [2.89]
1.195 -0.003 0.020 0.023
[4.19] [-0.26] [1.68]
1.221 0.036 0.023 0.008
[3.79] [1.11] [1.81]
1.243 0.025 0.033 0.016
[3.91] [0.24] [1.70]
1.229 0.026 0.005
[3.77] [2.18]
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Table VII
Portfolios Grouped by Relative Signed Jump Variations

This table reports the portfolios grouped by the Relative Signed Jump Variation, RSJit and its alternative measure, Relative
Threshold Signed Jump Variation, rTSJit , both derived by normalizing the Signed Jump Variations by the same period Re-
alized Variance. At the beginning of time t, all stocks are grouped into deciles based on the previous period’s Relative Signed
Jump Variations, returns corresponding to the period from time t to t+ 1 are then equal weighted to form the portfolio re-
turn. The Returns are reported in percentage, and averaged across time. Each column named from 1 to 10 corresponds to
the deciles from Low to High on the sorted characteristics. The column named ”10-1” corresponds to the Long-Short port-
folio of buying the highest and selling the lowest decile portfolios. Panel A reports the portfolios sorted on RSJit re-grouped
weekly. Panel B reports the regrouping in monthly frequency. Panel C and D reports the portfolios sorted on the alternative
measure of Signed Jump Variations. The robust t-statistics are reported in square brackets below the mean return, and are
adjusted for Newey and West (1987) standard error with 12 lags. The rows named log(sizei) reports the average logarithm
of the firm size; The rows named RSJit and rTSJit are the average characteristics of the firm within each portfolios; The
rows named nFirms are the average number of firms in each portfolio. Data covers all 19896 stocks available in TAQ (Trade
and Quote) database, and all trading days from 19930101 to 20131231. The weekly period ends on every Friday, resulting
in a total of 1095 trading weeks and 252 months. The return data are obtained from CRSP(Center for Research in Stock
Prices) database, and the weekly returns are compounded from daily holding period return within that week. The Relative
Signed Jump measures are constructed from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

Decile 10-1 1 2 3 4 5 6 7 8 9 10

A: Weekly, Sorted on RSJit

rt+1(%) -0.427 0.506 0.460 0.422 0.350 0.291 0.270 0.229 0.201 0.161 0.079
[-12.85] [6.46] [5.16] [4.63] [3.95] [3.40] [3.30] [2.82] [2.50] [2.09] [1.13]

log(sizei) 11.630 12.339 12.638 12.805 12.811 12.754 12.901 12.884 12.641 11.865
RSJit -0.353 -0.171 -0.105 -0.060 -0.025 0.005 0.038 0.081 0.147 0.329
nFirms 623.145 627.865 627.902 627.366 619.887 609.530 620.357 626.450 627.864 622.448

B: Monthly, Sorted on RSJit

rt+1(%) -0.548 1.515 1.370 1.254 1.212 1.146 1.156 1.082 1.077 1.032 0.967
[-3.52] [4.70] [3.75] [3.54] [3.46] [3.19] [3.45] [3.23] [3.46] [3.27] [3.21]

log(sizei) 11.394 12.033 12.376 12.624 12.779 12.805 12.868 12.820 12.571 11.786
RSJit -0.218 -0.105 -0.067 -0.041 -0.020 -0.001 0.018 0.043 0.081 0.193
nFirms 629.163 630.270 630.377 630.282 629.754 628.984 629.254 629.536 630.270 629.079

C: Weekly, Sorted on rTSJit

rt+1(%) -0.391 0.494 0.425 0.381 0.331 0.281 0.292 0.263 0.235 0.180 0.102
[-12.25] [6.23] [4.88] [4.25] [3.79] [3.44] [3.56] [3.18] [2.81] [2.23] [1.43]

log(sizei) 11.687 12.311 12.663 12.917 12.884 12.754 13.016 12.904 12.591 11.910
RSJit -0.326 -0.156 -0.093 -0.051 -0.020 0.005 0.032 0.072 0.133 0.300
nFirms 625.695 627.864 627.835 627.174 596.960 553.638 603.005 626.229 627.865 625.514

D: Monthly, Sorted on rTSJit

rt+1(%) -0.519 1.469 1.346 1.334 1.169 1.205 1.136 1.117 1.065 1.009 0.951
[-3.76] [4.64] [3.92] [3.82] [3.32] [3.59] [3.33] [3.33] [3.20] [3.10] [3.14]

log(sizei) 11.487 12.029 12.405 12.682 12.812 12.701 12.849 12.809 12.496 11.856
RSJit -0.199 -0.098 -0.061 -0.037 -0.017 -0.001 0.017 0.039 0.074 0.172
nFirms 629.306 630.270 630.381 630.119 626.548 621.016 623.044 629.873 630.270 629.306
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Table VIII
Portfolios Grouped by Realized Moments and RSJ i

This table reports the portfolios grouped by the Realized 1st-4th Moments (Past Return, Realized Volatility, Realized Skew-
ness and Realized Kurtosis). For panel A, at the beginning of time t, all stocks are grouped into deciles based on the previous
period’s Relative Signed Jump Variations, returns corresponding to the period from time t to t+ 1 are then equal weighted
to form the portfolio return. The Returns are reported in percentage, and averaged across time. Robust Newey and West
(1987) t-statistics are reported in square brackets and are adjusted for 24 lags, corresponding to one year. Each column
named from 1 to 10 corresponds to the deciles from Low to High on the sorted characteristics. The column named ”10-1”
corresponds to the Long-Short portfolio of buying the highest and selling the lowest decile portfolios. For panel B and C,
At the beginning of time t, all stocks are first grouped into deciles based on the previous period’s “controlled for” character-
istics. Second, within each characteristics decile, stock are grouped into deciles based on the previous period’s “sorted on”
characteristics. Third, returns corresponding to the period from time t to t + 1 are then equal weighted to form the each
portfolio return on the 10×10 grid. Finally, we average across the “controlled for” dimension, and result in 10 portfolios of
“sorted on” characteristics, while maintaining an even mixture of the “controlled for” characteristics. Data covers all 19896
stocks available in TAQ (Trade and Quote) database, and all trading days from 19930101 to 20131231, resulting in a to-
tal of 252 months. The return data are obtained from CRSP(Center for Research in Stock Prices) database. All realized
high-frequency measures are constructed from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

A: Single Sort on Realized Moments, Monthly

Sorted On 10-1 1 2 3 4 5 6 7 8 9 10

Past Ret. -0.796 1.829 1.274 1.145 1.042 1.012 1.102 1.128 1.060 1.078 1.033
[-2.40] [3.79] [3.35] [3.57] [3.61] [3.58] [3.92] [3.97] [3.60] [3.27] [2.11]

R. Vol. 0.885 0.730 0.892 0.956 1.089 1.131 1.271 1.247 1.413 1.410 1.615
[1.48] [3.64] [3.66] [3.69] [3.86] [3.81] [3.89] [3.40] [3.34] [2.73] [2.54]

R. Skew. -0.242 1.253 1.258 1.225 1.166 1.190 1.080 1.263 1.114 1.167 1.011
[-2.17] [3.99] [3.84] [3.58] [3.38] [3.54] [3.17] [3.63] [3.30] [3.62] [3.48]

R. Kurt. -0.043 1.184 1.048 1.121 1.126 1.273 1.184 1.311 1.247 1.169 1.141
[-0.20] [3.25] [2.64] [2.94] [3.19] [3.59] [3.44] [4.05] [4.12] [3.89] [4.10]

B: Double Sort on Realized Moments Controlling for RSJi, Monthly

Sorted On 10-1 1 2 3 4 5 6 7 8 9 10

Past Ret. -0.470 1.659 1.279 1.199 1.120 1.145 1.059 1.055 1.057 1.070 1.189
[-1.60] [3.68] [3.49] [3.66] [3.69] [4.07] [3.80] [3.63] [3.39] [3.23] [2.45]

R. Vol. 0.732 0.762 0.947 0.976 1.126 1.179 1.212 1.317 1.307 1.520 1.494
[1.25] [3.64] [3.88] [3.74] [4.05] [3.84] [3.64] [3.62] [3.07] [3.02] [2.37]

R. Skew. -0.079 1.130 1.221 1.185 1.169 1.222 1.216 1.241 1.218 1.159 1.051
[-0.82] [3.61] [3.69] [3.55] [3.42] [3.60] [3.48] [3.55] [3.55] [3.63] [3.52]

R. Kurt. -0.082 1.208 1.106 1.107 1.189 1.205 1.270 1.222 1.210 1.162 1.126
[-0.41] [3.33] [2.93] [3.03] [3.28] [3.46] [3.80] [3.74] [3.88] [3.91] [3.92]

C: Double Sort on RSJi Controlling for Realized Moments, Monthly

Controlling For 10-1 1 2 3 4 5 6 7 8 9 10

Past Ret -0.302 1.327 1.302 1.291 1.165 1.214 1.125 1.108 1.139 1.119 1.025
[-2.72] [4.26] [3.79] [3.62] [3.38] [3.60] [3.41] [3.32] [3.35] [3.52] [3.37]

R. Vol. -0.430 1.455 1.337 1.268 1.210 1.131 1.154 1.105 1.076 1.005 1.025
[-3.21] [4.66] [4.00] [3.69] [3.68] [3.28] [3.31] [3.24] [3.26] [3.18] [3.26]

R. Skew. -0.419 1.392 1.433 1.297 1.223 1.146 1.168 1.098 1.071 1.026 0.973
[-3.18] [4.32] [3.92] [3.61] [3.46] [3.40] [3.44] [3.40] [3.36] [3.22] [3.19]

R. Kurt. -0.523 1.487 1.384 1.311 1.189 1.171 1.168 1.088 1.019 1.041 0.963
[-2.96] [4.17] [3.83] [3.83] [3.42] [3.42] [3.60] [3.38] [3.28] [3.33] [3.10]
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Table IX
Firm-Level Fama-MacBeth Cross-Sectional Regression

This table reports the results for firm-level Fama and MacBeth (1973) cross-sectional regression controlling for firm charac-
teristics, under various specifications. At the end of every month t, we estimate Equation (28), controlling for firm charac-
teristics: firm size, log(sizeit), Book-to-Market log(BM i

t ), Relative Signed Jump Variation RSJit , Realized Volatility RV it ,
Realized Skewness RSKi

t , Realized Kurtosis RKT it , past 1-month return STRit, past 2-12 month return MOM i
t , past 13-60

month return LTRit, all observed up to time t. After obtaining the coefficients for every t, we report the time-series average
and the Newey and West (1987) robust t-statistics adjusted for 12-lags (corresponding to one year). Data covers all 19896
stocks available in TAQ (Trade and Quote) database, and all trading days from 19930101 to 20131231, resulting in a to-
tal of 252 months. The return data are obtained from CRSP(Center for Research in Stock Prices) database. All realized
high-frequency measures are constructed from the intra-day 5-minute return from TAQ covering 9:30am to 4:00pm.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Intercept log(Sizeit) log(BMi

t) RSJit RV it RSKi
t RKT it STRit MOM i

t LTRit R2
Adj

1.240 0.000
[3.77]
3.204 -0.151 0.034 0.012
[3.76] [-2.67] [0.61]
3.056 -0.141 0.043 -1.813 0.013
[3.63] [-2.54] [0.79] [-4.60]
3.090 -0.133 0.070 -1.661 -0.001 -0.063 -0.010 0.032
[3.77] [-2.91] [1.58] [-4.60] [-0.18] [-1.88] [-1.18]
2.906 -0.135 0.031 -0.787 0.000 0.054 -0.008 -0.024 0.004 -0.001 0.047
[3.76] [-3.30] [0.75] [-2.66] [0.05] [1.78] [-1.01] [-5.42] [1.14] [-3.99]
3.204 -0.151 0.034 0.012
[3.76] [-2.67] [0.61]
1.305 -1.925 0.002
[4.30] [-4.02]
1.109 0.001 -0.165 0.004 0.025
[3.31] [0.31] [-4.29] [0.50]
1.100 -1.659 0.001 -0.081 0.004 0.026
[3.28] [-4.35] [0.22] [-2.45] [0.55]
1.123 -0.022 0.002 -0.002 0.023
[3.17] [-5.03] [0.37] [-3.59]
1.111 -1.004 -0.020 0.002 -0.002 0.024
[3.14] [-2.53] [-4.45] [0.40] [-3.58]
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Table X
Portfolios Controlling for Other Firm-Level Characteristics

This table reports the portfolios grouped by the Relative Signed Jump Variation, RSJit and controlling for other firm-level
characteristics, using 10×10 double sort. At the beginning of time t, all stocks are first grouped into deciles based on the
previous period’s firm-level characteristics. Second, within each characteristics decile, stock are grouped into deciles based
on the previous period’s Relative Signed Jump Variations. Third, returns corresponding to the period from time t to t +
1 are then equal weighted to form the each portfolio return on the 10×10 grid. Finally, we average across the first sorted
dimension, and result in 10 portfolios sorted on Relative Signed Jump Variations, while maintaining an even mixture of the
controlling characteristics. The Returns are reported in percentage, and averaged across time. Each column named from 1
to 10 corresponds to the deciles from Low to High on the sorted characteristics. The column named ”10-1” corresponds to
the Long-Short portfolio of buying the highest and selling the lowest decile portfolios. Panel A and B reports the portfolios
controlling for Realized Skewness and Realized Kurtosis as in Amaya et al. (2013) re-grouped weekly and monthly. Panel
C reports the portfolios controlling for Short-Term-Reversal, as in Jegadeesh (1990). The robust t-statistics are reported
in square brackets below the mean return, and are adjusted for Newey and West (1987) standard error with 12 lags. The
rows named log(sizei) reports the average logarithm of the firm size; The row named RSJit is the average characteristics of
the firm within each portfolios; The rows named nFirms are the average number of firms in each portfolio. Data covers all
19896 stocks available in TAQ (Trade and Quote) database, and all trading days from 19930101 to 20131231. The weekly
period ends on every Friday, resulting in a total of 1095 trading weeks and 252 months. The return data are obtained from
CRSP(Center for Research in Stock Prices) database, and the weekly returns are compounded from daily holding period
return within that week. The Relative Signed Jump measures are constructed from the intra-day 5-minute return from TAQ
covering 9:30am to 4:00pm.

Decile 10-1 1 2 3 4 5 6 7 8 9 10

A1: Weekly, Controlling for Realized Skewness

rt+1(%) -0.292 0.420 0.436 0.392 0.350 0.322 0.290 0.238 0.218 0.189 0.128
[-10.60] [5.97] [5.26] [4.75] [4.39] [4.12] [3.80] [3.24] [3.05] [2.72] [2.21]

log(sizei) 11.826 12.493 12.658 12.631 12.748 12.743 12.711 12.769 12.667 11.994

RSkewi
t -0.104 -0.071 -0.057 -0.063 -0.047 -0.049 -0.043 -0.045 -0.031 0.004

RSJi
t -0.305 -0.157 -0.102 -0.064 -0.029 0.005 0.040 0.079 0.135 0.287

nFirm 61.312 62.549 61.697 60.653 61.628 61.623 60.698 60.943 62.458 61.194

A2: Monthly, Controlling for Realized Skewness

rt+1(%) -0.419 1.392 1.433 1.297 1.223 1.146 1.168 1.098 1.071 1.026 0.973
[-3.32] [4.49] [3.80] [3.44] [3.42] [3.36] [3.56] [3.56] [3.60] [3.58] [3.91]

log(sizei) 11.592 12.205 12.465 12.590 12.687 12.738 12.733 12.717 12.546 11.886

RSkewi
t -0.060 -0.053 -0.050 -0.048 -0.045 -0.047 -0.045 -0.044 -0.040 -0.034

RSJi
t -0.199 -0.101 -0.066 -0.042 -0.022 -0.002 0.018 0.042 0.077 0.177

nFirm 61.925 62.992 62.964 62.885 62.615 62.601 62.827 62.870 62.987 61.915

B1: Weekly, Controlling for Realized Kurtosis

rt+1(%) -0.500 0.580 0.462 0.377 0.333 0.290 0.251 0.250 0.201 0.153 0.081
[-12.96] [7.04] [5.66] [4.73] [4.26] [3.80] [3.42] [3.45] [2.87] [2.24] [1.27]

log(sizei) 12.311 12.421 12.487 12.576 12.594 12.486 12.658 12.686 12.669 12.574

RKurtit 19.195 19.046 19.001 19.010 18.990 18.738 18.962 19.019 19.077 19.202

RSJi
t -0.319 -0.177 -0.113 -0.065 -0.027 0.006 0.042 0.088 0.153 0.299

nFirm 61.339 62.564 62.683 62.424 60.094 58.233 61.037 62.397 62.556 61.277

B2: Monthly, Controlling for Realized Kurtosis

rt+1(%) -0.523 1.487 1.384 1.311 1.189 1.171 1.168 1.088 1.019 1.041 0.963
[-2.66] [4.02] [3.63] [3.60] [3.43] [3.56] [3.70] [3.67] [3.49] [3.65] [3.63]

log(sizei) 11.987 12.191 12.305 12.425 12.512 12.561 12.602 12.627 12.637 12.450

RKurtit 18.821 18.765 18.723 18.718 18.711 18.713 18.726 18.739 18.779 18.830

RSJi
t -0.199 -0.108 -0.071 -0.044 -0.022 -0.001 0.021 0.047 0.083 0.176

nFirm 61.934 63.019 62.991 63.005 62.692 62.470 62.787 62.854 63.014 61.923

C1: Weekly, Controlling for Short-Term Reversal

rt+1(%) -0.314 0.425 0.406 0.385 0.345 0.297 0.282 0.256 0.246 0.169 0.111
[-13.98] [6.62] [5.40] [4.90] [4.37] [3.82] [3.68] [3.35] [3.26] [2.34] [1.83]

log(sizei) 11.656 12.363 12.649 12.777 12.787 12.805 12.845 12.790 12.544 11.780

STRi
t 0.959 1.009 1.021 1.028 1.052 1.100 1.147 1.182 1.215 1.194

RSJi
t -0.336 -0.166 -0.102 -0.059 -0.026 0.005 0.037 0.079 0.142 0.312

nFirm 61.397 62.570 62.612 62.329 61.387 60.750 61.558 62.252 62.542 61.343

C2: Monthly, Controlling for Short-Term Reversal

rt+1(%) -0.302 1.327 1.302 1.291 1.165 1.214 1.125 1.108 1.139 1.119 1.025
[-3.18] [4.69] [3.92] [3.75] [3.44] [3.50] [3.37] [3.39] [3.53] [3.67] [3.83]

log(sizei) 11.400 12.087 12.469 12.691 12.821 12.871 12.877 12.775 12.454 11.629

STRi
t 0.845 0.953 0.971 1.039 1.106 1.175 1.237 1.339 1.416 1.412

RSJi
t -0.196 -0.097 -0.062 -0.039 -0.020 -0.003 0.016 0.038 0.072 0.173

nFirm 61.958 62.967 63.019 62.961 62.699 62.642 62.871 62.930 62.956 61.948
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Table XI
Fama-MacBeth Factor Prices, Monthly Horizon, Full and Rolling Beta

This table shows the Fama and MacBeth (1973) two step factor prices estimation results on the monthly horizon, using the
10βi∆VXO × 10βiARSJm portfolios in Table IV. Robust t-statistics are reported in square brackets, and with first-stage ro-
bust covariance matrix estimated according to the Newey and West (1987) estimator with 12 lags. For the full sample beta,
t-statistics are accounted for errors-in-variables from the first stage regressions, following Shanken (1992). Before starting
the two step estimation procedure, for each factor model specification, the factors are passed through a VAR(1) filter to
obtain the orthogonalized innovations, following Campbell (1996). For the ”Full Beta”, the first-stage betas are estimated
for the full sample, and for the ”Rolling Beta”, the first-stage betas are estimated on 5-year rolling window to account for
potential changes in factor loadings, following Ferson and Harvey (1999). The zero-cost factor portfolios are added to the
test assets, following Lewellen et al. (2010). Column (1) indicates the setup; Column (2) reports the estimated model in-
tercepts; Columns (3),(4),(5) report the Fama and French (1993) 3-Factor, MKT − rf , SMB,HML prices, respectively;
Columns (6),(7),(8) report the factor prices of momentum factors, i.e. medium-term MOM , long-term LTR and short-term
STR factors, respectively; Columns (9), (10), (11), (12) reports the factor prices coefficient for the innovations in the weekly
realized volatility, upside semi-variance, downside semi-variance and signed jump variation of SPY, respectively; Column
(13) reports the adjusted R2 in the second-stage. Data covers all trading days from 19930101 to 20131231. The daily factor
portfolios MKT − rf , SMB,HML,MOM,LTR, STR and risk-free rate rf are downloaded from Ken-French data library.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Assets γ0 γMKT γSMB γHML γMOM γLTR γSTR γ∆RV m γ
∆RV m,+ γ

∆RV m,− γ∆ARSJm R2
Adj

Full Beta 0.166 0.737 0.346 0.211 0.080 0.240 0.328 0.356
T = 252 [0.68] [1.94] [1.19] [0.73] [0.18] [0.75] [0.79]
nPf= 106 0.029 0.866 0.413 0.254 0.061 0.388 0.474 -0.445 0.371

[0.13] [2.42] [1.44] [0.88] [0.14] [1.24] [1.20] [-1.87]
0.112 0.766 0.285 0.313 0.114 0.327 0.356 -0.190 -0.325 0.407
[0.53] [2.16] [1.00] [1.07] [0.27] [1.03] [0.89] [-1.87] [-2.38]
0.202 0.684 0.242 0.299 0.126 0.249 0.267 0.127 0.405
[0.81] [1.78] [0.83] [1.02] [0.29] [0.76] [0.64] [2.43]
0.112 0.766 0.285 0.313 0.114 0.327 0.356 -0.515 0.135 0.407
[0.53] [2.16] [1.00] [1.07] [0.27] [1.03] [0.89] [-2.20] [2.56]

Rolling Beta 0.085 0.817 0.351 -0.058 -0.324 0.012 0.451 0.358
T = 252 [0.42] [2.26] [1.63] [-0.23] [-1.36] [0.07] [2.06]
nPf= 106 0.051 0.865 0.417 -0.100 -0.348 0.046 0.561 -0.301 0.345

[0.25] [2.39] [1.90] [-0.42] [-1.44] [0.31] [2.58] [-2.70]
0.043 0.883 0.422 -0.084 -0.285 0.052 0.535 -0.130 -0.180 0.346
[0.21] [2.50] [1.97] [-0.37] [-1.17] [0.34] [2.50] [-2.96] [-2.77]
0.100 0.803 0.360 -0.070 -0.312 -0.025 0.453 0.042 0.335
[0.50] [2.25] [1.68] [-0.29] [-1.31] [-0.15] [2.07] [1.41]
0.043 0.883 0.422 -0.084 -0.285 0.052 0.535 -0.309 0.050 0.346
[0.21] [2.50] [1.97] [-0.37] [-1.17] [0.34] [2.50] [-2.90] [1.73]
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Table XII
Fama-MacBeth Estimation on Alternative Test Assets, Weekly Horizon, Rolling Beta

This table shows the Fama and MacBeth (1973) two step factor prices on the weekly horizon. Robust t-statistics are re-
ported in square brackets and accounted for errors-in-variables from the first stage regressions, following Shanken (1992),
and with first-stage robust covariance matrix estimated according to the Newey and West (1987) estimator with 12 lags14.
Before starting the two step estimation procedure, for each factor model specification, the factors are passed through a
VAR(1) filter to obtain the orthogonalized innovations, following Campbell (1996). The first-stage is estimated on 5-year
rolling window betas to account for potential changes in factor loadings, following Ferson and Harvey (1999). The zero-cost
factor portfolios are added to the test assets, following Lewellen et al. (2010). Column (1) indicates the test assets chosen,
i.e., 25 Size × BE/ME, 25 Size × Momentum, 25 Size × Long Term Reversal and 25 Size × Short Term Reversal portfolios,
all in excess return; Column (2) reports the estimated model intercepts; Columns (3),(4),(5) report the Fama and French
(1993) 3-Factor, MKT − rf , SMB,HML prices, respectively; Columns (6),(7),(8) report the factor prices of momentum
factors, i.e. medium-term MOM , long-term LTR and short-term STR factors, respectively; Columns (9), (10), (11), (12)
reports the factor prices coefficient for the innovations in the weekly realized volatility, upside semi-variance, downside semi-
variance and signed jump variation of SPY, respectively; Column (13) reports the adjusted R2 in the second-stage. Data
covers all trading days from 19930101 to 20131231. The weekly period ends on every Friday, resulting in a total of 1095
trading weeks. The daily factor portfolios MKT − rf , SMB,HML,MOM,LTR, STR and risk-free rate rf are downloaded
from Ken-French data library and compounded to calendar weekly. The market realized variance (semi-variance, signed
jump variation) are constructed from the intra-day 5-minute return of SPY from 9:30am to 4:00pm, obtained from NYSE
TAQ (Trade and Quote) database, the weekly measures are the averaged daily measures during the corresponding week.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Assets γ0 γMKT γSMB γHML γMOM γLTR γSTR γ∆RV p γ
∆RV p,+ γ

∆RV p,− γ∆SJp R2
Adj

25SZBM 0.050 0.066 0.025 0.055 0.077 0.006 0.226 0.598
T=1095 [4.15] [0.72] [0.51] [1.06] [0.89] [0.14] [2.81]
nPf=31 0.044 0.073 0.020 0.062 0.071 0.016 0.237 -0.394 0.599

[4.03] [0.80] [0.40] [1.22] [0.81] [0.37] [2.96] [-2.05]
0.047 0.076 0.023 0.069 0.063 0.015 0.229 -0.111 -0.309 0.645
[4.58] [0.83] [0.47] [1.33] [0.72] [0.36] [2.83] [-1.32] [-2.69]
0.049 0.071 0.028 0.054 0.081 0.008 0.229 0.193 0.648
[4.64] [0.78] [0.58] [1.05] [0.95] [0.18] [2.87] [2.71]
0.047 0.076 0.023 0.069 0.063 0.015 0.229 -0.420 0.198 0.645
[4.58] [0.83] [0.47] [1.33] [0.72] [0.36] [2.83] [-2.24] [2.75]

25SZMOM 0.041 0.096 0.054 0.025 0.093 0.043 0.243 0.770
T=1095 [2.73] [1.05] [1.06] [0.42] [1.04] [0.97] [3.09]
nPf=31 0.034 0.104 0.050 0.038 0.088 0.057 0.243 -0.350 0.794

[2.53] [1.14] [1.00] [0.67] [0.97] [1.33] [3.04] [-1.98]
0.033 0.095 0.052 0.029 0.075 0.060 0.257 -0.045 -0.196 0.785
[2.48] [1.02] [1.02] [0.52] [0.81] [1.37] [3.21] [-0.58] [-1.82]
0.035 0.099 0.060 0.020 0.091 0.052 0.244 0.142 0.773
[2.46] [1.08] [1.18] [0.36] [1.00] [1.18] [3.10] [2.06]
0.033 0.095 0.052 0.029 0.075 0.060 0.257 -0.240 0.151 0.785
[2.48] [1.02] [1.02] [0.52] [0.81] [1.37] [3.21] [-1.38] [2.24]

25SZLTR 0.034 0.095 0.063 0.050 0.058 0.056 0.235 0.817
T=1095 [2.33] [1.02] [1.24] [0.96] [0.66] [1.29] [2.91]
nPf=31 0.030 0.105 0.057 0.053 0.060 0.059 0.245 -0.232 0.819

[2.12] [1.13] [1.12] [1.01] [0.68] [1.35] [3.02] [-1.39]
0.030 0.102 0.059 0.056 0.061 0.054 0.250 0.004 -0.220 0.823
[2.12] [1.08] [1.16] [1.07] [0.69] [1.22] [3.08] [0.06] [-2.33]
0.023 0.103 0.067 0.066 0.076 0.062 0.249 0.229 0.822
[1.61] [1.11] [1.32] [1.24] [0.85] [1.41] [3.10] [3.60]
0.030 0.102 0.059 0.056 0.061 0.054 0.250 -0.216 0.225 0.823
[2.12] [1.08] [1.16] [1.07] [0.69] [1.22] [3.08] [-1.35] [3.59]

25SZSTR 0.031 0.092 0.040 0.003 0.017 0.102 0.288 0.713
T=1095 [1.84] [0.98] [0.78] [0.04] [0.20] [2.38] [3.56]
nPf=31 0.020 0.107 0.048 0.009 0.045 0.112 0.285 -0.058 0.741

[1.20] [1.14] [0.94] [0.15] [0.50] [2.60] [3.49] [-0.39]
0.020 0.106 0.063 -0.005 0.031 0.105 0.307 0.163 -0.192 0.788
[1.29] [1.13] [1.22] [-0.09] [0.35] [2.40] [3.69] [2.44] [-1.95]
0.021 0.101 0.053 -0.007 0.033 0.114 0.294 0.377 0.726
[1.33] [1.08] [1.04] [-0.12] [0.37] [2.63] [3.63] [5.40]
0.020 0.106 0.063 -0.005 0.031 0.105 0.307 -0.028 0.355 0.788
[1.29] [1.13] [1.22] [-0.09] [0.35] [2.40] [3.69] [-0.18] [5.10]
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Table XIII
Fama-MacBeth Estimation on Alternative Test Assets, Weekly Horizon, Full and
Rolling Beta

This table shows the Fama and MacBeth (1973) two step factor prices on the weekly horizon. Robust t-statistics are re-
ported in square brackets and accounted for errors-in-variables from the first stage regressions, following Shanken (1992),
and with first-stage robust covariance matrix estimated according to the Newey and West (1987) estimator with 12 lags15.
Before starting the two step estimation procedure, for each factor model specification, the factors are passed through a
VAR(1) filter to obtain the orthogonalized innovations, following Campbell (1996). For the ”Full Beta”, the first-stage betas
are estimated for the full sample, and for the ”Rolling Beta”, the first-stage betas are estimated on 5-year rolling window
to account for potential changes in factor loadings, following Ferson and Harvey (1999). The zero-cost factor portfolios are
added to the test assets, following Lewellen et al. (2010). Column (1) indicates the test assets chosen, i.e., 25 Size × BE/ME,
25 Size × Momentum, all in excess return; Column (2) reports the estimated model intercepts; Columns (3),(4),(5) report
the Fama and French (1993) 3-Factor, MKT − rf , SMB,HML prices, respectively; Columns (6),(7),(8) report the factor
prices of momentum factors, i.e. medium-term MOM , long-term LTR and short-term STR factors, respectively; Columns
(9), (10), (11), (12) reports the factor prices coefficient for the innovations in the weekly realized volatility, upside semi-
variance, downside semi-variance and signed jump variation of SPY, respectively; Column (13) reports the adjusted R2 in
the second-stage. Data covers all trading days from 19930101 to 20131231. The weekly period ends on every Friday, result-
ing in a total of 1095 trading weeks. The daily factor portfolios MKT − rf , SMB,HML,MOM,LTR, STR and risk-free
rate rf are downloaded from Ken-French data library, and the weekly measures are aggregated from daily measures by sum-
ming up the daily log-returns during the corresponding week16. The market realized variance (semi-variance, signed jump
variation) are constructed from the intra-day 5-minute return of SPY from 9:30am to 4:00pm, obtained from NYSE TAQ
(Trade and Quote) database, the weekly measures are the averaged daily measures during the corresponding week.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Assets γ0 γMKT γSMB γHML γMOM γLTR γSTR γ∆RV p γ
∆RV p,+ γ

∆RV p,− γ∆SJp R2
Adj

25SZBM
Full Beta 0.028 0.128 0.013 0.088 0.117 0.031 0.368 0.587
T = 1095 [3.02] [1.71] [0.30] [2.02] [1.65] [0.74] [5.58]
nPf= 31 0.024 0.133 0.013 0.089 0.120 0.035 0.372 0.108 0.574

[3.06] [1.78] [0.32] [2.06] [1.69] [0.87] [5.65] [0.48]
0.032 0.138 0.013 0.068 0.111 0.021 0.371 0.268 0.027 0.636
[3.73] [1.84] [0.32] [1.58] [1.57] [0.51] [5.63] [2.30] [0.18]
0.036 0.123 0.011 0.076 0.109 0.019 0.363 0.251 0.608
[4.09] [1.64] [0.28] [1.76] [1.54] [0.46] [5.50] [2.87]
0.032 0.138 0.013 0.068 0.111 0.021 0.371 0.296 0.241 0.636
[3.73] [1.84] [0.32] [1.58] [1.57] [0.51] [5.63] [1.15] [2.74]

Rolling Beta 0.047 0.074 0.028 0.053 0.080 0.009 0.229 0.600
T = 1095 [3.99] [0.81] [0.57] [1.03] [0.93] [0.21] [2.85]
nPf= 31 0.041 0.082 0.022 0.063 0.075 0.020 0.241 -0.393 0.599

[3.69] [0.90] [0.45] [1.22] [0.87] [0.46] [3.01] [-2.06]
0.043 0.086 0.025 0.070 0.068 0.019 0.233 -0.104 -0.301 0.646
[4.26] [0.93] [0.51] [1.35] [0.77] [0.44] [2.87] [-1.26] [-2.67]
0.046 0.081 0.030 0.055 0.085 0.011 0.232 0.196 0.650
[4.41] [0.89] [0.61] [1.05] [0.98] [0.26] [2.91] [2.75]
0.043 0.086 0.025 0.070 0.068 0.019 0.233 -0.405 0.198 0.646
[4.26] [0.93] [0.51] [1.35] [0.77] [0.44] [2.87] [-2.20] [2.76]

25SZMOM
Full Beta -0.022 0.176 0.044 0.143 0.136 0.120 0.435 0.809
T = 1095 [-2.37] [2.33] [1.02] [2.85] [1.91] [2.96] [6.63]
nPf= 31 -0.015 0.178 0.039 0.125 0.127 0.117 0.427 -0.388 0.806

[-1.48] [2.36] [0.91] [2.70] [1.77] [2.87] [6.48] [-1.41]
-0.026 0.193 0.050 0.126 0.140 0.128 0.440 0.037 -0.230 0.809
[-2.22] [2.55] [1.16] [2.71] [1.95] [3.05] [6.64] [0.30] [-1.44]
-0.023 0.190 0.047 0.122 0.136 0.125 0.436 0.256 0.816
[-2.48] [2.52] [1.10] [2.65] [1.90] [3.08] [6.65] [2.14]
-0.026 0.193 0.050 0.126 0.140 0.128 0.440 -0.193 0.267 0.809
[-2.22] [2.55] [1.16] [2.71] [1.95] [3.05] [6.64] [-0.75] [2.19]

Rolling Beta 0.039 0.104 0.056 0.026 0.094 0.045 0.245 0.772
T = 1095 [2.55] [1.13] [1.10] [0.45] [1.04] [1.02] [3.11]
nPf= 31 0.032 0.113 0.054 0.039 0.089 0.060 0.245 -0.351 0.796

[2.33] [1.23] [1.06] [0.69] [0.98] [1.39] [3.07] [-1.98]
0.031 0.108 0.055 0.031 0.076 0.062 0.259 -0.046 -0.197 0.785
[2.27] [1.16] [1.09] [0.55] [0.83] [1.41] [3.22] [-0.60] [-1.81]
0.033 0.110 0.063 0.023 0.090 0.055 0.246 0.142 0.773
[2.26] [1.20] [1.23] [0.40] [1.00] [1.25] [3.12] [2.04]
0.031 0.108 0.055 0.031 0.076 0.062 0.259 -0.243 0.151 0.785
[2.27] [1.16] [1.09] [0.55] [0.83] [1.41] [3.22] [-1.38] [2.22]
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Table XIV
Fama-MacBeth Estimation on Alternative Test Assets, Monthly Horizon, Full Beta

This table shows the Fama and MacBeth (1973) two step factor prices on the weekly horizon. Robust t-statistics are re-
ported in square brackets and accounted for errors-in-variables from the first stage regressions, following Shanken (1992),
and with first-stage robust covariance matrix estimated according to the Newey and West (1987) estimator with 12 lags17.
Before starting the two step estimation procedure, for each factor model specification, the factors are passed through a
VAR(1) filter to obtain the orthogonalized innovations, following Campbell (1996). For the ”Full Beta”, the first-stage betas
are estimated for the full sample, and for the ”Rolling Beta”, the first-stage betas are estimated on 5-year rolling window
to account for potential changes in factor loadings, following Ferson and Harvey (1999). The zero-cost factor portfolios are
added to the test assets, following Lewellen et al. (2010). Column (1) indicates the test assets chosen, i.e., 25 Size × BE/ME,
25 Size × Momentum, all in excess return; Column (2) reports the estimated model intercepts; Columns (3),(4),(5) report
the Fama and French (1993) 3-Factor, MKT − rf , SMB,HML prices, respectively; Columns (6),(7),(8) report the factor
prices of momentum factors, i.e. medium-term MOM , long-term LTR and short-term STR factors, respectively; Columns
(9), (10), (11), (12) reports the factor prices coefficient for the innovations in the weekly realized volatility, upside semi-
variance, downside semi-variance and signed jump variation of SPY, respectively; Column (13) reports the adjusted R2 in
the second-stage. Data covers all trading days from 19930101 to 20131231. The weekly period ends on every Friday, result-
ing in a total of 1095 trading weeks. The daily factor portfolios MKT − rf , SMB,HML,MOM,LTR, STR and risk-free
rate rf are downloaded from Ken-French data library, and the weekly measures are aggregated from daily measures by sum-
ming up the daily log-returns during the corresponding week18. The market realized variance (semi-variance, signed jump
variation) are constructed from the intra-day 5-minute return of SPY from 9:30am to 4:00pm, obtained from NYSE TAQ
(Trade and Quote) database, the weekly measures are the averaged daily measures during the corresponding week.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Assets γ0 γMKT γSMB γHML γMOM γLTR γSTR γ∆RV p γ

∆RV p,+ γ
∆RV p,− γ∆SJp

25SZBM -0.008 0.633 0.211 0.373 0.605 0.322 0.351 0.641
T = 252 [-0.21] [2.25] [0.98] [1.79] [1.84] [1.64] [1.42]
nPf= 31 -0.010 0.625 0.211 0.364 0.611 0.334 0.355 -0.297 0.633

[-0.25] [2.22] [0.98] [1.76] [1.86] [1.71] [1.44] [-1.16]
-0.019 0.650 0.198 0.374 0.604 0.373 0.352 -0.012 -0.199 0.664
[-0.49] [2.32] [0.92] [1.81] [1.84] [1.93] [1.42] [-0.10] [-1.32]
-0.028 0.648 0.198 0.388 0.629 0.378 0.370 0.174 0.669
[-0.74] [2.30] [0.92] [1.87] [1.91] [1.94] [1.50] [2.55]
-0.019 0.650 0.198 0.374 0.604 0.373 0.352 -0.210 0.187 0.664
[-0.49] [2.32] [0.92] [1.81] [1.84] [1.93] [1.42] [-0.81] [2.61]

25SZMOM -0.122 0.760 0.295 0.555 0.603 0.545 0.452 0.825
T = 252 [-2.68] [2.68] [1.34] [2.40] [1.82] [2.84] [1.80]
nPf= 31 -0.135 0.768 0.288 0.555 0.624 0.565 0.466 -0.079 0.832

[-2.92] [2.71] [1.31] [2.40] [1.88] [2.96] [1.85] [-0.28]
-0.123 0.792 0.290 0.543 0.610 0.557 0.449 -0.042 -0.171 0.837
[-2.63] [2.80] [1.32] [2.35] [1.84] [2.91] [1.79] [-0.35] [-1.06]
-0.106 0.778 0.291 0.526 0.586 0.544 0.434 0.136 0.831
[-2.30] [2.74] [1.32] [2.28] [1.77] [2.83] [1.72] [2.03]
-0.123 0.792 0.290 0.543 0.610 0.557 0.449 -0.212 0.129 0.837
[-2.63] [2.80] [1.32] [2.35] [1.84] [2.91] [1.79] [-0.77] [1.86]
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